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Abstract
The decomposition-based multi-objective evolutionary algo-
rithm (MOEA/D) transforms a multi-objective optimization
problem (MOP) into a set of single-objective subproblems
for collaborative optimization. Mismatches between subprob-
lems and solutions can lead to severe performance degrada-
tion of MOEA/D. Most existing mismatch coping strategies
only work when the L∞ scalarization is used. A mismatch
coping strategy that can use any Lp scalarization, even when
facing MOPs with non-convex Pareto fronts, is of great sig-
nificance for MOEA/D. This paper uses the global replace-
ment (GR) as the backbone. We analyze how GR can no
longer avoid mismatches when L∞ is replaced by another Lp

with p ∈ [1,∞), and find that the Lp-based (1 ≤ p < ∞)
subproblems having inconsistently large preference regions.
When p is set to a small value, some middle subproblems
have very small preference regions so that their direction vec-
tors cannot pass through their corresponding preference re-
gions. Therefore, we propose a generalized Lp (GLp) scalar-
ization to ensure that the subproblem’s direction vector passes
through its preference region. Our theoretical analysis shows
that GR can always avoid mismatches when using the GLp

scalarization for any p ≥ 1. The experimental studies on var-
ious MOPs conform to the theoretical analysis.

Introduction
The multi-objective optimization problem (MOP) can be
written as

minimize f(x) = (f1(x), . . . , fm(x))⊺,

subject to x ∈ Ω,
(1)

where x = (x1, . . . , xn)
⊺ is a decision vector (also called

solution), and Ω ⊂ Rn denotes the decision space. f : Rn →
Rm is composed of m objective functions, and f(x) is the
objective vector corresponding to x.

The multi-objective evolutionary algorithm based on de-
composition (MOEA/D) is a popular framework for dealing
with MOPs (Zhang and Li 2007). It converts an MOP into a
set of single-objective subproblems to optimize them simul-
taneously. The subproblem function is defined by a scalar-
ization method, where the family of the Lp (p ≥ 1) scalar-
ization is often used. The weighted sum (WS) method and
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the Tchebycheff (TCH) method are the L1 scalarization and
the L∞ scalarization, respectively. Any scalarization method
can be used in MOEA/D, and each has its own strengths and
weaknesses (Hansen 2000; Wang, Zhang, and Zhang 2016).

In MOEA/D, each subproblem is associated with one so-
lution. For each iteration, the evolutionary operations are
conducted with respect to each subproblem to generate a
new solution; this new solution is used to replace several
neighboring subproblems’ original solutions if it is bet-
ter than these solutions. As stated in (Wang et al. 2014;
Li et al. 2014), there may exist mismatches between solu-
tions and subproblems and the above replacement strategy
can lead to severe performance degradation. Sequentially,
several MOEA/D variants with mismatch coping strategies
have been proposed, such as MOEA/D-GR (Wang et al.
2014), MOEA/D-STM (Li et al. 2014), MOEA/D-IR (Li
et al. 2015), MOEA/D-AMOSTM (Wu et al. 2017), and
MOEA/D-2TCHMFI (Ma et al. 2018). Most of these algo-
rithms employ the TCH method to define subproblems. Be-
cause the TCH-based subproblem has a good property, i.e.,
the intersection between its direction vector and the Pareto
front is optimal for it. Nevertheless, the TCH method has
some specific weaknesses compared to other Lp scalariza-
tion methods. It is non-smooth, non-differentiable, and may
cause slow convergence of MOEA/D, making it difficult to
use in many scenarios. Therefore, it is of great significance
for MOEA/D to develop mismatch coping strategies that en-
able using any Lp scalarization method, even when facing
MOPs with non-convex Pareto fronts.

This paper adopts MOEA/D-GR as the backbone. It
matches the most suitable subproblem for each new solu-
tion according to the function values over all subproblems.
Our analysis first reveals that MOEA/D-GR can avoid mis-
matches only when the TCH method (i.e., L∞) is used.
When the TCH method is replaced with another Lp scalar-
ization for any p ∈ [1,∞), MOEA/D-GR fails to choose
the appropriate subproblem for each solution. For example,
MOEA/D-GR always chooses boundary subproblems to up-
date if the TCH method is substituted with the WS method.
Our analysis demonstrates that these mismatches can be at-
tributed to Lp-based (1 ≤ p < ∞) subproblems having
inconsistently large preference regions. When p is set to a
small value, the corresponding subproblems have preference
regions with extremely imbalanced sizes. The boundary sub-
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problem’s preference region is much larger than that of the
middle subproblem (as shown in Figure 2). Such an imbal-
ance leads to severe mismatches in MOEA/D-GR.

To fill this gap, we propose a generalized Lp (GLp) scalar-
ization for the subproblem definition. The GLp-based sub-
problems can have uniform preference regions, no matter
what the value of p (p ≥ 1) is set to. We apply the GLp

scalarization to MOEA/D-GR and term the new algorithm
as MOEA/D-GGR. The effectiveness of MOEA/D-GGR is
validated with different p-values on various continuous and
combinatorial MOPs. The results indicate that our method
can avoid mismatches using the scalarization of any norm
(i.e., p can be 1, 2 . . . ,∞), even in dealing with MOPs with
non-convex or other complex Pareto fronts. Our method sig-
nificantly expands the applicability of MOEA/D.

Background
Basic Concepts
Definition 1. For two objective vectors u = (u1, . . . , um)⊺

and v = (v1, . . . , vm)⊺, u is said to dominate v, if ui ≤ vi
for all i ∈ {1, . . . ,m} and uj < vj for at least one j ∈
{1, . . . ,m}.
Definition 2. x∗ is called the Pareto optimal solution, if
there is no x ∈ Ω such that f(x) dominates f(x∗). Corre-
spondingly, f(x∗) is called the non-dominated vector.
Definition 3. The set of all Pareto optimal solutions is called
the Pareto set (denoted as PS), and its image in the objec-
tive space is called the Pareto front (denoted as PF ).
Definition 4. The ideal point zide = (zide1 , . . . , zidem )⊺ is
defined as zidei = min{fi(x)|x ∈ Ω}, for i = 1, . . . ,m.
Definition 5. The utopian point zuto = (zuto1 , . . . , zutom )⊺

is defined as zutoi = zidei − εi, for i = 1, . . . ,m, where εi >
0 is a relatively small computationally significant scalar.

Lp Scalarization
The Lp scalarization defines the single-objective optimiza-
tion subproblem as

glp(x|w, z∗) =

(
m∑
i=1

(wi|fi(x)− z∗i |)p
) 1

p

, (2)

where w = (w1, . . . , wm)⊺ is a weight vector that satisfies
wi ≥ 0 for each i ∈ {1, . . . ,m} and

∑m
i=1 wi = 1. The ref-

erence vector z∗ = (z∗1 , . . . , z
∗
m)⊺ is usually set to zide. By

using a set of uniformly distributed weight vectors {wj}Nj=1
in Eq. (2), N single-objective subproblems can be achieved.

Let z∗ = zide and p = 1, Eq. (2) can be simplified as

gws(x|w, z∗) =
m∑
i=1

wi(fi(x)− z∗i ). (3)

Eq. (3) is also known as the WS method. When p → ∞, Eq.
(2) can be written as

gtch(x|w, z∗) = max
i∈{1,...,m}

wi(fi(x)− z∗i ). (4)

Eq. (4) is also known as the TCH method. For any Pareto
optimal solution x∗, there exists a weight vector such that

x∗ is the optimal solution of the corresponding TCH-based
subproblem (Miettinen 2012). For the subproblem defined
by Eq. (4) with a weight vector wj , we refer λj =
( 1

wj
1

, . . . , 1

wj
i

)⊺ to as its direction vector. The intersection be-

tween λj and the PF is the optimal objective vector of this
subproblem (Qi et al. 2014).

MOEA/D Framework
MOEA/D employs N uniformly distributed weight vec-
tors {wj}Nj=1 to generate N subproblems. MOEA/D cal-
culates the Euclidean distance between every two subprob-
lems’ weight vectors and uses these distances to define the
mating and replacement neighborhoods for each subprob-
lem. MOEA/D maintains a population with N solutions
x1, . . . ,xN , where xj is associated with the j-th subprob-
lem for j = 1, . . . , N . The mating or replacement neighbor-
hood of xj (denoted as Bj

m or Bj
r ) consists of the solutions

of the j-th subproblem’s the Tm or Tr closest neighbors. At
each iteration, MOEA/D conducts operations with respect to
the j-th subproblem for each j ∈ {1, . . . , N} as follows:

a) Conduct reproduction operators on solutions randomly
selected from Bj

m to generate a new solution xnew.
b) For each solution xk of Bj

r , replace xk by xnew if xnew

is better than it.

GR
In MOEA/D, the new solution is only allowed to update
the solutions of the neighboring subproblems. As shown in
Figure 1, the new solution of the 4-th subproblem is only
allowed to update the 4-th subproblem’s three neighboring
subproblems’ solutions (i.e., solutions of the 3-rd to the
5-th subproblems). However, this replacement may cause
mismatches between subproblems and solutions, thereby
severely hindering the algorithm’s performance. For exam-
ple, the new solution in Figure 1 cannot benefit the neighbors
of the 4-th subproblem but can facilitate the convergence of
the 7-th and 8-th subproblems.
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current objective vector of 
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new objective vector generated 
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Figure 1: A case of mismatch in MOEA/D.

GR globally selects suitable updating subproblems for
each new solution. For the new solution xnew, GR first lo-
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cates the most appropriate subproblem via

j = argmin
k∈{1,...,N}

{gtch(xnew|wk, z∗)}. (5)

Thereafter, the solutions of subproblems within the neigh-
borhood of the j-th subproblem are assigned to xnew for up-
dating. Since MOEA/D-GR utilizes the new solution’s sub-
problem function values to determine its most appropriate
subproblem, the choice of the scalarization method that de-
fines the subproblem function is critical.

Generalized Lp Scalarization
Motivation
According to (Ma et al. 2018), the preference region of the
j-th subproblem can be described as

Υj =

{
f(x)|x ∈ Ω, argmin

k∈{1,...,N}
{g(x|wk, z∗)} = j

}
. (6)

The preference regions of the Lp-based subproblems are il-
lustrated in Figure 2. When p = 1, only the 1-st and 7-th sub-
problems have the preference regions and the other subprob-
lems show no preference region. When p = 2, all the sub-
problems have preference regions, but some subproblems’
direction vectors (e.g., λ2,λ3,λ5,λ6) do not pass through
their corresponding regions.
Definition 6. A subproblem is called boundary subprob-
lem if w has at least one minimal entry. A subproblem is
called extreme boundary subproblem if w has (m − 1)
minimal entries.
Theorem 1. For L1-based subproblems, only the extreme
boundary subproblems have preference regions.

Proof. Without loss of generality, we assume z∗i = 0, fi ∈
R≥0 and wi ∈ R≥0 for i = 1, . . . ,m. The subproblem of
a given preference objective vector f can be determined by
solving the following linear programming problem

minimize
w

w⊺f ,

subject to
{
Aw = b,

wi ≥ 0 for i = 1, . . . ,m,

(7)

where A = [1 · · · 1]1×m and b = 1. The optimal solution to
this problem is one of the basic solutions. Denote Bk as k-th
column of A. Since B−1

k b = 1 for k = 1, . . . ,m, then the
basic solution k to this problem is

wbask
i =

{
1, i = k,

0, i ̸= k.
(8)

Eq. (8) represents that the subproblem of a given preference
objective vector f is always one of the extreme boundary
subproblems.

Theorem 2. The direction vectors of Lp-based (1 ≤ p <
∞) subproblems are not guaranteed to pass through the
corresponding preference regions except direction vector
(m, . . . ,m)⊺. The direction vectors of L∞-based subprob-
lems all pass through the corresponding preference regions.

Proof. We assume z∗i = 0, fi ∈ R≥0 and wi ∈ R≥0 for
i = 1, . . . ,m.

∑m
i=1 wi = 1 is substituted into Eq. (2) and

then we have

g′(w|f , z∗)=

(
m−1∑
i=1

(wifi)
p+

(
1−

m−1∑
i=1

wi

)p

fp
m

) 1
p

. (9)

The first-order partial derivative of Eq. (9) with respect to
wk is

∂g′(w|f , z∗)
∂wk

= σ1 · σ2, (10)

where

σ1 =
1

p

(
m−1∑
i=1

(wifi)
p +

(
1−

m−1∑
i=1

wi

)p

fp
m

) 1
p−1

,

σ2 = p

wp−1
k fp

k −

(
1−

m−1∑
i=1

wi

)p−1

fp
m

 .

(11)

∂g′(w|f ,z∗)
∂wk

= 0 if and only if σ1 = 0 or σ2 = 0. First,
let σ1 = 0, we can get wifi = 0 for i = 1, . . . ,m. Since
wi ≥ 0 and fi ≥ 0, wi or fi must be 0. σ2 in this case must
be 0. Secondly, let σ2 = 0, we can obtain

wp−1
k fp

k =

(
1−

m−1∑
i=1

wi

)p−1

fp
m. (12)

According to Eq. (12), the solution satisfies(
wk

wi

)p−1

=

(
fi
fk

)p

, i, k ∈ {1, . . . ,m}. (13)

Then the solution can be written as

wi =

(
1

αfi

) p
p−1

, for i = 1, . . . ,m, (14)

where α ≥ 0 is a constant that ensure
∑m

i=1 wi = 1. There
exists A ∈ Rm×m and b ∈ Rm which are

A =


1 0 · · · · · · 0
0 1 0
...

. . .
...

0 1 0
−1 · · · · · · −1 0

 ,

b = (0, . . . , 0, 1)⊺,

(15)

such that
glp(Aw + b|f , z∗) = g′(w|f , z∗). (16)

Since glp(w|f , z∗) is a norm as well as a convex function,
Eq. (9) is a convex function. Then, Eq. (14) is a global min-
imal solution.

Eq. (14) can be rewritten as 1
wi

= (αfi)
p

p−1 for i =
1, . . . ,m. If we have infinitely sampled weight vectors, each
subproblem’s preference region is a line. When p → ∞,
1
wi

= αfi. The corresponding subproblem’s direction vec-
tor passes through its preference region. When p takes
a value from (1,∞), only direction vector (m, . . . ,m)⊺

passes through its preference region while other direction
vectors cannot pass through their corresponding preference
regions.
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Figure 2: Preference regions of Lp-based subproblems with z∗ = (0, 0)⊺ and {f = (f1, f2)
⊺|1 ≤ ∥f∥2 ≤ 2}.
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Figure 3: Preference regions of GLp-based subproblems with z∗ = (0, 0)⊺ and {f = (f1, f2)
⊺|1 ≤ ∥f∥2 ≤ 2}.

Theorems 1 and 2 demonstrate that the Lp scalarization
with p ∈ [1,∞) can cause the performance deterioration of
MOEA/D-GR. As shown in Figure 4, many objective vec-
tors obtained by MOEA/D-GR (L1) are far away from the
PF . Theorem 1 indicates that MOEA/D-GR (L1) always
selects one of the boundary subproblems for a new solution.
As a result, the other subproblems cannot be selected for up-
dating. Figure 4 also shows that MOEA/D-GR (L∞) has a
better population uniformity than MOEA/D-GR (L2). Ac-
cording to Theorem 2, the Lp scalarization with p ∈ [1,∞)
causes mismatches in MOEA/D-GR and makes MOEA/D-
GR fail to achieve a good population uniformity.

The significance of the above analysis is by no means lim-
ited to explaining the mismatches in MOEA/D-GR. As ar-
gued in (Hao, Liu, and Wang 2017), some mismatches are
incurred when MOEA/D-GR (L∞) adopts zuto instead of
zide as the reference vector. The reasons can be inferred us-
ing Theorem 2 as well. If the boundary subproblems ex-
ceed the feasible objective space, boundary subproblems
are never selected for updating in MOEA/D-GR. Moreover,
other newly proposed scalarization methods (Jiang et al.
2018) can also use this analysis of the preference regions
to validate if they can deal with mismatches well.

Methodology

The idea of the GLp scalarization is to modify the Lp scalar-
ization such that any direction vector of a subproblem can
pass through its corresponding preference region. The GLp

scalarization is formulated as

gglp(x|w, z∗)=

(
m∑
i=1

(wi(fi(x)− z∗i ))
p

) 1
p

· h(w), (17)

where h(w) enables the GLp scalarization to satisfy the
requirement. Note that h(w) only changes the scale of
glp(x|w, z∗) among different w. h(w) is a constant for a
particular w, and thus the contour shape remains the same.
Moreover, the computational effort is low since h(w) can be
pre-calculated for each subproblem.

We assume z∗i = 0, fi ∈ R≥0 and wi ∈ R≥0 for i =
1, . . . ,m, the first-order partial derivative of gglp(w|f , z∗)
with respect to wk can be calculated as

∂gglp(w|f , z∗)
∂wk

=

(
m∑
i=1

(wifi)
p

) 1
p

wp−1
k fp

kh(w)+

(
m∑
i=1

(wifi)
p

) 1
p
∂h(w)

∂wk
.

(18)

Let wi =
1

αfi
for i = 1, . . . ,m such that ∂gglp(w|f ,z∗)

∂wk
= 0,

we can obtain
∂h(w)

∂wk
= − 1

mwk
h(w). (19)

According to Eq. (19), h(w) can be

h(w) = exp

(
− 1

m
ln

m∏
i=1

wi

)
=

(
m∏
i=1

wi

)− 1
m

. (20)
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Theorem 3. The direction vectors of GLp-based (p ≥ 1)
subproblems all pass through the corresponding preference
regions.

Proof. We assume z∗i = 0, fi ∈ R≥0 and wi ∈ R≥0 for
i = 1, . . . ,m. Let wi =

1
αfi

+ vit for i = 1, . . . ,m where v
is any vector and t ≥ 0, we have

gglp(w|f , z∗)=g′(t)=

(
m∑
i=1

(
1

α
+vifit

)p
) 1

p

·h′(t), (21)

where

h′(t) = exp

(
− 1

m

m∑
i=1

ln (
1

αfi
+ vit)

)
. (22)

The first-order derivative of Eq. (21) is

∂g′(t)

∂t
= σ3(σ4 − σ5), (23)

where

σ3 = h′(t)

(
m∑
i=1

(
1

α
+ vifit

)p
) 1

p

,

σ4 =
m∑
i=1

(
1

α
+ vifit

)p−1

vifi,

σ5 =
1

m

m∑
i=1

(
1

α
+ vifit

)p m∑
i=1

vi
1

αfi
+ vit

.

(24)

First, we consider the sign of σ4 − σ5. Since vi =
1
t (wi −

1
αfi

), we have

σ4 =

m∑
i=1

viw
p−1
i fp

i ,

σ5 =
m∑
i=1

wi

m

m∑
j=1

vj
wj

wp−1
i fp

i ,

vi−

wi

m

m∑
j=1

vj
wj

=
wi

t

1

m

m∑
j=1

1

αfjwj
− 1

αfiwi

 .

(25)

Then

σ4−σ5=
1

αt

m∑
i=1

(wifi)
p

 1

m

m∑
j=1

1

fjwj
− 1

fiwi


=

1

αt

(
1

m

m∑
i=1

(wifi)
p

m∑
i=1

1

wifi
−

m∑
i=1

(wifi)
p 1

wifi

)
.

(26)

We can assume w1f1≥ . . .≥wmfm, w̃1f̃1 ≤ . . . ≤ w̃mf̃m
and wifi = w̃m−i+1f̃m−i+1 for i = 1, . . . ,m. According to

rearrangement inequality and Tchebycheff’s sum inequality,
the following inequality holds

σ4 − σ5 ≥ 1

αt

(
1

m

m∑
i=1

(wifi)
p

m∑
i=1

1

wifi
−

m∑
i=1

(wifi)
p 1

w̃if̃i

)

≥ 1

αt

(
1

m

m∑
i=1

(wifi)
p

m∑
i=1

1

wifi
−

1

m

m∑
i=1

(wifi)
p

m∑
i=1

1

w̃if̃i

)
= 0.

(27)

Since 1
α + vifit = wifi ≥ 0, σ3 ≥ 0. Therefore, Eq. (23)

≥ 0 which represents that gglp(w|f , z∗) is unimodal. Let
σ3 = 0, we can get wifi =

1
α + vifit = 0 for i = 1, . . . ,m.

In this case, σ4 = 0 and σ5 = 0. σ4 − σ5 = 0 if and only if
wifi = wjfj , i, j ∈ {1, . . . ,m}. Then the global minimal
solution is wi =

1
αfi

for i = 1, . . . ,m.

The preference regions of the GLp-based subproblems are
illustrated in Figure 3. In the 2-objective case, the prefer-
ence regions are almost the same regardless of how p-value
varies. But the preference region sizes of boundary subprob-
lems are quite small. To cope with this problem, MOEA/D-
GGR1 is proposed. The difference between MOEA/D-GGR
and MOEA/D-GR is the scalarization method and the re-
placement neighborhood. After determining the replacement
neighborhood as MOEA/D-GR does, each boundary sub-
problem is added to the neighborhood of the closest non-
boundary subproblem in MOEA/D-GGR. This modification
makes each boundary subproblem’s solution have a higher
updating probability without degrading the preference re-
gions of other subproblems.

Experimental Studies
Experimental Setup
Test Instances. We use ZDT1-ZDT4 (Zitzler, Deb, and
Thiele 2000), DTLZ1, DTLZ3 and DTLZ5 (Deb et al.
2005), the multi-objective knapsack problem (MOKP) (Zit-
zler and Thiele 1999), and the multi-objective traveling
salesman problem (MOTSP) (Corne and Knowles 2007) to
verify the algorithm performance. We set the decision vec-
tor dimension to 30, 30, 30 and 10 for ZDT1-ZDT4 re-
spectively, and to (m + 4) for each DTLZ instance. The
MOKP instances are randomly generated with 250 items.
The MOTSP instances are randomly generated with 60 ver-
texes. Each solution is encoded by real numbers for the ZDT
and DTLZ instances, by binary numbers for MOKP, and by
a permutation for MOTSP.

General Algorithm Settings. MOEA/D and MOEA/D-
GR are compared with MOEA/D-GGR. All the algorithms
are implemented on the PlatEMO platform (Tian et al.
2017). The detailed parameter settings are as follows:

1https://github.com/EricZheng1024/MOEA-D-GGR
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Problem m IH

p = 1 p = 2 p → ∞

MOEA/D
MOEA/D MOEA/D

MOEA/D
MOEA/D MOEA/D

MOEA/D
MOEA/D MOEA/D

-GR -GGR -GR -GGR -GR -GGR

ZDT1 2
mean 0.8614(2)+ 0.0097(3)+ 0.8657(1) 0.871(1)- 0.8398(3)+ 0.869(2) 0.8655(3)+ 0.8699(1)= 0.8698(2)
std. 7.4e-04 2.3e-02 4.0e-03 2.0e-04 5.9e-03 2.1e-03 2.0e-03 2.2e-03 1.9e-03

ZDT2 2 mean 0.21(2)+ 0(3)+ 0.4436(1) 0.5174(1)= 0.4507(3)+ 0.5108(2) 0.5327(3)+ 0.5343(2)= 0.5348(1)
std. 7.4e-12 0.0e+00 4.0e-02 2.6e-03 4.4e-02 1.4e-02 1.6e-03 6.7e-03 6.2e-03

ZDT3 2 mean 0.4873(2)+ 0.03427(3)+ 0.7154(1) 0.6826(2)+ 0.6824(3)+ 0.719(1) 0.7173(3)+ 0.7215(2)+ 0.7217(1)
std. 9.6e-02 3.7e-02 2.2e-03 3.7e-02 2.6e-02 1.6e-03 1.2e-02 3.7e-03 3.8e-03

ZDT4 2
mean 0.845(2)= 0(3)+ 0.8487(1) 0.8599(2)= 0.8051(3)+ 0.8599(1) 0.8431(3)+ 0.8566(2)= 0.857(1)
std. 1.2e-02 0.0e+00 8.8e-03 5.2e-03 4.8e-02 4.8e-03 1.4e-02 8.5e-03 9.4e-03

DTLZ1

2
mean 0.2099(2)+ 0(3)+ 0.7027(1) 0.7025(2)+ 0.6875(3)+ 0.7041(1) 0.7045(3)+ 0.7049(2)= 0.7049(1)
std. 1.3e-04 0.0e+00 1.6e-03 2.9e-04 1.3e-04 7.2e-05 3.8e-04 1.6e-04 1.7e-04

3 mean 0.4923(2)+ 0.2171(3)+ 1.033(1) 1.115(1)- 1.078(3)+ 1.113(2) 1.101(1)- 1.1(2)= 1.1(3)
std. 7.6e-02 1.8e-01 8.3e-03 2.2e-04 7.9e-04 2.1e-04 6.3e-04 2.9e-04 2.0e-04

5
mean 0.8878(2)+ 0.7822(3)+ 1.318(1) 1.511(3)+ 1.519(1)- 1.516(2) 1.511(3)+ 1.513(1)= 1.512(2)
std. 1.2e-01 3.8e-01 6.3e-02 7.1e-04 4.0e-03 2.2e-03 9.9e-04 1.3e-03 1.6e-03

DTLZ3

2
mean 0.2099(2)+ 0.00818(3)+ 0.4138(1) 0.2099(3)+ 0.4164(2)+ 0.4171(1) 0.4197(3)+ 0.42(1)= 0.42(2)
std. 2.1e-04 2.1e-02 1.8e-02 7.5e-05 1.1e-02 1.2e-04 3.4e-04 1.1e-04 2.1e-04

3 mean 0.3307(2)+ 0.1788(3)+ 0.6244(1) 0.3317(3)+ 0.6016(2)+ 0.6508(1) 0.7344(1)- 0.733(2)= 0.7329(3)
std. 3.9e-04 1.4e-01 5.6e-03 4.0e-03 8.8e-03 5.2e-03 1.3e-03 7.3e-04 7.9e-04

5
mean 0.6102(2)+ 0.5385(3)+ 0.6111(1) 0.6208(3)+ 0.6493(2)+ 0.8244(1) 1.146(3)+ 1.149(1)= 1.148(2)
std. 1.1e-03 4.6e-02 8.9e-04 1.7e-02 7.3e-02 6.6e-02 1.1e-03 3.0e-03 2.2e-03

DTLZ5
3

mean 0.131(3)+ 0.161(2)+ 0.232(1) 0.131(3)+ 0.2246(2)+ 0.2331(1) 0.2644(1)- 0.2556(3)+ 0.2559(2)
std. 3.2e-10 9.4e-03 9.8e-04 6.6e-06 1.5e-03 1.6e-03 4.1e-06 1.4e-05 5.1e-05

5
mean 0.1464(3)+ 0.1524(1)- 0.1481(2) 0.1464(3)+ 0.1475(2)+ 0.1504(1) 0.1925(1)- 0.15(3)+ 0.1894(2)
std. 5.0e-04 4.0e-03 1.6e-03 4.1e-04 2.5e-03 1.6e-03 5.1e-04 1.0e-03 4.2e-04

MOKP
2

mean 0.8719(2)= 0.2195(3)+ 0.8748(1) 0.8731(1)= 0.8227(3)+ 0.8691(2) 0.8384(3)+ 0.8503(1)= 0.8495(2)
std. 1.1e-02 9.3e-02 8.8e-03 8.8e-03 1.4e-02 9.5e-03 1.3e-02 1.2e-02 1.2e-02

3
mean 0.6274(2)+ 0.1097(3)+ 0.6561(1) 0.6588(2)+ 0.636(3)+ 0.6657(1) 0.6239(3)+ 0.636(2)= 0.6366(1)
std. 1.1e-02 2.2e-02 6.1e-03 7.2e-03 7.1e-03 6.5e-03 7.1e-03 5.6e-03 5.4e-03

MOTSP
2

mean 0.9733(2)+ 0.03373(3)+ 0.9852(1) 0.9815(2)= 0.9491(3)+ 0.9861(1) 0.9392(3)+ 0.9679(2)= 0.9711(1)
std. 1.5e-02 4.7e-02 1.0e-02 1.1e-02 1.5e-02 9.5e-03 1.2e-02 1.2e-02 1.4e-02

3
mean 0.9253(2)= 0.2679(3)+ 0.929(1) 0.9016(2)+ 0.8854(3)+ 0.9131(1) 0.8174(3)+ 0.8503(1)= 0.8452(2)
std. 1.3e-02 3.8e-02 1.1e-02 1.4e-02 1.2e-02 1.1e-02 1.5e-02 1.6e-02 1.7e-02

Total +/-/= 0/13/3 1/15/0 \ 2/10/4 1/15/0 \ 4/12/0 1/3/12 \

Table 1: Mean and standard deviation of IH metric values. The rank of each algorithm on each instance is provided after the
mean of the IH metric value. +, - or = denotes that the performance of the corresponding algorithm is statistically better than,
worse than or similar to that of MOEA/D-GGR based on Wilcoxon’s rank sum test at 0.05 significant level.

• The population size N : 100 (m = 2) or 190 (m = 3).
• The maximal number of function evaluations: 25000 for

ZDT1-ZDT4, 100000 for DTLZ1, DTLZ3 and DTLZ5,
200000 for 2-objective MOKP and MOTSP, and 400000
for 3-objective MOKP and MOTSP.

• The number of independent runs: 30 for each instance.
• The neighborhood size: Tm = 0.1N and Tr = ⌈0.05N⌉.
• Reproduction operators: For real number coding, the

simulated binary crossover (SBX) and polynomial mu-
tation (PM) are used (Purshouse and Fleming 2007). The
SBX control parameters pc, ηc and pe are set to 1, 20 and
0, respectively. The PM control parameters pm and ηm
are set to 1/n and 20, where n is the number of deci-
sion variables. For binary coding, the uniform crossover
and bit-flip mutation are used (Syswerda 1989). The
crossover rate is 1; the mutation rate is 2/n for a bit. For

permutation coding, the order-based crossover and sim-
ple inversion mutation are used (Larranaga et al. 1999).
The crossover rate is 1 and the mutation rate is 0.1.

Performance Metric. The hypervolume indicator (IH ) is
used to assess the performance of each algorithm (Zitzler
and Thiele 1999). Let P be an approximate solution set and
zh = (zh1 , . . . , z

h
m)⊺ be a reference objective vector. The IH

metric value is computed by

IH(P,zh)=vol

(⋃
x∈P

[f1(x),z
h
1 ]×. . .×[fm(x),zhm]

)
, (28)

where vol(·) is the Lebesgue measure. A larger IH metric
value indicates a better algorithm performance. Before cal-
culate the IH metric value, we normalize {fi(x)|x ∈ P} for
i = 1, . . . ,m with the range from min{fi(x)|x ∈ PS} to
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Figure 4: Plots of the objective vectors having the median
IH metric value obtained among each algorithm’s 30 runs
on 2-objective DTLZ3.

max{fi(x)|x ∈ PS}. Then set zhi = 1.1 for i = 1, . . . ,m.
The PF s are unknown on the MOKP and MOTSP in-
stances. Each of them is approximated by the set of all non-
dominated solutions obtained by all algorithms in all runs.

Experimental Results
The IH metric values obtained by the three algorithms on 16
test instances are given in Tables 1. Our theoretical analy-
sis holds on the problem with many-objective (e.g., DTLZ1,
DTLZ3 and DTLZ5 with 5 objectives), discrete objective
space (e.g., MOKP and MOTSP), convex PF (e.g., ZDT1
and ZDT4), concave PF (e.g., ZDT2 and DTLZ3), linear
PF (e.g., DTLZ1), discontinuous PF (e.g., ZDT3).

When p → ∞, MOEA/D-GGR and MOEA/D-GR have
similar performance; MOEA/D is slightly worse than the
two algorithms. When p = 2, MOEA/D-GGR is better
than the other competitors on most test problems. When
p = 1, MOEA/D-GGR significantly outperforms MOEA/D
and MOEA/D-GR on all test problems except 5-objective
DTLZ5. This instance has a highly degenerate PF . The di-
rection vectors have few intersections with such a PF , mak-
ing our mismatch avoidance strategy ineffective.

Figure 4 plots the obtained final objective vectors which
have the median IH metric values from each algorithm’s 30
runs on 2-objective DTLZ3. When p = 1, MOEA/D-GGR
is the only algorithm that overcomes mismatches, which
achieves a satisfactory approximation to the PF ; MOEA/D
and MOEA/D-GR fail to approximate the PF . When p = 2,
MOEA/D still can only obtain the two boundary objec-
tive vectors; the objective vectors obtained by MOEA/D-GR
cover the middle part but miss some boundary parts of the
PF ; MOEA/D-GGR yields the best approximation of the
PF compared to the other two algorithms. When p → ∞,
the three algorithms have similar good performance.
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Figure 5: Plots of the objective vectors having the median
IH metric value obtained by MOEA/D-GGR (p = 1 and
p = 2) using Tr = 1 on 2-objective DTLZ3.

0 5 10

10
4

0

0.1

0.2

0.3

0.4

0 5 10

10
4

0

0.1

0.2

0.3

0.4

Figure 6: Evolution of the mean IH metric values achieved
by MOEA/D-GGR using two different Tr settings on 2-
objective DTLZ3.

It is worth mentioning that the approximate set obtained
by MOEA/D-GGR using GL1 or GL2 misses a small central
part of the PF . It is because the diversity of MOEA/D-GGR
is affected by the setting of Tr when GLp with 1 ≤ p < ∞
is used. When a large Tr is adopted, MOEA/D-GGR using
GLp with 1 ≤ p < ∞ may miss some non-dominated ob-
jective vectors. In other words, its diversity can be improved
by employing a small Tr. To validate it, we set Tr to 1 for
MOEA/D-GGR with GL1 and GL2 and further test the two
algorithms on the 2-objective DTLZ3. As shown in Figure 5,
the obtained approximate set has much better diversity in
both cases. But Figure 6 also indicates that a small Tr may
discourage convergence. As reported in (Wang et al. 2016), a
better approach is to adaptively change Tr during the search.

Overall, MOEA/D-GGR is less affected by the PF shape
than MOEA/D and MOEA/D-GR.

Conclusion
In this paper, we have demonstrated that MOEA/D-GR still
suffers from mismatches when the L∞ scalarization is re-
placed by another Lp scalarization with p ∈ [1,∞). Our
analysis reveals that this can be attributed to Lp-based (1 ≤
p < ∞) subproblems having inconsistently large preference
regions. When p is set to a small value, some middle sub-
problems have very small preference regions so that their
direction vectors cannot pass through their corresponding
preference regions. To fill this gap, we have proposed a new
scalarization family called the GLp scalarization. The GLp-
based subproblem’s direction vector is guaranteed to pass
through its corresponding preference region, which implies
MOEA/D-GR can always avoid mismatches when using the
GLp scalarization for any p ≥ 1. We have conducted vari-
ous experimental studies to validate the effectiveness of the
GLp scalarization.
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