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Abstract
Event argument extraction (EAE) aims to identify the argu-
ments of a given event, and classify the roles that those ar-
guments play. Due to high data demands of training EAE
models, zero-shot cross-lingual EAE has attracted increas-
ing attention, as it greatly reduces human annotation effort.
Some prior works indicate that generation-based methods
have achieved promising performance for monolingual EAE.
However, when applying existing generation-based methods
to zero-shot cross-lingual EAE, we find two critical chal-
lenges, including Language Discrepancy and Template Con-
struction. In this paper, we propose a novel method termed
as LanguAge-oriented Prefix-tunIng Network (LAPIN) to
address the above challenges. Specifically, we devise a
Language-oriented Prefix Generator module to handle the
discrepancies between source and target languages. More-
over, we leverage a Language-agnostic Template Construc-
tor module to design templates that can be adapted to any
language. Extensive experiments demonstrate that our pro-
posed method achieves the best performance, outperforming
the previous state-of-the-art model by 4.8% and 2.3% of the
average F1-score on two multilingual EAE datasets.

Introduction
Event argument extraction (EAE) aims to identify the en-
tities that serve as event arguments of a given event, and
predict the roles they play. Figure 1(a) illustrates an exam-
ple of EAE task. Given the trigger “attacked” for an At-
tack event, the EAE model is expected to recognize “two
soldiers”, “demonstrators” and “yesterday” as the event ar-
guments, and predict their roles as “Target”, “Attacker” and
“Time”, respectively. EAE is a key step for event extraction
(EE), which can be beneficial for various downstream appli-
cations, such as recommendation systems (Li et al. 2020b),
dialogue systems (Zhang, Chen, and Bui 2020) and timeline
summarization (Li et al. 2021).

With the development of deep neural network methods,
EAE has met with remarkable success. However, training
an EAE model relies on considerably large-scale labeled
data, which makes it hard to adapt to low-resource languages
that lack sufficient labeled data. To address this short-
coming, cross-lingual EAE transfers the advantage of the
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Figure 1: (a) An example of event argument extraction; (b)
An example of generation-based method; (c) An illustration
of zero-shot cross-lingual event argument extraction.

source language with rich resources to the target language,
which gains increasing attention (Subburathinam et al. 2019;
Van Nguyen and Nguyen 2021; Ahmad, Peng, and Chang
2021; Lou et al. 2022). In this work, we focus on the zero-
shot cross-lingual EAE task, where the EAE model is trained
with the annotated data in a source language and directly ap-
plied to other target languages (cf. Figure 1(c)).

For monolingual EAE, most of previous methods treat it
as classification tasks (including entity recognition and ar-
gument classification), either trained in a pipelined or joint
manner (Nguyen, Cho, and Grishman 2016; Wang et al.
2019; Lin et al. 2020). Recently, there is an emerging trend
of casting EAE as a sequence generation problem (Li, Ji, and
Han 2021; Hsu et al. 2022; Liu et al. 2022). As shown in
Figure 1(b), this line of methods design templates with sev-
eral placeholders (i.e., underlined words), and steer genera-
tive pre-trained language models (PLMs) to fill them. Com-
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pared with classification-based methods, generation-based
methods can better capture dependencies between argu-
ments, which achieves promising performance for monolin-
gual EAE. Despite the success, extending generation-based
methods to the zero-shot cross-lingual EAE is non-trivial,
which faces two critical challenges: (1) Language Discrep-
ancy. Languages have their own characteristics, e.g., the
distance between triggers and candidate arguments is very
different among languages. If the EAE model trained in
source languages memorizes excessive specific knowledge
from source languages, it inevitably has a negative impact
on the prediction in target languages. For example, accord-
ing to our statistics, the average distance between triggers
and candidate arguments in English is 9.8, while it is 21.7
in Chinese. As a result, an EAE model trained in English
may pay too much attention on closer tokens, thus failing to
generalize in Chinese. (2) Template Construction. Design-
ing templates is a very important step in generation-based
methods. As shown in Figure 1(b), the templates designed
in prior works are language-dependent, i.e., the language of
templates is the same as that of training instances. How-
ever, for zero-shot cross-lingual EAE, the languages of in-
stances are different during training and testing. Thus, the
language-dependent templates severely restrict the zero-shot
cross-lingual transfer of existing generation-based methods.
Naively applying such models trained in source languages
to target languages usually generates words belonging to
source languages, yielding poor performance.

In this paper, we propose a novel method termed as
LanguAge-oriented Prefix-tunIng Network (LAPIN) to ad-
dress the aforementioned challenges. Our method is based
on the multilingual generative PLMs for conditional gen-
eration. Specifically, we devise a Language-oriented Pre-
fix Generator module to handle the discrepancies be-
tween source and target languages. The module first ob-
tains and encodes the language-universal dependency struc-
ture of the input sentence, and then utilizes trigger-centric
neighbor information to initialize continuous prefix vec-
tors. Meanwhile, inspired by Huang et al. (2022), we use
a Language-agnostic Template Constructor module to fa-
cilitate cross-lingual transfer. The module utilizes some
language-agnostic tokens to represent templates, so that
the constructed templates can be adapted to any language.
Extensive experiments on two multilingual EAE datasets
demonstrate that our method substantially outperforms pre-
vious state-of-the-art zero-shot cross-lingual EAE models.

Overall, the contributions of this work can be summarized
as follows:

• We propose a novel language-oriented prefix-tuning net-
work (LAPIN) for zero-shot cross-lingual EAE. To our
best knowledge, we are the first to explore the prefix-
tuning method for the task.

• We introduce a language-oriented prefix initialization
mechanism based on the language-universal dependency
structure, which can help the model handle the discrep-
ancies between source and target languages.

• Experimental results indicate that our approach signif-
icantly outperforms previous state-of-the-art methods,

achieving 4.8% and 2.3% improvements of average F1-
score on two widely used datasets.

Related Work
Traditional Event Argument Extraction
Event argument extraction (EAE) is an important subtask of
event extraction (EE), which has attracted extensive atten-
tion among researchers. Existing methods for EAE can be
mainly classified into two categories. The first category of
methods formulates EAE as a classification problem (Chen
et al. 2015; Huang et al. 2018). These methods usually first
identify candidate arguments and then predict their roles. In
addition, recent works apply reading comprehension meth-
ods to the EAE task (Du and Cardie 2020; Li et al. 2020a;
Liu et al. 2020). In the second category, recent studies treat
EAE as a sequence generation problem (Li, Ji, and Han
2021; Hsu et al. 2022; Liu et al. 2022), with the help of gen-
erative PLMs (Lewis et al. 2020; Raffel et al. 2020). Com-
pared with classification-based methods, generation-based
methods have achieved more promising results by capturing
dependencies between triggers and arguments.

Cross-Lingual Event Argument Extraction
The success of traditional EAE is almost limited to high-
resource languages, which requires an amount of annotated
data for training. To alleviate this problem, zero-shot cross-
lingual EAE has gained increasing attention in recent years
(Subburathinam et al. 2019; Huang et al. 2022). Most pre-
vious works on cross-lingual transfer for EE are based on
machine translation (Zhu et al. 2014) and external resources
or data (Chen and Ji 2009; Hsi et al. 2016). Subburathi-
nam et al. (2019) leverage graph neural networks (Kipf and
Welling 2017) to learn multilingual representations across
languages. In view of the success of generation-based meth-
ods for monolingual EAE, Huang et al. (2022) extend the
idea to the cross-lingual setting, which achieves the current
best performance for zero-shot cross-lingual EAE. However,
the method cannot effectively handle discrepancies between
source and target languages, and easily overfits the specific
information of source languages.

Prompt-based Learning
With the success of PLMs, prompt-based learning has be-
come a promising paradigm (Liu et al. 2021). It transforms
the downstream tasks into the same form as the PLMs’ pre-
training tasks, which is more helpful to elicit model knowl-
edge (Brown et al. 2020). For example, Han et al. (2022)
convert text classification problems to cloze-style tasks,
which depends on designed verbalizers to map from label
words to specific labels. These discrete prompt-tuning meth-
ods are effective for few-shot classification tasks (Schick
and Schütze 2021; Seoh et al. 2021). Additionally, instead
of discrete prompts, some studies also propose continuous
prompts that are directly operated in the embedding space
(Li and Liang 2021; Lester, Al-Rfou, and Constant 2021;
Qin and Eisner 2021). Despite the flourish of the research
in prompt-based learning, how to apply it to the zero-shot
cross-lingual EAE remains largely under-explored.
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Figure 2: The architecture of our proposed language-oriented prefix-tuning network (LAPIN) for zero-shot cross-lingual EAE.

Task Formulation
Following Hsu et al. (2022) and Huang et al. (2022), we
formulate event argument extraction task as follows. We
define that an input sentence S consists of T words, i.e.,
S = {w1, w2, . . . , wT }. We also define the event types
set E and the corresponding argument roles set Re for
each event type e ∈ E . Given an input sentence S and
an event trigger t belonging to an event type e ∈ E , the
EAE task aims to recognize all (r, s) ∈ A pairs for the
event, where r ∈ Re is an argument role for the event
type e, and s ∈ S is a contiguous text span in the sen-
tence. For the zero-shot cross-lingual EAE, the training data
Dtrain = {(Si, ti, ei,Rei ,Ai)}Ni=1 belongs to the source
languages, which is used to train an EAE model. Then, the
trained model is directly tested on instances of target lan-
guages, denoted as Dtest = {(Si, ti, ei,Rei ,Ai)}Mi=1.

In contrast to monolingual EAE, zero-shot cross-lingual
EAE is a more challenging yet practical problem. It requires
EAE models to be capable of transferring the shared knowl-
edge from the source languages to the target languages.

Methodology
Figure 2 shows the overall architecture of LAPIN, which
consists of three major components: (1) Language-agnostic
Template Constructor, which designs templates according to
event structures; (2) Encoder-Decoder Architecture, which
leverages multilingual generative PLMs to fill the template;
(3) Language-oriented Prefix Generator, which initializes
prefixes using language-universal dependency structure. We
will illustrate each component in detail.

Language-agnostic Template Constructor
Previous works (Hsu et al. 2022; Ma et al. 2022) have proved
that templates are very important for generation-based meth-
ods. Generally, for each event type e, a type-specific tem-
plate Te should be designed according to event structures
(i.e., ontologies). It usually contains several placeholders
that need to be replaced by concrete arguments. In addition,
the language of instances may be different during training
and testing for zero-shot cross-lingual EAE. Therefore, the
template should be designed in a language-agnostic manner.

Following Huang et al. (2022), we utilize a unique HTML-
tag-style template, which can meet the above two require-
ments. For example, the Attack event is associated with four
roles, including Target, Attacker, Time and Place. The tem-
plate for Attack events is designed as:

⟨Target⟩ [None] ⟨/Target⟩ ⟨Attacker⟩ [None] ⟨/Attacker⟩
⟨Time⟩ [None] ⟨/Time⟩ ⟨Place⟩ [None] ⟨/Place⟩.

In the template, the special token [None] serves as the
argument placeholder. Other special tokens (e.g., ⟨Target⟩,
⟨/Target⟩) are unseen for PLMs during pre-training stage.
Their representations can be learned from scratch using the
training data, which naturally captures the information of
event structures. Since these special tokens do not belong
to any language, the constructed template can be considered
language-agnostic. In this way, the templates of other event
types can also be constructed.

To construct the ground truth output sequence, we replace
the placeholder [None] in the template with the correspond-
ing gold arguments. If there are no corresponding arguments
for one role in the input sentence, we keep [None] in the tem-
plate. For example in Figure 1, the target output sequence of
the example is:

⟨Target⟩ two soldiers ⟨/Target⟩ ⟨Attacker⟩ demonstrators
⟨/Attacker⟩ ⟨Time⟩ yesterday ⟨/Time⟩ ⟨Place⟩ [None] ⟨/Place⟩.

In addition, if more than one argument is predicted as the
same role, they are first sorted by spans and then connected
by the special token [and]. Given the generated output se-
quence, we can easily parse the argument and role predic-
tions according to event structures.

Encoder-Decoder Architecture
Given the input sentence S , the template Te is designed us-
ing the above template construction strategy. Our method
LAPIN generates the output sequence Y via multilingual
generative PLMs (i.e., mT5 (Xue et al. 2021)). Concretely,
our method first encodes the input sequence and obtains cor-
responding representations:

HX = Encoder(X ), X = [S; [SEP]; Te], (1)
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where Encoder(·) is a multi-layer transformer encoder
(Vaswani et al. 2017). X denotes the input sequence that is
concatenated by the sentence S and template Te. [SEP] de-
notes the separate marker in the PLMs. [; ] indicates the se-
quence concatenation operation. HX ∈ R|X |×d denote the
hidden representations for each token in the input sequence.

After obtaining hidden representations of the input se-
quence, we feed them into the decoder for generating the
output sequence Y in an autoregressive style (i.e., token-by-
token). At step t, the decoder generates the t-th token yt and
decoder state hd

t as follows:

yt,h
d
t = Decoder(HX ,Hd

<t, yt−1), (2)

where Decoder(·) is a multi-layer transformer decoder.
Hd

<t ∈ R(t−1)×d are past states of the decoder during de-
coding. The conditional probability of the entire output se-
quence, denoted as p(Y |X ), can be computed as follows:

p(Y|X ) =

|Y|∏
t=1

p(yt | y<t,X ), (3)

where p(yt | y<t,X ) is the probability of predicting token
yt, given the previous generated tokens y<t and the encoder
input X .

Language-oriented Prefix Generator
To alleviate the language discrepancies, we devise a
language-oriented prefix generator to initialize prefixes
based on a language-universal dependency structure, which
is illustrated in Figure 3. It guides the model to learn shared
knowledge between source and target languages. Specifi-
cally, it is designed as follows:

Encoding of Dependency Structure We first use a pre-
trained universal dependency parser (e.g., Stanza1 (Qi et al.
2020)) to obtain the language-universal dependency tree of
the input sentence. Then, we compute the syntactic (i.e.,
shortest path on the tree) distance between every pair of
tokens. The distance matrix is denoted as D ∈ R|T |×|T |,
where Dij represents the syntactic distance between i-th
and j-th tokens in the input sentence, and T denotes the
length of the input sentence.

To encode the dependency structure, we first use the mT5
encoder to represent each token in a shared semantic space
across languages, and then employ the transformer as the
structure encoder. If tokens is allowed to attend other tokens
that are within distance δ, the mask can be defined matrix as
follows:

Mij =

{
0, if Dij ≤ δ

−∞, otherwise,
(4)

where δ is a hyper-parameter. In this way, the mask matrix
can take into account the syntactic structure. For l-th trans-
former layer, the self-attention distribution Pl is computed
as follows:

P l = softmax(
QKT

√
dk

+M)V , (5)

1https://stanfordnlp.github.io/stanza/
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Figure 3: An illustration of language-oriented prefix gener-
ator. In the example, the distance δ is 1 and the length of the
prefix is 4. For the distance (mask) matrix, orange means
visible (i.e., Mij=0), and white means invisible.

where Q, K and V are queries, keys and values of the l-th
layer, respectively, whose hidden size is dk. P l

ij denotes the
attention that i-th token pays to the j-th token in the sen-
tence. Since the syntactic distances between trigger and ar-
guments are informative (Ahmad, Peng, and Chang 2021),
we modify the self-attention distribution by incorporating
syntactic distances:

Al
ij =

P l
ij

ZiDij
, (6)

where Zi =
∑

j
Pij

Dij
is the normalization factor. Al ∈

R|T |×|T | is the revised self-attention matrix, which is used
to compute the l-th layer output of the transformer.

Selecting Trigger-centric Neighbors After the encoding,
we obtain the structural representations of each token. The
dependency tree is transformed into an undirected graph. We
take triggers as the starting point, and select a certain number
of neighbors in the order of breadth-first search, as shown in
Figure 3. The selection strategy can not only indicate the
trigger position, but also capture the dependencies between
triggers and arguments. These selected token representations
compose a learnable matrix U ∈ RL×d, where L is the num-
ber of selected tokens. It serves as initialized representations
of prefixes, which are prepended for the sequences X and Y
of each transformer layer in encoder and decoder. With the
injection of prefixes U , the computation of decoder state hd

t
in Equation (2) is modified as follows2:

hd
t =

{
U [t, :], if t < L

Decoder(HX ,Hd
<t, yt−1), otherwise.

(7)

The computation of encoder states is similar. In this way, we
induce the model to capture language-shared information.

2For simplicity, we only present the decoder state hd
t , not the

t-th generated token yt in the equation.
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Models PLMs
en en en ar ar ar zh zh zh

avg⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
en zh ar ar en zh zh en ar

Classification-based Methods
OneIE XLM-R-large 63.6 42.5 37.5 57.8 27.5 31.2 69.6 51.5 31.1 45.8
CL-GCN XLM-R-large 59.8 29.4 25.0 47.5 25.4 19.4 62.2 40.8 23.3 37.0
GATE XLM-R-large 67.0 49.2 44.5 59.6 27.6 26.3 70.6 46.7 37.3 47.6
GATE mBART-50-large 65.5 43.0 38.9 58.5 27.5 26.1 65.9 45.3 30.2 44.5
GATE mT5-base 59.8 47.7 32.6 45.4 20.7 21.0 64.0 35.3 22.8 38.8

Generation-based Methods
TANL mT5-base 59.1 38.6 29.7 50.1 18.3 16.9 65.2 33.3 18.3 36.6
X-GEAR mT5-base 67.9 53.1 42.0 66.2 27.6 30.5 69.4 52.8 32.0 49.1
X-GEAR mT5-large 71.2 54.0 44.8 68.9 32.1 33.3 68.9 55.8 33.1 51.3

Our Proposed Method
LAPIN mT5-base 69.0 57.1 41.8 67.0 29.5 36.0 68.0 55.3 36.2 51.1
LAPIN mT5-large 74.4 59.3 52.0 69.4 36.8 44.3 72.5 59.1 37.4 56.1

Table 1: Experimental results (F1-score, %) of different models on the ACE-2005 dataset. The languages on top and bottom of
⇓ denote the source language and target language, respectively. “avg” denotes the average performance of all the combinations
of the source language and the target language. Bold denotes best results.

Training
The trainable parameters of our method contain the param-
eters of the encoder-decoder model and generated prefixes,
which is denoted as θ. We use the negative log-likelihood
function to optimize the model:

Lθ(D) = −
|D|∑
i=1

log p(Gi | Xi, θ), (8)

where D denotes the training set in the source languages. Xi

is the input sequence of i-th example, and Gi is the corre-
sponding ground truth output sequence.

Given that most of the tokens in the target output sequence
are also present in the input sequence, we augment the mul-
tilingual generative PLMs with a copy mechanism (See, Liu,
and Manning 2017), which can help our method LAPIN bet-
ter adapt to the cross-lingual scenario.

Experiments
Datasets and Evaluation Metrics
We evaluate our method on two EE datasets, including ACE-
2005 (Doddington et al. 2004) and ERE (Song et al. 2015).
For ACE-2005, the dataset is labeled in three languages: En-
glish (en), Chinese (zh) and Arabic (ar). For a fair compari-
son with previous work (Huang et al. 2022), we use the same
dataset split and prepossessing methods to keep 33 event
types and 22 argument roles. For ERE, the dataset is an-
notated in two languages: English and Spanish (es). Follow-
ing the preprocessing in Lin et al. (2020) and Huang et al.
(2022), we keep 38 event types and 21 argument roles.

Following previous works (Ahmad, Peng, and Chang
2021; Huang et al. 2022), we use the F1-score of argument
classification as the evaluation metric. If argument offsets
and role type are both same as the ground truth, an argument-
role pair is assumed to be correctly classified. For the offset
of the predicted argument, we select the nearest matched

string to the predicted trigger, same as previous methods
(Huang et al. 2022) to ensure fairness.

Parameter Settings
In our implementations, our method uses the HuggingFace’s
Transformers library3 to implement the encoder-decoder
mT5 (base and large) model. To embed tokens of the depen-
dency structure into vector representations, we use another
mT5 encoder as a feature extractor and do not fine-tune it.
The learning rate is initialized as 3e-5 or 1e-4 with a linear
decay for mT5-base or mT5-large models, respectively. We
utilize the AdamW algorithm (Loshchilov and Hutter 2017)
to optimize model parameters. The batch size is set to 8. Our
method generates output sequences by using beam search,
whose beam size is set to 4. The length of prefix L is set to
30. The distance hyper-parameter δ is set to 2. The number
of training epochs is 100. Each experiment is conducted on
NVIDIA RTX A6000 GPUs.

Baselines
We compare the proposed approach LAPIN with the follow-
ing methods:

(1) OneIE (Lin et al. 2020), which is a classification-
based monolingual information extraction model. It
achieves very competitive performance for the EAE task.
Following Huang et al. (2022), we employ the XLM-
RoBERTa-large (XLM-R-large) (Conneau et al. 2020) to
obtain the word embedding for each token, so that the
model can adapt to the zero-shot cross-lingual setting.

(2) CL-GCN (Subburathinam et al. 2019), which is pro-
posed to address event argument role labeling (EARL). It be-
longs to classification-based models and uses graph convo-
lutional networks to encode the dependency structure. Since
EARL requires that the entities are given in advance, one
named entity recognition module is required for the model.

3https://github.com/huggingface/transformers
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Models
en ar zh

avg m
en en ar ar zh zh

avg c avg a⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
en ar zh ar zh en zh ar en

LAPIN (mT5-base) 69.0 67.0 68.0 68.0 41.8 57.1 29.5 36.0 36.2 55.3 42.7 51.1
w/o prefix-tuning 68.1 64.8 67.5 66.8 (↓1.2) 40.3 55.8 23.2 33.1 33.7 53.4 39.9 (↓2.8) 48.8 (↓2.3)
w/ sequential selection 69.1 67.1 64.8 67.0 (↓1.0) 40.1 56.0 28.2 35.6 36.7 52.3 41.5 (↓1.2) 50.0 (↓1.1)

LAPIN (mT5-large) 74.4 69.4 72.5 72.1 52.0 59.3 36.8 44.3 37.4 59.1 48.2 56.1
w/o prefix-tuning 71.6 69.9 72.8 71.4 (↓0.7) 49.1 59.0 35.4 40.7 36.0 56.1 46.1 (↓2.1) 54.5 (↓1.6)
w/ sequential selection 72.1 68.3 71.4 70.6 (↓1.5) 49.5 62.6 32.4 43.0 37.3 58.0 47.1 (↓1.1) 55.0 (↓1.1)

Table 2: Ablation study of language-oriented prefix-tuning on the ACE-2005 dataset. “avg m” indicates the average of mono-
lingual settings (i.e., “en ⇒ en”, “ar ⇒ ar”, and “zh ⇒ zh”). “avg c” indicates the average of cross-lingual settings. “avg a”
indicates the average of all the combinations of the source language and the target language. The average F1-score is followed
by the drop (↓) compared with the method LAPIN.

Models PLMs
en en es es

avg⇓ ⇓ ⇓ ⇓
en es es en

Classification-based Methods
OneIE XLM-R-large 64.4 56.8 64.8 56.9 60.7
CL-GCN XLM-R-large 61.9 51.9 62.9 48.5 55.9
GATE XLM-R-large 66.4 61.5 63.0 56.5 61.9

Generation-based Methods
TANL mT5-base 65.9 40.3 58.6 47.4 53.1
X-GEAR mT5-base 69.8 57.9 66.1 59.0 63.2
X-GEAR mT5-large 72.9 59.7 67.4 64.1 66.0

Our Proposed Method
LAPIN mT5-base 71.6 59.8 67.5 61.4 65.1
LAPIN mT5-large 73.1 64.6 69.6 66.0 68.3

Table 3: Experimental results (F1-score, %) of different
models on the ERE dataset.

(3) GATE (Ahmad, Peng, and Chang 2021), which is
a classification-based zero-shot cross-lingual EARL model.
Unlike CL-GCN, the model leverage the transformer to
encode the dependency structure. Following Huang et al.
(2022), we utilize the multilingual PLMs to obtain the rep-
resentation of each token.

(4) TANL (Paolini et al. 2021), which is a generation-
based EAE model. The model inserts the role labels into
the input sentence to obtain the target sequence. It is orig-
inally proposed for monolingual EAE task based on the T5.
To accommodate zero-shot cross-lingual EAE for the TANL
model, we replace the T5 with mT5-base.

(5) X-GEAR (Huang et al. 2022), which is a generation-
based zero-shot cross-lingual EAE model. The model is
based on multilingual PLMs, including mT5-base and mT5-
large. It aims to devise a language-universal template, which
achieves the current best performance for the zero-shot
cross-lingual EAE task.

Overall Results
Table 1 and Table 3 shows the results on the ACE-2005 and
ERE datasets, respectively. We note the following key ob-
servations throughout our experiments:

(1) Our method outperforms all the baselines by a large
margin, and achieves new state-of-the-art performance on
the two datasets. For example, compared with the previous
state-of-the-art model X-GEAR (mT5-large), our method
achieves 4.8% and 2.3% improvements of average F1-score
on the ACE-2005 and ERE datasets, respectively. The sig-
nificant performance gain of our method over the baselines
demonstrates that the proposed method LAPIN is very effec-
tive for the zero-shot cross-lingual EAE task.

(2) Compared with classification-based methods, our ap-
proach achieves greater improvements. For example, our
method outperforms the classification-based model GATE
(XLM-R-large) by 8.5% and 6.4% in term of average F1-
score on the ACE-2005 and ERE datasets, respectively.
We attribute the improvements to that our method LAPIN
takes advantage of argument dependencies and language-
universal knowledge, thus achieving superior performance.

(3) The generation-based model TANL yields worse per-
formance than our method LAPIN and X-GEAR. The reason
is that the language-dependent template is not suitable for
the cross-lingual setting. In addition, our method with mT5-
large achieves better performance than that with mT5-base.
It suggests that the performance of LAPIN can be further
improved with larger generative PLMs.

Effectiveness of Language-oriented Prefix-tuning
To demonstrate the effectiveness of the language-oriented
prefix-tuning, we conduct an ablation study as follows.
1) w/o prefix-tuning, which removes the language-oriented
prefix generator module from our method; 2) w/ sequential
selection, which selects tokens as prefixes in sequential or-
der starting with the first token of the sentence, instead of the
breadth-first search order. We present the results of ablation
study in Table 2. From the results, we can observe that:

(1) When we remove the language-oriented prefix-tuning,
the performance drops significantly in all the scenarios. The
average all of the F1-score (i.e., avg a) drops by 2.3% over
the LAPIN (mT5-base). It is worth noting that the decline of
cross-lingual settings (e.g., ↓2.8 of avg c) is greater than that
of monolingual settings (e.g., ↓1.2 of avg m). It indicates
that the language-oriented prefix-tuning is able to handle the
discrepancies between different languages.
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Models (0,5] (5,10] (10,15] (15,20] (20,30] (30,40]

en ⇒ xx
X-GEAR 59.3 47.8 40.6 29.6 53.7 35.2
LAPIN 62.9 56.5 52.5 53.7 60.8 28.2

ar ⇒ xx
X-GEAR 43.7 36.1 25.5 32.1 11.5 9.5
LAPIN 47.2 43.7 41.7 41.4 10.6 26.7

zh ⇒ xx
X-GEAR 57.0 47.8 46.9 41.7 22.3 28.6
LAPIN 57.2 52.9 53.5 53.6 60.5 37.8

Table 4: F1-score on the ACE-2005 dataset with different
distance spans between triggers and arguments. The instance
of distance over 40 is very few, thus we ignore the case. “en
⇒ xx” indicates the performance average of “en ⇒ en”, “en
⇒ zh”, and “en ⇒ ar”. Our method LAPIN and X-GEAR
are both based on the mT5-base.

(2) Using the sequential selection strategy to initialize the
prefix brings performance degradation. The reason is that
this strategy ignores the triggers, and dependencies between
triggers and candidate arguments. It suggests that making
full use of trigger information is important for the task. In
addition, compared with the model removed prefix-tuning,
our method with the sequential selection still achieves better
performance. It demonstrates that language-oriented prefix-
tuning is very effective for the task.

Discussion and Analysis
Sensitivity to the Distance between Triggers and Argu-
ments The distance between triggers and candidate argu-
ments is very different among languages (e.g., 9.8 in English
vs 21.7 in Chinese). Intuitively, if an EAE model is less sen-
sitive to the distance between triggers and arguments, the
model can be assumed to less overfit the source language.
Table 4 shows the results on the ACE-2005 dataset with dif-
ferent distance between triggers and arguments. From the
results, we can observe that our method LAPIN outperforms
the baseline X-GEAR on almost all distance distributions.
More importantly, compared with X-GEAR, our method
achieves greater improvement when the distance between
triggers and arguments becomes longer. It suggests that our
method can handle discrepancies between source and target
languages and avoid overfitting the source language.

Impact of Language-oriented Prefix Length We inves-
tigate the influence of language-oriented prefix length on
the ACE-2005 dataset. The prefix length varies from 10 to
60, and the corresponding results are illustrated in Figure 4.
From the figure, we can observe that the performance of our
method LAPIN improves with the increase of prefix length
at the beginning. Our method yields the best performance
when the prefix length is set to 30. However, when the pre-
fix length becomes too large, F1-score stops increasing or
even decreases. We attribute it to the fact that dependency
structures can shorten the distance between event triggers
and their arguments and effectively model the long-distance
dependencies between them. Therefore, the length of the
language-oriented prefix need not be too long.

Figure 4: F1-scores of our method LAPIN with different pre-
fix length on the ACE-2005. The “en” indicates the perfor-
mance average of “en ⇒ en”, “en ⇒ zh”, and “en ⇒ ar”.

Models
en ar zh

avg⇓ ⇓ ⇓
xx xx xx

LAPIN (mT5-base) 56.0 44.2 53.2 51.1
w/o copy mechanism 54.8 43.2 51.1 49.7 (↓1.4)

LAPIN (mT5-large) 61.9 50.2 56.3 56.1
w/o copy mechanism 58.0 48.2 56.0 54.1 (↓2.0)

Table 5: Ablation study of copy mechanism on the ACE-
2005 dataset. The “avg” denotes the performance average of
“en ⇒ xx”, “ar ⇒ xx”, and “zh ⇒ xx”.

Impact of Copy Mechanism To verify the effectiveness
of the copy mechanism, we conduct ablation studies. The
experimental results are listed in Table 5. From the table,
we can observe that removing the copy mechanism brings
performance degradation in all cross-lingual settings. Com-
pared with the model removed copy mechanism, our meth-
ods LAPIN (mT5-base) and LAPIN (mT5-large) achieves
1.4% and 2.0% improvements of average F1-score, respec-
tively. It suggests that the generative PLMs (i.e., mT5) lack
the ability to copy input, and the copy mechanism can facil-
itate the cross-lingual adaptation.

Conclusion
In this paper, we propose a novel language-oriented prefix-
tuning network (LAPIN) for zero-shot cross-lingual event ar-
gument extraction. To handle discrepancies between source
and target languages, we devise a language-oriented pre-
fix generator module to obtain prefixes based on language-
universal dependency structures. Moreover, we leverage a
language-agnostic template constructor module to design
universal templates for facilitating cross-lingual transfer.
Experimental results on two datasets indicate that our ap-
proach substantially outperforms previous state-of-the-art
methods. In the future, we plan to adapt our method to other
zero-shot cross-lingual information extraction tasks.

12595



Acknowledgments
We thank anonymous reviewers for their insightful com-
ments and suggestions. This work is supported by the Na-
tional Key Research and Development Program of China
(No.2020AAA0106400), the National Natural Science
Foundation of China (No.62176257, 61976211, 61922085).
This work is also supported by the Strategic Priority Re-
search Program of Chinese Academy of Sciences (Grant
No.XDA27020200), the Youth Innovation Promotion As-
sociation CAS, and Yunnan Provincial Major Science and
Technology Special Plan Projects (No.202103AA080015).

References
Ahmad, W. U.; Peng, N.; and Chang, K.-W. 2021. GATE:
graph attention transformer encoder for cross-lingual rela-
tion and event extraction. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 12462–12470.
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.
Advances in neural information processing systems, 1877–
1901.
Chen, Y.; Xu, L.; Liu, K.; Zeng, D.; and Zhao, J. 2015. Event
extraction via dynamic multi-pooling convolutional neural
networks. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing,
167–176.
Chen, Z.; and Ji, H. 2009. Can one language bootstrap the
other: a case study on event extraction. In Proceedings of the
NAACL HLT 2009 Workshop on Semi-Supervised Learning
for Natural Language Processing, 66–74.
Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.;
Wenzek, G.; Guzmán, F.; Grave, É.; Ott, M.; Zettlemoyer,
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