
RPA: Reasoning Path Augmentation in Iterative Retrieving for Multi-Hop QA

Ziyi Cao, Bingquan Liu, Shaobo Li
Harbin Institute of Technology

zyc@stu.hit.edu.cn, liubq@hit.edu.cn, shli@insun.hit.edu.cn

Abstract

Multi-hop questions are associated with a series of justifi-
cations, and one needs to obtain the answers by following
the reasoning path (RP) that orders the justifications ade-
quately. So reasoning path retrieval becomes a critical prelim-
inary stage for multi-hop Question Answering (QA). Within
the RP, two fundamental challenges emerge for better perfor-
mance: (i) what the order of the justifications in the RP should
be, and (ii) what if the wrong justification has been in the
path. In this paper, we propose Reasoning Path Augmentation
(RPA), which uses reasoning path reordering and augmenta-
tion to handle the above two challenges, respectively. Rea-
soning path reordering restructures the reasoning by target-
ing the easier justification first but difficult one later, in which
the difficulty is determined by the overlap between query and
justifications since the higher overlap means more lexical rel-
evance and easier searchable. Reasoning path augmentation
automatically generates artificial RPs, in which the distracted
justifications are inserted to aid the model recover from the
wrong justification. We build RPA with a naive pre-trained
model and evaluate RPA on the QASC and MultiRC datasets.
The evaluation results demonstrate that RPA outperforms pre-
viously published reasoning path retrieval methods, show-
ing the effectiveness of the proposed methods. Moreover, we
present detailed experiments on how the orders of justifica-
tions and the percent of augmented paths affect the question-
answering performance, revealing the importance of polish-
ing RPs and the necessity of augmentation.

Introduction
Multi-hop QA is the Question Answering (QA) task taking
account of information from multiple justifications and rea-
soning the final answer (Yang et al. 2018; Khashabi et al.
2018a; Khot et al. 2020). Especially, the retrieval for multi-
hop QA is distinct from single-hop QA since multiple justi-
fications are required to support the answering. The require-
ment of multiple pieces further demands multiple retrieving
steps to collect them. Multi-step retrieval can be convention-
ally carried out by iterative single-step retrieving (Asai et al.
2020; Das et al. 2019; Feldman and El-Yaniv 2019), where
the current retrieving step draws on the previous searching
results, forming the reasoning path (RP). The iterative re-
trieving process works fine when all sentences available in
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the searched RP are justifications. Nevertheless, it is unreal-
istic to guarantee that. If one retrieval step is mistaken lead-
ing to a false justification in RP, it will result in significant
errors in the later retrieving steps since it could mislead all
the following steps. The above phenomenon can be referred
to as the cascading failure in retrieval, which hinders an it-
erative process from finally success.
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Figure 1: A sample in MultiRC is supported by three justi-
fications with another justifications order optimized by the
operation ⊕ (the exclusive-or between two word-sets, i.e.,
delete overlap and add different words). All words useful
for overlap are bold, and the overlap number is noted on the
line, e.g., in the raw RP order, the number (2) on the line
from Q to f̂1 means the overlap number between them, and
the number (2) from f̂2 to f̂3, whose root is Q via f̂1, is
denoted as the overlap between Q⊕ f̂1 ⊕ f̂2 with f̂3.

To mitigate the hindrance, an obvious way is to train the
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information retriever (IR) to continue searching for the cor-
rect target despite the emergence of false justifications in
RPs. It links out to several unavoidable challenges includ-
ing, what is the better path to reason in justifications, as well
as how to construct the training samples to help the IR re-
cover from the information with a false message, to name
a few. The challenges mentioned are supposed to be dealt
with sequentially, i.e., make sure the RPs are more suitable
for retrieving and then build samples based on them.

In the challenge of the RP, we presume that the later the
error occurs, the less loss. To simplify the situation, we de-
fine three ground-truth justifications {f̂1, f̂2, f̂3} to search
with query Q1, which at least needs three retrieval steps with
one error unavoidable in the steps. If the error appears at the
first step, it can result in a negative effect for all of the fol-
lowing retrieving. On the other hand, if the error’s position is
at the third step, the other two before are with no influence.
The performance of the retrieval in the first step is decided
by the ability of the IR, resulting from both the difficulty
of the searching target at the first step and the basic capa-
bility of the IR. The basic capability is determined by the
pre-trained model while the degree of first-step retrieving
difficulty seems to be associated with the first sample. If the
sample for the first step is easier to understand, such as us-
ing the overlap number of words, an obvious method, to get
the most relevant justification, the model is supposed to be
easier to train for higher scores. As shown in Figure 1, the
raw justifications order in RP (raw RP order) is provided by
the dataset, whose first target is f̂1 but f̂3 in optimized RP
order. In the aspect of the overlap, f̂3 should be easier to be
retrieved than f̂1 with Q for its higher overlap.

With f̂3 in the first position, we concentrate on the new
entities introduced in f̂3 that are absent from Q and the old
unsearched entities that are in Q but not in f̂3 (Khot et al.
2020), collectively referred to as Q ⊕ f̂3 (e.g., “couple”,
“son”, “Albert” and rest irrelevant words). We use the over-
lap with Q to get f̂3 and, similarly, get f̂1 based on the over-
lap with Q ⊕ f̂3. In such a way, we rebuild the order of the
RP as {f̂3, f̂1, f̂2} finally.

For building samples, the challenge to handle is how to
generate training data relying on the RPs. Within the sample
shown in Figure 1, the original training data can be gener-
ated such as, using Q to predict f̂3 and using Q and f̂3 to
predict f̂1, just for instance. However, it has no idea to deal
with the cascading failure, which indicates the existence of
the incorrect sentence in the RPs. A most straightforward
way for the model to allow its existence is to build the arti-
ficial RPs that contain the false justifications, e.g., using Q

and f to predict f̂3 (f /∈ {f̂1, f̂2, f̂3}) (Asai et al. 2020). We
extract the f from the approximate nearest neighbor (ANN)
(Xiong et al. 2021) searched from the specific knowledge
base (KB) with Q. In this paper, we augment the training
data by mixing different percentages of artificial data into

1Typical IR approaches for QA retrieve justifications using
question + answer (q + a) as their IR query (Clark et al. 2016;
Khot, Sabharwal, and Clark 2017; Khashabi et al. 2018b).

the original data, showing the detailed improvement of the
mixture of augmentation.

Our contributions. To be more specific, this paper intro-
duces the Reasoning Path Augmentation (RPA), a method
combining the reasoning path reordering and augmentation.
For each RP, we manually reorder it and rebuild different
ratios of artificial paths for training. Additionally, aiming
to highlight the improvement of our methods, we use naive
RoBERTa pre-trained model as encoder and inner product as
similarity method in training to prevent the influence of spe-
cially designed structure for multi-step. Experiments con-
clude that our proposed approach outperforms the existing
retrieval methods on the specific datasets.

Our prime contributions are as follows:
• We propose to reorder the justifications sequence in the

reasoning path with the overlap between query and justi-
fications, placing the hard-to-fetch gold justifications be-
hind that reduces the difficulty of the searching ahead.
• We propose to automatically insert the incorrect retrieved

sentence of the approximate nearest neighbor as the con-
fusing justification into the reasoning path, contributing
different ratios of artificial training data.
• Evaluated on QASC (Khot et al. 2020) and MultiRC

(Khashabi et al. 2018a), the proposed approach signifi-
cantly outperforms previously published reasoning path
retrieval methods and presents a further experimental
analysis.

Related Works
Reasoning path. Within the task of multi-hop QA, the ques-
tion is answered by gathering information from multiple jus-
tifications (Khashabi et al. 2018a) connected with the ques-
tion or each other. In QASC, the baseline formed with only
two iterations uses the Q ⊕ f1 as the connection to iden-
tify the second justification by Lucene (f1 is the sentence
retrieved in the first step). However, this designed method
for dataset-specific is powerless against other conditions of
data. Avoiding this, Yadav et al. (2020) propose AIR, using
the matrix of cosine similarity scores between the question
and each word in the KB, iteratively removes the words re-
trieved and searches again, in which the RP is constructed
unsupervised on both QASC and MultiRC. The similarity
scores between tokens are effective in removing invalid in-
formation while keeping valid keywords, nevertheless, ig-
noring the contextual representation of the question. Addi-
tionally, Yadav et al. (2021) propose the JointRR uses the
same method of similarity score in AIR as the filter but with
a RoBERTa re-ranker, presenting a better performance of re-
trieval. The answer classifier in AIR and JointRR is the same
RoBERTa. The difference between AIR and our approach
is that we use the naive pre-trained model and similarity
method of inner product, simplifying the retriever structure,
to concentrate on the reasoning path augmentation.

Cascading failure. The cascading failure in retrieval can
result in a significant drop in performance with iteration de-
spite a high IR score, which is ignored in both AIR and Join-
tRR. To handle this challenge, Asai et al. (2020) propose the
PathRetriever, inserting the artificial RPs which are added
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to the high TF-IDF score paragraphs at the first position.
The augmentation of the RPs in PathRetriever can be useful
in searching at the second position but helpless in the other
positions reasoning, while the paragraph added is sorted by
TF-IDF but not the model, which reduces the difficulty of
confusion. To enhance the stabilization, we select a more
confusing sentence from the model-retrieved results of the
question and build augmentation automatically while train-
ing, paralleling running at the same time. The justification
selected is various with the searching based on either Q or
Q and f̂i (f̂i is in the ground-truth justifications), and dy-
namically inserted in any position, forming artificial RPs.

Justifications order. Only supervised methods are asso-
ciated with the order of justifications in RP (Asai et al. 2020;
Li et al. 2021), while the unsupervised methods ignore it
(Yadav et al. 2020, 2021). PathRetriever adaptively scores
each RP in the graph constructed with the Wikipedia hy-
perlinks and document structures to model the relationships.
However, to visualize the detailed performance difference of
the changing in the justifications order, we give up the spe-
cially designed structure for multi-hop yet adopt the naive
pre-trained model for better universality.

Approach
Overview
Multi-hop QA consists of two components: (i) a retrieval
component and (ii) an answer component (Chen et al. 2017;
Yadav et al. 2020). In this paper, our proposed method con-
centrates on the retrieval task while keeping the answer com-
ponent as standard (Yadav et al. 2020).

Task definition. Our retrieval task is defined as Iterative
Multi-hop IR for QA: (i) Retrieve N1 facts F1 as justifica-
tions from facts corpus FC based on the query Q = q+a; (ii)
For each fM−1 ∈ FM−1 (M > 1,M ∈ N+), iteratively re-
trieve NM justifications FM = {f1, · · · , fNM

}NM
based on

Q and {f1, · · · , fM−1}; (iii) Select top K unique facts from
the reasoning paths {f1, · · · , fM} sorted by the sum of their
individual retrieval score. Each supervised training sample,
i.e., one idealized reasoning step, for the IR is defined as

f̂M = IR(Q, {f1, · · · , fM−1}),
in which f̂M means the training target, hence {f̂1, f̂2, · · ·}
represents all ground-truth justifications in a RP. {Ni}M is
used to indicate that the RPs are predicted in M steps while
Ni justifications are obtained at the ith step (i ≤M ).

Our method. Based on this intuition, each retrieval query
Q in our proposed method is run against RPA, whose basic
structure is ANCE (Xiong et al. 2021), a single-hop retriever,
iteratively retrieves justifications from dataset-specific KBs.
For example, in MultiRC, we use all sentences in the para-
graph as FC for a given query. In QASC, which has a large
KB of 17 million sentences, 80 sentences fetched by Lucene
in Heuristic+IR method2 (Khot et al. 2020) from the pro-
vided QASC KB are viewed as FC for each candidate an-
swer to reducing noise.

2In QASC fetched 80 sentences, Recall of at least one justifica-
tion found is 81.8, and Recall of both found is 61.3, which deter-
mines the upper-bound of the retrieval performance of RPA.

Figure 2: The average number of overlap in MultiRC.
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Figure 3: The average number of overlap in QASC.

With the goal of easier reasoning and preventing cascad-
ing failures, we present two methods of reasoning path aug-
mentation in the multi-hop retrieval: (i) reorder the sequence
of justifications in the RP; and (ii) automatically create ar-
tificial paths as augmented training samples. The details are
discussed in the following two sub-sections.

Justifications Reordering
Every training item of RPA is built following the justifica-
tions in RP. Raw RP order follows the justifications sequence
provided by the dataset, while in the optimized RP order, the
more overlapping preprocessed words3 of f̂i with Q (i = 1)
or Q ⊕ f̂1 ⊕ · · · f̂i−1 (i > 1) , the more forward the posi-
tion since the overlap can denote simple lexical relationships
between sentences. With more relevant sentences selected
at the steps ahead, which is easier for IR to fetch at each
step, reordering by overlap is supposed to obtain better entire
performance than the raw order. For example, in MultiRC,
whose overlap is shown in Figure 2, each RP of development
samples consists of 2 to 4 justifications {f̂1, f̂2, · · ·}, and
their order optimization is shown in Figure 1. In QASC, ev-

3We use the set-intersection between two stemmed, non-
stopword word-sets (Khot et al. 2020) in Q and f̂i to identify the
overlap in QASC and MultiRC.
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Figure 4: RPA is trained with the target following RP and the target in hop 2 is still f̂S , for example, which results in the number
of training steps being expanded to 3 and the targets are {f̂S , f̂S , f̂L}. All outputs are identified as the prediction {f1, f̂S , f̂L}.

Raw RP Order:

Optimized RP Order:

fS :  cnidarians  aquatic.

fL':  cnidarians  aquatic.

fL: Cnidarians hydrostatic skeleton.

fS': Cnidarians  hydrostatic skeleton.
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Figure 5: Raw RP Order v.s. Optimized RP Order in QASC

ery RP is always associated with justifications {f̂S , f̂L} such
that the optimization algorithm of order is simple, where we
present Figure 3 for its overlap and Figure 5 for the opti-
mization.

Figure 2 also demonstrates the overlap of the other two
types of the order optimization algorithm, i.e., Q and Q ∪
f̂1 ∪ · · · f̂i−1

4 with f̂i on MultiRC (all three optimization
algorithms are the same on QASC). The results of the two
types are shown in Figure 7b, presenting a slight enhance-
ment on the raw order yet a gap to the algorithm ⊕.

Artificial Reasoning Path
Original training data produced relying on the RPs is like
f̂M = IR(Q, {f1, · · · , fM−1}). Specifically, in QASC,
original data includes f̂S = IR(Q), f̂S = IR(Q, {f̂L}),
f̂L = IR(Q, {f̂S})5. To reduce the effect of the cascading
failure, we build artificial samples which contain searching
failure while hopping. Based on RPA, we manually adopt
the top-1 non-ground-truth sentence fetched (such as f1
in hop 1 in Figure 4) as the distracted justification to be
inserted into RP, which produces augmented data automat-
ically, e.g., f̂S = IR(Q, {f1}), f̂L = IR(Q, {f1, f̂S}),
f̂S = IR(Q, {f1, f̂L}), f̂S = IR(Q, {f̂L, f2}), f̂L =

IR(Q, {f̂S , f3}) (f1, f2, f3 are the top-1 non-correct predic-
tion of IR(Q), IR(Q, {f̂L}), IR(Q, {f̂S}), respectively.).
The scale of entire artificial RPs is 5/3 times the original

4∪ means the set-union of two word-sets.
5q and a are concatenated in the way of “Query: q Choice: a”

to get Q, similarly, Q and {f1, · · · , fM−1} are integrated into “Q
Fact: f1 · · · Fact: fM−1”, and f in FC is refactored as “Fact: f”
before being embedded (Liu et al. 2021).

Figure 6: RPA basic structure: Trainer and Inferencer. Paral-
lel iterative execution: (i) Trainer runs with the latest ANN
and saves checkpoint; (ii) Inferencer loads the latest check-
point and generates ANN.

data (length of RP is 2) since the distracted justification can
be inserted in any position of RP, augmenting the dataset for
training and empowering the IR the ability to recover from
the searching failure. In MultiRC, artificial RPs are gener-
ated similarly. Training data for RPA involves the total orig-
inal data and various percent (p%) of artificial data.

Experiment
Setup
Pipeline. The whole procedure follows a coarse-to-fine
pipeline that contains three stages:
• Preliminary retrieval: 80 sentences are used as FC to be

retrieved for each answer in QASC; All content of the
paragraph is considered as FC in MultiRC.
• Justifications retrieval: Retrieve the justifications by RPA

on FC iteratively.
• Answer classifier: The answer a concatenated with q

and retrieved justifications is classified on RoBERTa, the
same as AIR (Yadav et al. 2020).

Details. Hyperparameters of RPA, whose basic structure
is shown in Figure 6, are from the Trainer that is with saving
steps of 2 and epoch of 500×saving steps, fine-tuned from
RoBERTa-Large (Liu et al. 2019; Wolf et al. 2020; Xiong
et al. 2021). More specifically, we trained with batch size of
20 in QASC and 4 in MultiRC6, chunk size of 50, and the

6Epoch in MultiRC is 200×saving steps for early stopping due
to its smaller batch size and smaller FC .
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# Method (RP order type, p% of artificial data) Prediction {Ni}M Accuracy Recall@10 Recall@10
Hops both at least one
M found found

DEVELOPMENT SET

Baselines

1 Naive Lucene BM25 (Yadav et al. 2020) 1 - 35.6 17.2 68.1
2 Naive Lucene BM25 (Yadav et al. 2020) 2 - 36.3 27.8 65.7
3 Heuristics+IR (Khot et al. 2020) 2 {20,4} 32.4 41.6 64.6
4 ESIM Q2Choice (Khot et al. 2020) - - 32.4 41.6 64.6

Previous Work

5 BERT-LC (Khot et al. 2020) 1 - 59.8 11.7 54.7
6 BERT-LC (Khot et al. 2020) 2 - 71.0 41.6 64.4
7 BERT-LC[WM]* (Khot et al. 2020) 2 - 78.0 41.6 64.4
8 AIR top chain + RoEBRTa (Yadav et al. 2020) 2 {1,1} 76.2 - -
9 AIR (parallel=5) + RoBERTa (Yadav et al. 2020) 2 {5,1} 81.4 44.8 68.6
10 SingleRR + RoBERTa (Yadav et al. 2021) 2 - 79.7 44.4 69.6
11 JointRR + RoBERTa (Yadav et al. 2021) 2 - 81.7 45.3 69.4

RPA + RoBERTa (M=2 or 3)

12 RPA + RoBERTa (raw order, 0) 2 {1,9} 83.9 48.0 76.6
13 RPA + RoBERTa (optimized order, 0) 3 {1,1,8} 85.1 49.4 77.1
14 RPA + RoBERTa (optimized order, 90) 3 {1,1,8} 85.0 55.2 79.5
15 RPA + RoBERTa (optimized order, 100) 3 {1,1,8} 86.0 54.9 79.8

TEST SET

16 BERT-LC (Khot et al. 2020) 2 - 68.5
17 BERT-LC[WM]* (Khot et al. 2020) 2 - 73.2
18 JointRR + RoBERTa (Yadav et al. 2021) 2 - 78.0
19 AIR (parallel=5) + RoBERTa (Yadav et al. 2020) 2 {5,1} 81.4
20 RPA + RoBERTa (optimized order, 90) 3 {1,1,8} 81.5

Table 1: Performance of QA and justifications retrieval (top K = 10) on QASC.

optimizer of Lamb (You et al. 2020), whose learning rate is
5e-6. For training, in QASC, we uniformly sampled 5 nega-
tives from ANN top 100, and in MultiRC, sampled 2 nega-
tives from all sentences (the number of f in FC varies from
6 to 20 in training data). In the answer classifier, we used
batch size 2, maximum sequence length 256 for QASC7.

RPA is trained to ignore retrieval stop during hopping so
that we present a simple yet reasonable approach to stop the
iteration on MultiRC: (i) word set of Q removes the words
that are in Q but not in FC (unsearchable words) and (ii) also
removes the words in retrieved justifications, (iii) if there are
remaining words in the Q word set, then continue to retrieve,
else stop the iteration (maximum iteration hops are 4).

Evaluation
We evaluated our method on two datasets:

Question Answering via Sentence Composition
(QASC), a large KB-based multiple-choice QA task8 (Khot
et al. 2020). Each sample consists of a question with 8
answer candidates, out of which 4 candidates are hard
adversarial choices. Every question is annotated with a

7Hyperparameters of answer selector are the same with AIR’s
RoBERTa unless otherwise indicated and all random seeds are 0.

8https://leaderboard.allenai.org/qasc/submissions/public

fixed set of two justifications {f̂S , f̂L} as raw RP order for
answering the question.

Multi-Sentence Reading Comprehension (MultiRC), a
reading comprehension dataset consists of multiple choices
QA (Khashabi et al. 2018a). In the development set, every
question with 2-to-14 answer candidates is supported with a
paragraph, which contains 2-to-4 justifications. The dataset
we use is the original MultiRC9 including the ground-truth
justifications, but not the version on SuperGLUE (Wang
et al. 2019). The original MultiRC contains the training, de-
velopment, and hidden test set, out of which the training and
development set is used in the paper.

We report question-answering performance as well as jus-
tifications collection performance in Table 1 for QASC and
Table 2 for MultiRC10.

Results
Justifications collection. In QASC, we report Recall@10
similar to (Khot et al. 2020; Yadav et al. 2020). both found
reports the recall scores when both the gold justifications are
found in the top K = 10 ranked sentences and similarly, at

9https://cogcomp.seas.upenn.edu/multirc/
10All results except the baselines should include the performance

about the justifications collection as much as possible.
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# Method (RP order type, p% of artificial data) F1m F1a EM0 Justifications collection
P R F1

DEVELOPMENT SET

Baselines

1 IR(paragraphs) (Khashabi et al. 2018a) 64.3 60.0 1.4 - - -
2 SurfaceLR (Khashabi et al. 2018a) 66.5 63.2 11.8 - - -
3 Entailment baseline (Trivedi et al. 2019) 51.3 50.4 - - - -

Previous work

4 RS* (Sun et al. 2019) 73.1 70.5 21.8 - - 60.8
5 BERT + BM25 (Yadav et al. 2019) 71.1 67.4 23.1 43.8 61.2 51.0
6 BERT + AutoROCC (Yadav et al. 2019) 72.9 69.6 24.7 48.2 68.2 56.4
7 Entire passage + RoBERTa (Yadav et al. 2020) 73.9 71.7 28.7 17.4 100.0 29.6
8 RoBERTa-retriever(All passages) + RoBERTa (Yadav et al. 2020) 70.5 68.0 24.9 63.4 61.1 62.3
9 AIR top chain + RoBERTa (Yadav et al. 2020) 74.7 72.3 29.3 66.2 63.1 64.2
10 AIR (parallel = 5) + RoBERTa (Yadav et al. 2020) 77.2 75.1 33.0 28.6 84.1 44.9
11 JointRR + RoBERTa (Yadav et al. 2021) 75.2 72.7 28.2 65.4 69.9 67.6
12 JointRR (± 1 neighboring sentence) + RoBERTa (Yadav et al. 2021) 77.0 74.5 32.9 65.4 69.9 67.6

RPA + RoBERTa

13 RPA + RoBERTa (raw order, 0) 77.2 74.7 31.2 63.1 71.1 66.8
14 RPA + RoBERTa (raw order, 10) 76.4 74.5 30.9 62.6 71.7 66.9
15 RPA + RoBERTa (optimized order ⊕, 0) 77.1 74.6 31.4 63.8 71.1 67.3
16 RPA + RoBERTa (optimized order ⊕, 10) 77.1 74.6 31.3 64.0 72.0 67.6
17 RPA + RoBERTa (optimized order ⊕, 100) 76.7 74.3 30.2 62.6 71.9 66.9
18 RPA (parallel = 5) + RoBERTa (optimized order ⊕, 10) 78.3 75.9 33.1 37.5 86.1 52.3

Ceiling systems with gold justifications

19 Oracle knowledge + RoBERTa (Yadav et al. 2021) 81.4 80 39 100.0 100.0 100.0
20 Human 86.4 83.8 56.6 - - -

Table 2: Results on the dataset of MultiRC.

least one found reports the recall scores when either one
or both the gold justifications are found in the top 10 ranked
sentences, as shown in Table 1. In Table 2 for MultiRC, we
report Precision (P), Recall (R), and F1 to evaluate the per-
formance of the justifications retrieval. Evaluated on QASC
and MultiRC, RPA outperforms all the aforementioned base-
line models and other published retrieving methods.

To be fairly compared with AIR, which is the state-of-
the-art published method in reasoning path prediction on
QASC11, RPA uses the same initial search space (i.e. top-
80 sentences based on Lucene scores) and answer classifier
(i.e. RoBERTa-Large) with AIR. RPA ({1,9}, raw order,
0) outperforms the AIR by 3.2% and 8% on top-10 justi-
fications collection metrics respectively. Moreover, the re-
sult of RPA with 100% augmented data increases by 5.5%
and 2.7% in the same condition with optimized order and
{Ni}M {1,1,8}. In MultiRC, RPA also yields satisfactory
performance. Considering the parallel of 5 in RPs in AIR,
we adopt the same process in RPA12 and get better results.

Answer classification. The answer classifier benefits
from the improvements in justifications retrieving (Li et al.

11Other methods on QASC outperforming AIR are published
with no justifications selection results.

12The 5 parallel retrievals of RPA with stop method in MultiRC
is same with {Ni}M {5,1,1,1}.

2021) so that RPA also demonstrates considerably better re-
sults while classifying the answer on both QASC13, which is
classified as multi-choice QA (MCQA) (Wolf et al. 2020),
and MultiRC, which is evaluated with the correctness of
each answer individually.

Analysis
Overlap and justifications order. As shown in Figures 2
and 3, the minor adjustment to the justifications order in RP
increases the polarization of the average number of overlap-
ping words. The adjustment reduces the difficulty in lexi-
cal searching step by step, further slowing down the hard-
ness in semantic retrievals. In this way, the target in each
retrieval step can be more accessible for a pre-trained model
and further modifies the distribution of the model’s embed-
ding space, resulting in a better comprehensive performance
in the reasoning path retrieval.

Justification prediction in hops. In QASC, to visualize
the predicting variation, we aggregate the Recall@1 of f̂S
and f̂L with optimized RP order and {Ni}M of {1,1,1} into
Figure 8. Since the augmented data is mixed in training,

13The upper-bound decided by Lucene is unavailable on QASC
test set. If the test-set upper bound is lower, there will be less lifting
space for our method, resulting in the less improvement in #20 of
Table 1.
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(a) QASC ({Ni}M -p%-order (maximum)) (b) MultiRC with stop method (p%-order-operation (maximum))

Figure 7: Evaluation of datasets with each improvement method or both in justifications collection. The maximum of each line
is pointed in the line and noted in the figure legend.
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Figure 8: Recall increment of f̂S and f̂L varies with p% in
each hop (3 hops, optimized RP order, {Ni}M of {1,1,1}).
The {1,1,1} is extracted from {1,1,8}, and all results has
subtracted the result of p = 0.

the results of f̂S and f̂L predicted in hops 2 and 3 improve
with the increasing p% as expected. Surprisingly, the per-
formance of f̂S in hop 1 also improves. However, there is
no existence of f̂S = IR(Q) in artificial data such that the
training of f̂S = IR(Q) would not change with increas-
ing p%, indicating that the increasing percentage of the aug-
mented data empowers the entire ability of retrieval. In Mul-
tiRC, despite the influence of the overfitting and the non-
fixed prediction length, the artificial data can also make a
slight enhancement with a smaller p%.

Ablation study. As shown in Figure 7a, RPA with opti-
mized RP order on QASC always outperforms it with the
raw order in not only the model convergence speed but also
the maximum of the performance under the same {Ni}M
and p% conditions, which indicates the great potential of
the RP reordering. Additionally, the 10% augmentation of
RPs contributes a similar enhancement from {1,1,8}-0.0-
raw-order to {1,1,8}-10.0-raw-order, and the superposition
of the two methods is to present further improvement than a
single one. The same analysis can also be obtained on Mul-
tiRC with p% from 0 to 10 and the order from the raw order
to the optimized (⊕) order as shown in Figure 7b. Further
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Figure 9: Maximum Recall@10 and Accuracy on QASC
vary with p% (optimized RP order, Prediction Hops of 3,
{Ni}M of {1,1,8}).

ablation experiments are conducted in Figure 9 to corrobo-
rate the necessity of the artificial RPs since a mere 10% of
artificial data can provide a significant boost of 3% while the
boost becomes slower as the p%.

Conclusion
In this paper, we propose the Reasoning Path Augmenta-
tion (RPA) to reorder and augment the reasoning paths with
RoBERTa. The order optimization algorithm of the justifica-
tions reduces the difficulty of sequential iterative retrievals
by the overlap words between the query and justifications,
while augmented data produced further enhances the perfor-
mance in multi-hop retrieval, which outperforms the pub-
lished retrieval methods on QASC and MultiRC. Addition-
ally, the analysis of the reasoning paths further demonstrates
the necessity of justification order optimization and reason-
ing path augmentation.
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