
Learning towards Selective Data Augmentation for Dialogue Generation

Xiuying Chen1*, Mingzhe Li2*, Jiayi Zhang3,
Xiaoqiang Xia3, Chen Wei3, Jianwei Cui3, Xin Gao1†, Xiangliang Zhang4, Rui Yan5†

1Computational Bioscience Research Center, KAUST
2Ant Group

3 Xiaomi AI Lab
4 University of Notre Dame

5Gaoling School of Artificial Intelligence, Renmin University of China
xiuying.chen@kaust.edu.sa,limingzhe.lmz@antgroup.com

Abstract
As it is cumbersome and expensive to acquire a huge amount
of data for training neural dialog models, data augmentation
is proposed to effectively utilize existing training samples.
However, current data augmentation techniques on the dia-
log generation task mostly augment all cases in the training
dataset without considering the intrinsic attributes between
different cases. We argue that not all cases are beneficial for
augmentation task, and the cases suitable for augmentation
should obey the following two attributes: (1) low-quality (the
dialog model cannot generate a high-quality response for the
case), (2) representative (the case should represent the prop-
erty of the whole dataset). Herein, we explore this idea by
proposing a Selective Data Augmentation framework (SDA)
for the response generation task. SDA employs a dual adver-
sarial network to select the lowest quality and most represen-
tative data points for augmentation in one stage. Extensive ex-
periments conducted on two publicly available datasets, i.e.,
DailyDialog and OpenSubtitles, show that our framework can
improve the response generation performance with respect to
various metrics.

Introduction
Open-domain dialogue generation is becoming a research
hotspot in the community of natural language processing
due to its penitential applications (Li et al. 2019; Chen et al.
2021b). Generally, in the paradigm of deep neural networks,
a large quantity of training data is required for facilitating
the convergence of these models. As such, a data augmen-
tation framework that can generate reliable training cases is
the crux of building a robust dialogue model.

As shown in Figure1(a), existing data augmentation meth-
ods for the dialog generation task mainly investigate differ-
ent ways to augment all data samples without considering
their distinct attributes. For example, Hou et al. (2018) aug-
mented each case by leveraging other cases with similar se-
mantic meaning in the training dataset, and Li et al. (2019)
generated diversified versions for each query and response
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in an adversarial style. However, we argue that in practice,
the attributes of the training cases vary, thus, not all cases
are necessary for augmentation. The augmentation of dull
responses such as “I don’t know” and noisy samples with un-
paired queries and responses even brings harm to the model.
Taking one step further, we assume that whether each case
is beneficial for augmentation should be examined from two
aspects. From the generation quality aspect, the generation
model may perform relatively well in some cases, for ex-
ample, the cases with safe answers. Correspondingly, it is
redundant and sometimes harmful to augment these cases
(Csaky, Purgai, and Recski 2019). Thus, we should only fo-
cus on part of the data where the model fails to adapt to
(low-quality). From the dataset attribute side, the quality of
user-generated training data varies greatly, and noisy sam-
ples frequently appear (Cai et al. 2020). Hence, we should
augment the representative cases that reflect a larger set of
their properties (representative), instead of some noisy sam-
ples that do not represent the general attribute of the whole
dataset. This is also inspired by a previous study (Schröder
and Niekler 2020), which shows that training on representa-
tive cases can increase the quality of the resulting model.

Based on this assumption, in this work, we propose
a novel Selective Data Augmentation framework, namely
SDA, to accurately select the most informative data points
from the training dataset by simultaneously considering the
generation quality and representativeness. The overview is
illustrated in Figure 1(b). The dialog selector is required to
select the samples maximizing the distance between gen-
erated responses and original responses (low-quality) while
minimizing the distance between selected samples and orig-
inal samples (representative).

Concretely, we use a dual generative adversarial (Dual-
GAN) framework to assist the dialog selector in the distance
measurement between deep feature representations. From
the generation quality side, a discriminator tries to discrim-
inate between the generated response and the ground-truth
response, while the dialog selector aims to trick the discrim-
inator. If the generated responses cannot fool the discrimi-
nator, then the selected samples have low quality. From the
representativeness side, we measure the distance by the re-
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Our selective dialog augmentation methodFigure 1: Our goal is to simultaneously select the lowest
quality and the most representative cases in the training
dataset for augmentation (best viewed in color).

construction process. If the selected samples successfully
reconstruct the original data, then the selected cases have
high representativeness. Concretely, the samples selected
by the dialog selector are sent to a variational autoencoder
(VAE), which embeds the features of selected samples into
the same latent space and then reconstructs them. The recon-
structed features are fed to the representativeness discrimi-
nator, which tries to discriminate between the original sam-
ples and the reconstructed samples. If the selected samples
successfully fool the discriminator, then the selected sam-
ples have high representativeness. In this way, the dialog
selector is encouraged to take both generation quality and
representativeness into consideration during data selection.

Our main contributions can be summarized as follows:
(1) We propose the selective data augmentation task, which
aims to select suitable training cases for augmentation. (2)
We propose a dual adversarial framework for Selective Data
Augmentation (SDA), which can simultaneously learn to se-
lect the lowest quality and most representative data points
for augmentation. (3) Extensive experiments conducted on
two public dialog datasets show that our approach can im-
prove the dialog generation performance. We also show the
universality of our framework for the story generation task.

Related Work
Dialog Generation. Existing approaches to improve neu-
ral dialogue generation models mainly target building more
powerful learning systems, using extra information such as
conversation topics (Zou et al. 2021), persona profile (Chan
et al. 2019), user emotions (Song et al. 2019), out-sourcing
knowledge (Li et al. 2021), or pretrained models (Tuan
et al. 2021). Another popular framework for dialogue gener-
ation concentrates on using VAE (Zhao, Zhao, and Eskénazi
2017), in which a latent variable is introduced to benefit the
dialogue model with more diverse response generation. As

the GAN framework facilitates training the generator,
Data Augmentation. In the paradigm of deep learning,

data augmentation is an effective way to boost the perfor-
mance of neural models. To name a few, Kurata, Xiang,
and Zhou (2016) proposed to generate labeled data with
the decoder LSTM based on the perturbated encoded vec-
tor for the semantic slot filling task. Andreas (2020) de-
signed a simple data augmentation protocol aimed at provid-
ing a compositional inductive bias in conditional and uncon-
ditional sequence models. Kobayashi (2018) and Wu et al.
(2019) showed that contextual augmentation using label-
conditional language models helps text classification tasks.
In terms of dialog generation task, Li et al. (2019) proposed a
generative model to augment existing data, where the CVAE
was employed as the generator to output more training data
with diversified expressions. Louvan and Magnini (2020)
proposed Lightweight augmentation, a set of word-span and
sentence-level augmentation methods for low-resource slot
filling and intent classification. The most recent work was
proposed by Cai et al. (2020), where they proposed to aug-
ment and reweight all learning samples.

Methodology

Open-domain dialogue generation involves generating a re-
sponse Ri = (ri1, ..., r

i
j , ..., r

i
m) for a user-issued query

Qi = (qi1, ..., q
i
k, ..., q

i
m′), where rij refers to the j-th word

in the response in i-th case, and qik denotes the k-th word
in the query in i-th case. m and m′ are the word length
of a response and a query, respectively. The entire dialogue
system is trained under D, i.e., maximizing the P (Ri|Qi),
where D = {(Qi, Ri)}Ni=1 is the dataset and N refers to
the number of training query-response pairs. For the data
augmentation task, the original dataset D is increased to
D′ = {(Qi, Ri)}N ′

i=1, where N ′ is the data size after aug-
mentation. In our selective data augmentation task, we aim
to select suitable cases suitable for augmentation and in-
crease the data size from N to N ′. Correspondingly, the
response generation changes from argmaxP (R|Q,D) to
argmaxP (R|Q,D′).

Overall, the Dialog Selector assigns select weights to ex-
isting samples. To select the lowest quality and most repre-
sentative cases, we propose two discriminators to assist this
process, as shown in Figure 2. Firstly, a Generation Qual-
ity Discriminator (GQD) discriminates between the ground-
truth response and the generated response. The dialog se-
lector will assign high weights to cases that cannot fool
GQD. Secondly, to examine the representativeness of the
selected samples, a reconstruction and a discrimination pro-
cess are employed. The intuition is that if the selected cases
can successfully reconstruct the original data, then the se-
lected cases are representative. Concretely, a reconstructor
first embeds the selected samples into the same latent space
and then reconstructs them. A Representativeness Discrim-
inator (RD) is then required to classify whether the input
belongs to the original samples or the selected samples. Di-
alog selector will assign high weights to cases that fool RD.
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Figure 2: Major components of our approach. The dialog selector selects samples that will be examined by two discriminators.
The generation quality discriminator examines the generation quality of the selected cases, and the representativeness discrim-
inator examines the representativeness of the selected samples. The samples with low quality and high representativeness, i.e.,
high s score, will be selected for data augmentation.

Dialog Selector
We first employ a bi-directional recurrent neural network
(Bi-RNN) to model the temporal interactions between words
in the query and response, denoted by Q = {hqi

1 , ..., hqi
m′}

and R = {hri
1 , ..., hri

m}, respectively. i denotes the sample
index. The final hidden state hqi

m′ and hri
m denotes the over-

all representation for the query and response. The dialog se-
lector adopts a simple architecture, consisting of a 5-layer
multi-layer perceptron (MLP) with Xavier initialization, to
map the input feature to a score:

si = σ (MLPa([h
qi
m′ ;h

ri
m])) , (1)

where [; ] denotes the concatenation operation and σ denotes
the sigmoid function.

In the next subsections, we will propose dual discrimina-
tors to assist the selection process. As preparation, the origi-
nal representation Q and R are weighted using these scores,
and we use R to denote this process:

R̂i = (1− si)Ri, R̃i = siRi. (2)

R̂i is employed for quality discrimination, and R̃i is used
for representativeness discrimination. Note that we use 1 −
si and si as the weights for quality and representativeness
branches, respectively, to ensure the optimization of these
two terms in the same direction. Notations for Q̂i and Q̃i

are similar.
To prevent the selector from assigning equal importance

to all data points, we employ a length regularizer loss LLR

to limit the number of selected elements, and use a determi-
nantal point process (DPP) loss Ldpp (Szegedy et al. 2015)
to ensure the diversity of selected data points:

LLR =

∥∥∥∥σ − 1

N

∑N
i=1 s

i

∥∥∥∥
2

,Ldpp = − log(P (s)). (3)

For LLR, σ represents the percentage of cases for subset se-
lection. For Ldpp, P (s) is a probability that DPP assigns to
the select s. We compute P (s;L) = det(L(s))

det(L+I) , where L is an
N×N similarity matrix between every case, I is an identity
matrix, and L(s) is a smaller square matrix, cut down from
L given s. For i-th case and j-th case, the pairwise similarity
values are defined as Li,j = sisj [hqi

m′ ;hri
m][h

qj
m′ ;h

rj
m ].

Generation Quality Discriminator
Generation quality discriminator (GQD) aims to evaluate
whether the generated responses are feasible for a given
query. We achieve this by measuring the matching degree
between query-response pairs in an adversarial fashion. The
weighted ground truth query-response pair is treated as a
positive case, while the query with the generated response
pair is the negative case. Concretely, for the positive pair,
we concatenate the weighted ground-truth response R̂i with
the weighted query Q̂i. Then, a fully-connected neural net-
work with a sigmoid activation function is utilized to flat-
ten the feature matrix, resulting in the final matching score
mi

g ∈ (0, 1). The matching score mi
f between the neg-

ative instance R̂
′i and query Q̂i is also calculated as the

above-mentioned procedure, except that we have a dimen-
sion transformation on the generated response to align it
with Q̂i. Note that our framework does not rely on spe-
cific response generation models, and in our case, we em-
ploy LSTM-based RNN as the generator.

In the paradigm of GAN, the training objective of GQD
is to maximize the matching score of positive instances and
minimize the negative ones, while the dialog selector is op-
timized by aiming to maximize the matching score the gen-
erated response:

LD = −
∑N

i=1

(
log(1−mi

f ) + log(mi
g)
)
, (4)

LG = −
∑N

i=1

(
log(mi

f )
)
. (5)

The dialog selector will learn to assign high weights, i.e., 1−
si, to samples that are difficult for GQD to identify, which
leads to a low si score. In other words, the cases that obtain
high si scores have low quality.

Reconstructor
In the next two subsections, we introduce our representa-
tiveness selection process, where the samples that can be
used to reconstruct the original dataset are selected. This is
inspired by Mahasseni, Lam, and Todorovic (2017), where
they address the problem of finding representative images in
a video. Their key idea is to find a subset of images that can
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be used to reconstruct the whole video. In this work, we ex-
tend this ideology from video level to dataset level to find
representation cases instead of images. Since dialog data is
paired, we use the query to illustrate this process.

Our reconstructor takes the form of VAE, which is
commonly used to effectively learn feature representations
(Zhao, Zhao, and Eskénazi 2017). VAE defines a posterior
distribution over the observed data, given an unobserved la-
tent variable. Overall, VAE consists of an encoder and a de-
coder. The encoder maps the weighted query Q̃i to a latent
space e, and the decoder reconstructs the query from e.

Concretely, the encoder computes posterior distributions
qθ(e|Q̃i), where the latent representations e is sampled.
The reconstruction process can be formulated as pθ(Q̃

i|e),
representing the probability of generating input Qi condi-
tioned on e. Herein θ represents the parameters of the above
encoders and reconstruction decoder. Because of the in-
tractable integral of the marginal likelihood pθ(Q̃

i), the pos-
terior qθ(e|Q̃i) is simulated by variational approximation
qϕ(e|Q̃i), where ϕ is the parameters for q. When learning
the VAE, the objective is to maximize the variational lower
bound of log pθ(Q̃i):

Lq
V AE = KL(qϕ(e|Q̃i)∥pθ(e))− Eqϕ(e|Q̃i)[logpθ(Q̃

i|e)],

where the KL denotes KL-divergence, the regularization
for encouraging the approximated posterior qϕ(e|Q̃i) to be
close to the prior pθ(e), i.e., standard Gaussian distribution.
E[·] is the reconstruction loss conditioned on the approxima-
tion posterior qϕ(e|Q̃i).

We denote the reconstructed query as Q̄i, and recon-
structed response as R̄i.

Representativeness Discriminator
The discrimination processes for query and response are
similar, and we use the query to illustrate this process. Rep-
resentativeness discriminator (RD) takes Q̄i and Q̃i as input
and aims to classify them into two distinct classes (i.e., se-
lected or original). RD adopts the same architecture in GQD
except that it does not have the dimension transformation.
We omit the details here due to limited space. RD aims to
maximize the correct matching result, while the dialog se-
lector aims to select cases that can fool RD. If RD cannot
distinguish the selected cases from the original one, the di-
alogs with high si scores are seen to have good representa-
tiveness to the dataset. Hence, the dialog selector will learn
to assign high si score to the representative case to fool RD.

Experiment
Experiment Setup
Datasets. Following Cai et al. (2020), we conduct exper-
iments on two English conversation datasets: (1) Daily-
Dialog (Li et al. 2017), a collection of real-world dia-
logues widely used in open-domain dialogue generation.
This is a multi-turn dataset, and we treat each turn as
a training pair in this work. The overlapping pairs are
removed from the dataset. (2) OpenSubtitles (Lison and

Tiedemann 2016), a group of human-human conversations
converted from movie transcripts. We split the DailyDi-
alog dataset to 54,889/6,005/5,700, and OpenSubtitles to
64,000/8,000/8,000.

Implementation Details. (1) Hyperparameter setting:
We implement our models in TensorFlow on an NVIDIA
GTX 1080 Ti GPU. We truncate the input dialog to 20
words, the minimum decoding step is 10, and the maxi-
mum step is 30. The default σ in Equation 1 is set to 0.6
except in the augmentation percentage analysis. The batch
size is set to 16, and we limit the vocabulary size to 50K.
(2) Optimization techniques: We employ a set of techniques
to deal with the posterior collapsed problem in VAE (Bow-
man et al. 2016) including Bag-Of-Words (BOW) and KL
annealing. We increase the kl loss coefficient by 0.5 every
10,000 batches. Readers can refer to work by (Zhao, Zhao,
and Eskénazi 2017) for details. For the GANs in our frame-
work, we train the discriminator for one step every five steps
for the generator, since it is it would be harder for generation
than classification. The generators and discriminators are ad-
versarially trained until GQD cannot discriminate between
ground-truth and generated responses and RD is not able to
distinguish between the summary and original datasets. The
framework comes to convergence in less than an hour. (3)
Augmentation details: We select 60% cases with the high-
est scores for augmentation if not specified, based on the
experiment result on the validation dataset. For the selected
cases, we employ the back-translation technique (Sennrich,
Haddow, and Birch 2016) to augment them by ten times
following Li et al. (2019). We choose the back-translations
since it provides more diverse augmented text with different
structures while preserving the meaning of the original text
(Einolghozati et al. 2019; Chen et al. 2021a). Our evaluation
metrics include distinctness (Li et al. 2016), BLEU (Pap-
ineni et al. 2002), and embedding metrics (Gu et al. 2019).

Baselines. We compare our model on following classic
generation structure: (1) SEQ2SEQ (Bahdanau, Cho, and
Bengio 2015): a sequence-to-sequence model with attention
mechanisms. (2) CVAE (Zhao, Zhao, and Eskénazi 2017):
a latent variable model using conditional variational auto-
encoder, trained with KL-annealing and a BOW loss. (3)
Transformer (Vaswani et al. 2017): an encoder-decoder ar-
chitecture relying solely on the attention mechanisms. (4)
GPT-2 (Radford et al. 2019): a large-scale pre-trained lan-
guage model, which is finetuned by the full training dataset.
We also compare our approach with native augmentation,
previous data augmentation, or instance weighting methods:
(1) Random: we randomly select 60% data for augmenta-
tion, to compare with our selective augmentation method.
Comparisons with different augmentation percentages can
be found in the discussion section. (2) Calibration (Shang
et al. 2018): a calibration network measures the quality of
data samples and enables weighted training for dialogue
generation. (3) CVAE-GAN (Li et al. 2019): a model that
combines CVAE and GAN for augmentation. (4) Manip-
ulation (Cai et al. 2020): it augments all the cases in the
training process and reweights them.

12676



Models Dist-1 Dist-2 Dist-3 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Avg Ext Gre

(a)

SEQ2SEQ 1.36 5.98 11.19 12.85 2.26 1.12 0.93 76.56 42.98 62.24
SEQ2SEQ (⋆) 1.63 7.24 15.01 14.65 2.73 1.27 0.81 77.83 43.60 63.56
CVAE 1.88 6.50 12.08 11.38 2.08 1.10 0.75 74.18 40.71 62.49
CVAE (⋆) 3.26 13.57 22.41 13.49 3.31 1.30 0.92 75.72 42.30 63.68
Transformer 1.19 6.21 15.13 13.29 2.28 1.13 0.76 76.38 44.07 62.73
Transformer (⋆) 2.92 15.20 23.70 14.17 2.52 1.33 0.85 77.46 45.69 64.20
GPT-2 2.16 7.44 16.15 15.27 2.84 1.66 0.78 78.27 45.39 64.17
GPT-2 (⋆) 2.57 9.06 19.54 16.29 3.23 1.54 0.81 79.15 46.23 64.65

(b)

SEQ2SEQ 1.37 2.22 6.62 10.03 1.57 1.01 0.84 61.88 45.34 50.45
SEQ2SEQ (⋆) 1.56 3.94 5.83 10.78 2.00 1.29 0.97 62.36 46.24 51.14
CVAE 0.70 2.22 5.92 9.90 1.87 1.07 0.92 65.37 49.60 53.63
CVAE (⋆) 1.88 4.29 9.40 11.15 2.09 1.18 0.93 67.64 50.74 54.72
Transformer 1.57 3.28 6.39 8.76 2.35 1.21 0.87 66.91 44.40 54.18
Transformer (⋆) 2.92 7.38 10.14 10.35 2.60 1.49 0.91 68.04 45.99 54.96
GPT-2 3.12 4.32 7.29 10.97 3.30 2.15 1.15 67.28 48.60 55.07
GPT-2 (⋆) 3.51 5.36 8.59 11.63 3.56 2.45 1.17 68.37 49.18 55.50

Table 1: Automatic evaluation results (%) on (a) DailyDialog and (b) OpenSubtitles. “⋆” denotes that the model is trained
using our proposed framework. The metrics Average, Extrema, and Greedy are abbreviated as Avg, Ext, and Gre, respectively.
Numbers in bold mean that the improvement to the best baseline is statistically significant (a two-tailed paired t-test with p-
value <0.01).

Dist-1 Dist-2 Dist-3 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Avg Ext Gre

Full model 1.63 7.24 15.01 14.65 2.73 1.27 0.81 77.83 43.60 63.56
w/o selective augmentation 1.42 5.03 12.98 13.31 2.30 1.15 0.68 76.26 42.45 62.54
w/o quality discriminator 1.59 5.55 13.73 13.26 2.55 1.18 0.96 77.32 42.78 62.67
w/o representativeness discriminator 1.55 6.23 13.21 14.02 2.66 1.25 0.73 76.71 42.83 63.92

Table 2: Ablation test of our model (%) on DailyDialog, which is instantiated on the naive SEQ2SEQ. Numbers in bold mean
that the improvements to the ablation models are statistically significant.

Main Results
Automatic evaluation. We instantiate our framework on
a number of classic dialog generation models including
SEQ2SEQ, CVAE, Transformer, and GPT-2. The automatic
evaluation results are shown in Table 1. It can be seen that
our model outperforms vanilla baselines on almost all auto-
matic metrics. The improvements are consistent across both
datasets, demonstrating the superiority and general applica-
bility of our framework.

In addition, we compare our model with the existing aug-
mentation methods. We select SEQ2SEQ as the response
generation model following since all compared models are
constructed on this classic baseline (Cai et al. 2020). Not
surprisingly, as shown in Table 3, our framework outper-
forms most of the baseline methods. Concretely, SDA out-
performs Random baseline in all metrics, demonstrating that
selection is necessary to improve the performance of data
augmentation. CVAE-GAN augments each case in the train-
ing dataset, and Manipulation augments every case in each
training step, while our model only augments 60% data and
achieves better performance. This demonstrates that selec-
tive data augmentation is more effective and efficient, out-
performing data augmentation methods that require gener-
ating more augmented cases. The statistical significance of
observed differences between the performance of two runs
is tested using a two-tailed paired t-test for α = 0.01.

Human Evaluation. We also employ a human evaluation
on Amazon Mechanical Turk. For better annotation quality,

we employ three annotators and require the annotators to
have at least 99% approval rate with at least 1,000 approved
HITs. These annotators are hired to evaluate the quality of
generated responses on DailyDialog dataset, where the eval-
uation is conducted in a double-blind fashion. Totally, 200
randomly sampled responses generated by each model are
rated by each annotator with two different aspects, i.e., read-
ability and informativeness. Criteria are scored from 1 to 3,
i.e., bad, normal, and good. The results of the human eval-
uation are listed in Table 4. Our model significantly outper-
forms most of the baselines in terms of all the metrics. Par-
ticularly, our model increases informativeness by approxi-
mately 2.4% over Manipulation. The kappa statistics is 0.42
and 0.45 for readability and informativeness, respectively,
which indicates moderate agreement between annotators.
We also show a representative case from DailyDialog in Ta-
ble 5, It can be seen that our model can generate a more
diverse and interesting response that describes in detail how
it feels to have a lover.

Discussions
Ablation Study. We also list the results of the ablation study
in Table 2, aiming to investigate the influence of different
modules in our proposed model. It can be seen that the per-
formance of all metrics drops if we direct augment all the
training data without selection. This demonstrates that se-
lection is important for augmentation. We also find that the
Dist-1 score drops by 2.45% and 4.91% after GQD and the

12677



Models Dist-1 Dist-2 Dist-3 BLEU-1 BLEU-2 BLEU-3 BLEU-4 Avg Ext Gre

(a)

Random 1.38 5.24 11.70 13.25 2.17 1.13 0.73 77.02 43.12 62.68
Calibration (Shang et al. 2018) 1.53 5.96 11.77 13.09 2.28 1.02 0.75 77.15 42.94 62.77
CVAE-GAN (Li et al. 2019) 1.54 5.63 13.50 14.00 2.59 1.24 0.98 77.21 43.19 62.96
Manipulation (Cai et al. 2020) 1.58 6.42 14.52 14.26 2.87 1.16 0.95 77.53 43.32 63.12
SDA 1.63 7.24 15.01 14.65 2.92 1.27 0.81 77.83 43.60 63.56

(b)

Random 1.40 2.46 5.76 10.05 1.22 1.03 0.93 61.97 45.51 50.72
Calibration (Shang et al. 2018) 1.43 2.58 5.82 10.20 1.23 1.08 0.68 62.03 45.57 50.83
CVAE-GAN (Li et al. 2019) 1.49 2.83 5.07 10.26 1.28 1.17 0.87 62.28 45.74 50.76
Manipulation (Cai et al. 2020) 1.41 3.40 5.93 10.37 1.58 1.24 0.94 62.29 46.00 50.22
SDA 1.56 3.94 5.83 10.78 2.00 1.29 0.97 62.36 46.24 51.14

Table 3: Performance (%) of our approach instantiated on the naive SEQ2SEQ and the baseline approaches on (a) DailyDialog
and (b) OpenSubtitles. Numbers in bold mean that the improvement to the best baseline is statistically significant.

(a) (b) (c)

Figure 3: (a) Generation quality of selected and unselected cases. (b) Reconstruction performance of selected and unselected
cases. (c) Histogram of different augmentation frequencies.

Model Readability Informativeness

Calibration 1.63 1.68
CVAE-GAN 1.85 1.81
Manipulation 1.91 2.07

SDA 2.01 2.12

Table 4: Human evaluation on two aspects: Readability and
informativeness.

RD are removed, respectively. This indicates that the jointly
selected cases from the quality and representativeness as-
pects help generate more diverse and accurate responses.

Analysis of Selected Samples. In this subsection, we ex-
amine whether the model successfully selects the lowest
quality and most representative cases for augmentation. We
calculate the BLEU scores of selected and unselected cases
in the response generation task and response reconstruction
task. From Figure 3(a) and Figure 3(b) we can see that the
selected cases have lower BLEU scores in terms of the gen-
eration quality and higher scores in the reconstruction task.
This demonstrates that the model needs to be polished to
generate better responses for the selected cases. In the mean-
time, the selected data itself is not noise data and repre-
sents the overall data distribution. To further glean the in-
sights regarding which samples are favored by the augmen-
tation model, we also list examples with different augmenta-
tion scores in Figure 3(c). We notice that samples frequently

-I got a ticket yesterday.

ground-truth Really? What did you get one for?
CVAE-GAN Is that right?? Is that possible ?
Manipulation 88 yuan, please.

SDA Really? How much is it?

- What do you mean? You have a lover? .

ground-truth A fiance.
CVAE-GAN You’ve had a lot of your own! lover!
Manipulation No, I’m serious.

SDA Yeah, she’s so different, she is the sun!

Table 5: Responses generated by baselines and our model.
The top case is selected from DailyDialog, and the bottom
case is from OpenSubtitles.

augmented by SDA are more reliable and meaningful con-
text, where the response is closely related to the query and
leads to a new topic. While for the dialog pairs seld aug-
mented, they contain universal and safe content such as “I
don’t know” or “I’d forgotten about it”.

Visualization of Dual Training. To visualize the select
process, we draw the loss curve of the generation quality
discriminator (LD in Equation 4) and the response genera-
tor evaluator (LG in Equation 4) in Figure 4(a), and show the
accuracy of GQD in Figure 4(b). When the training begins,
the loss of the GQD and RGE fluctuates from time to time,
as well as the accuracy curve, which verify the adversar-
ial training. After several steps, the training converges, and
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Figure 4: (a) Loss curve of the quality discriminator and generator evaluator. (b) Accuracy curve of the quality discriminator.
(c) Relationship between the selective percentage for augmentation and the embedding scores. Blue denotes our model, and
orange denotes the Random model.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Extrema Average Greedy

RocStories
CVAE 25.81 9.69 3.60 1.48 51.35 56.32 60.11
Seq2Seq 23.24 8.96 3.40 1.50 51.33 56.49 60.07
Transformer 25.52 5.96 3.54 1.45 51.29 56.37 60.06
GPT-2 30.21 11.08 3.64 1.53 51.72 58.49 60.35
GPT-2(⋆) 30.96 11.46 3.84 1.52 52.27 58.95 61.20

Table 6: Automatic evaluation results on RocStories for storytelling. Numbers in bold mean that the improvement to the best
baseline is statistically significant (t-test with p-value <0.01).

the accuracy of RD stays around 50%, which means GQD
cannot distinguish between the generated response and the
ground truth one. In other words, the model successfully as-
signs low s scores, i.e., high (1-s), to the cases with high-
quality generated responses so that GQD cannot perform
better than a random guess. The accuracy curve of the RD is
similar to that of GQD, which proves that our model assigns
high s scores to the most representative cases so that RD
cannot distinguish between the reconstructed and the origi-
nal cases.

Impact of Augmented Data Scale. For previous exper-
iments, the percentage of cases for augmentation is set to
60%. In this subsection, we change this percentage to study
what is the influence of scale for augmentation and whether
selective augmentation is still beneficial under different se-
lection percentages. We also select the random baseline
model for better comparison, where the cases for augmen-
tation are randomly sampled. The result on the DailyDialog
test dataset is shown in Figure 4(c). For Random baseline, its
performance generally improves with the augmentation per-
centage. This result shows that random augmentation will
benefit the dialog generation task, and the more cases are
augmented, the better performance will be obtained. How-
ever, this is not true for selective augmentation. It can be
seen that to begin with, the embedding scores of SDA in-
crease fast with the selective percentage for augmentation.
After the percentage reaches 60%, the growth stops, and
when the percentage increases from 80% to 100%, there is
even a drop in the performance. Similar performance is also
observed on the OpenSubtitles dataset. This demonstrates
that it only benefits the model if we select the proper cases

in the dataset for augmentation, otherwise, augmenting some
cases brings harm to the model.

Universality of our framework. In addition, we test the
generalization ability of our framework on the story gen-
eration task. RocStories dataset (Mostafazadeh et al. 2016)
consists of 98,163 high-quality hand-crafted stories, which
capture causal and temporal commonsense relations of daily
events. Each story paragraph contains 5 sentences with an
average of 43 words. Following the previous work (Yu et al.
2021), we split the dataset into 8:1:1 for training, validation,
and test, and use BLEU as the evaluation metric. As can be
seen from Table 6, equipped with augmentation data, our
method outperforms GPT-2by 2.4%, 3.4%, and 1.4% on
RocStories in terms of BLEU-1, BLEU-2, and Greedy, re-
spectively, which proves the superiority of our model. This
experiment also demonstrates that our framework does not
rely on a specific task, and can be extended to various text
generation scenarios.

Conclusion and Broader Impacts
In this paper, we propose a selective data augmentation
framework to improve the performance of dialogue models.
We propose a dual adversarial network to select data for aug-
mentation from the quality and representativeness aspects.
One is to examine whether the case is of low generation
quality, and the other one is whether the case is represen-
tative of the dataset. Experiments conducted on three public
datasets demonstrate the effectiveness of our framework. In
the future, we would like to explore the effectiveness of se-
lective data augmentation on more generation tasks.
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