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Abstract

Bilevel optimization has been developed for many machine
learning tasks with large-scale and high-dimensional data.
This paper considers a constrained bilevel optimization prob-
lem, where the lower-level optimization problem is convex
with equality and inequality constraints and the upper-level
optimization problem is non-convex. The overall objective
function is non-convex and non-differentiable. To solve the
problem, we develop a gradient-based approach, called gra-
dient approximation method, which determines the descent
direction by computing several representative gradients of the
objective function inside a neighborhood of the current esti-
mate. We show that the algorithm asymptotically converges to
the set of Clarke stationary points, and demonstrate the effi-
cacy of the algorithm by the experiments on hyperparameter
optimization and meta-learning.

1 Introduction
A general constrained bilevel optimization problem is formu-
lated as follows:

min
x∈Rdx

Φ(x) = f (x, y∗(x))

s.t. r (x, y∗(x)) ≤ 0; s (x, y∗(x)) = 0; (1)
y∗(x) = argmin

y∈Rdy

{g(x, y) : p (x, y) ≤ 0; q (x, y) = 0}.

The bilevel optimization minimizes the overall objective func-
tion Φ(x) with respect to (w.r.t.) x, where y∗(x) is the optimal
solution of the lower-level optimization problem and para-
metric in the upper-level decision variable x. In this paper,
we assume that y∗(x) is unique for any x ∈ Rdx .

Existing methods to solve problem (1) can be categorized
into two classes: single-level reduction methods (Bard and
Falk 1982; Bard and Moore 1990; Shi, Lu, and Zhang 2005)
and descent methods (Savard and Gauvin 1994; Dempe 1998).
Single-level reduction methods use the KKT conditions to re-
place the lower-level optimization problem when it is convex.
Then, they reformulate the bilevel optimization problem (1)
as a single-level constrained optimization problem. Descent
methods aim to find descent directions in which the new point
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is feasible and meanwhile reduces the objective function. Pa-
per (Savard and Gauvin 1994) computes a descent direction
of the objective function by solving a quadratic program.
Paper (Dempe 1998) applies the gradient of the objective
function computed in (Kolstad and Lasdon 1990; Fiacco and
McCormick 1970) to compute a generalized Clarke Jacobian,
and uses a bundle method (Schramm and Zowe 1992) for
the optimization. When applied to machine learning, bilevel
optimization faces additional challenges as the dimensions
of decision variables in the upper-level and lower-level prob-
lems are high (Liu et al. 2021a).

Gradient-based methods have been shown to be effective
in handling large-scale and high-dimensional data in a variety
of machine learning tasks (Bottou and Bousquet 2008). They
have been extended to solve the bilevel optimization prob-
lem where there is no constraint in the lower-level optimiza-
tion. The methods can be categorized into the approximate
implicit differentiation (AID) based approaches (Pedregosa
2016; Gould et al. 2016; Ghadimi and Wang 2018; Grazzi
et al. 2020) and the iterative differentiation (ITD) approaches
(Grazzi et al. 2020; Franceschi et al. 2017, 2018; Shaban et al.
2019; Ji, Yang, and Liang 2021). The AID based approaches
evaluate the gradients of y∗(x) and Φ(x) based on implicit
differentiation (Bengio 2000). The ITD based approaches
treat the iterative optimization steps in the lower-level opti-
mization as a dynamical system, impose y∗(x) as its station-
ary point, and compute ∇y∗(x) at each iterative step. The
gradient-based algorithms have been applied to solve several
machine learning tasks, including meta-learning (Franceschi
et al. 2018; Rajeswaran et al. 2019; Ji et al. 2020), hyperpa-
rameter optimization (Pedregosa 2016; Franceschi et al. 2017,
2018), reinforcement learning (Hong et al. 2020; Konda and
Tsitsiklis 2000), and network architecture search (Liu, Si-
monyan, and Yang 2018). The above methods are limited to
unconstrained bilevel optimization and require the objective
function to be differentiable. They cannot be directly applied
when constraints are present in the lower-level optimization,
as the objective function is non-differentiable.

Contributions. In this paper, we consider a special case of
problem (1) where the upper-level constraints r and s are not
included. In general, the objective function Φ is nonconvex
and non-differentiable, even if the upper-level and lower-level
problems are convex and functions f , g, p, q are differentiable
(Hansen, Jaumard, and Savard 1992; Liu et al. 2021a). Most
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methods for this bilevel optimization problem are highly com-
plicated and computationally expensive, especially when the
dimension of the problem is large (Liu et al. 2021a; Dempe
and Franke 2016). Addressing the challenge, we determine
the descent direction by computing several gradients which
can represent the gradients of the objective function of all
points in a ball, and develop a computationally efficient algo-
rithm with convergence guarantee for the constrained bilevel
optimization problem. The overall contributions are summa-
rized as follows. (i) Firstly, we derive the conditions under
which the lower-level optimal solution y∗(x) is continuously
differentiable or directional differentiable. In addition, we
provide analytical expressions for the gradient of y∗(x) when
it is continuously differentiable and the directional derivative
of y∗(x) when it is directional differentiable. (ii) Secondly,
we propose the gradient approximation method, which ap-
plies the Clarke subdifferential approximation of the non-
convex and non-differentiable objective function Φ to the line
search method. In particular, a set of derivatives is used to
approximate the gradients or directional derivatives on all
points in a neighborhood of the current estimate. Then, the
Clarke subdifferential is approximated by the derivatives, and
the approximate Clarke subdifferential is employed as the
descent direction for line search. (iii) It is shown that, the
Clarke subdifferential approximation errors are small, the
line search is always feasible, and the algorithm asymptoti-
cally converges to the set of Clarke stationary points. (iv) We
empirically verify the efficacy of the proposed algorithm by
conducting experiments on hyperparameter optimization and
meta-learning.

Related Works. Differentiation of the optimal solution
of a constrained optimization problem has been studied for
a long time. Sensitivity analysis of constrained optimization
(Fiacco 1983; Fiacco and Ishizuka 1990; Fiacco and Mc-
Cormick 1970) shows the optimal solution y∗(x) of a convex
optimization problem is directional differentiable but may not
differentiable at all points. It implies that the objective func-
tion Φ(x) in problem (1) may not be differentiable. Based
on the implicit differentiation of the KKT conditions, the
papers also compute ∇y∗(x) when y∗ is differentiable at
x. Optnet (Amos, Xu, and Kolter 2017; Amos and Kolter
2017; Agrawal et al. 2019) applies the gradient computation
to the constrained bilevel optimization, where a deep neural
network is included in the upper-level optimization problem.
In particular, the optimal solution y∗(x) serves as a layer in
the deep neural network and∇y∗(x) is used as the backprop-
agation gradients to optimize the neural network parameters.
However, all the above methods do not explicitly consider the
non-differentiability of y∗(x) and Φ(x), and cannot guaran-
tee convergence. Recently, papers (Liu et al. 2021b; Sow et al.
2022) consider that the lower-level optimization problem has
simple constraints, such that projection onto the constraint
set can be easily computed, and require that the constraint set
is bounded. In this paper, we consider inequality and equality
constraints, which are more general than those in (Liu et al.
2021b; Sow et al. 2022).

Notations. Denote a > b for vectors a, b ∈ Rn, when
ai > bi for all 1 ≤ i ≤ n. Notations a ≥ b, a = b, a ≤ b,
and a < b are defined in an analogous way. Denote the

l2 norm of vectors by ∥ · ∥. The directional derivative of a
function f at x on the direction d with ∥d∥ = 1 is defined
as ∇df(x) ≜ limh→0+

f(x+hd)−f(x)
h . A ball centered at x

with radius ϵ is denoted as B(x, ϵ). The complementary set
of a set S is denoted as SC . The distance between the point x
and the set S is defined as d(x, S) ≜ inf{∥x− a∥ | a ∈ S}.
The convex hull of S is denoted by convS. For set S and
function f , we define the image set f(S) ≜ {f(x) | x ∈ S}.
For a finite positive integer set I and a vector function p,
we denote the subvector function pI ≜ [pk1

, · · · , pkj
, · · · ]⊤

where kj ∈ I .

2 Problem Statement
Consider the constrained bilevel optimization problem:
min
x∈Rdx

Φ(x) = f (x, y∗(x)) (2)

s.t. y∗(x) = argmin
y∈Rdy

{g(x, y) : p (x, y) ≤ 0; q (x, y) = 0},

where f, g : Rdx × Rdy → R; p : Rdx × Rdy → Rm;
q : Rdx × Rdy → Rn. Given x ∈ Rdx , we denote the lower-
level optimization problem in (2) as P (x). The feasible set
of P (x) is defined as K (x) ≜ {y ∈ Rdy : p (x, y) ≤
0, q (x, y) = 0}. Suppose the following assumptions hold.
Assumption 1. The functions f , g, p and q are twice contin-
uously differentiable.
Assumption 2. For all x ∈ Rdx , the function g(x, y) is µ-
strongly-convex w.r.t. y; pj(x, y) is convex w.r.t. y for each j;
qi(x, y) is affine w.r.t. y for each i.

Note that the upper-level objective function f(x, y) and
the overall objective function Φ(x) are non-convex. The
lower-level problem P (x) is convex and its Lagrangian is
L(y, λ, ν, x) ≜ g(x, y) + λ⊤p(x, y) + ν⊤q(x, y), where
(λ, ν) are Lagrange multipliers and λ ≥ 0.
Definition 1. Suppose that the KKT conditions hold at y
for P (x) with the Lagrangian multipliers λ and ν. The set
of active inequality constraints at y for P (x) is defined as:
J(x, y) ≜ {j : 1 ≤ j ≤ m, pj(x, y) = 0}. An inequality
constraint is called inactive if it is not included in J(x, y)
and the set of inactive constraints is denoted as J(x, y)C .
The set of strictly active inequality constraints at y is defined
as: J+(x, y, λ) ≜ {j : j ∈ J (x, y) , λj > 0}. The set of
non-strictly active inequality constraints at y is defined as:
J0(x, y, λ) ≜ J(x, y) \ J+(x, y, λ). Notice that λj ≥ 0 for
j ∈ J(x, y) and λj = 0 for j ∈ J0(x, y, λ).
Definition 2. The Linear Independence Constraint Qual-
ification (LICQ) holds at y for P (x) if the vectors
{∇ypj (x, y) , j ∈ J (x, y) ;∇yqi (x, y) , 1 ≤ i ≤ n} are lin-
early independent.
Assumption 3. Suppose that for all x ∈ Rdx , the solution
y∗(x) exists for P (x), and the LICQ holds at y∗(x) for P (x).

3 Differentiability and Gradient of y∗(x)
In this section, we provide sufficient conditions under which
the lower-level optimal solution y∗(x) is continuously differ-
entiable or directional differentiable. We compute the gradi-
ent of y∗(x) when it is continuously differentiable and the
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directional derivative of y∗(x) when it is directional differen-
tiable. Moreover, we give a necessary condition that y∗(x) is
not differentiable and illustrate it by a numerical example.

In problem (2), if the upper-level objective function f
and the solution of lower-level problem y∗ are continuously
differentiable, so is Φ, and by the gradient computation of
composite functions, we have

∇Φ(x) = ∇xf(x, y
∗(x)) +∇y∗(x)⊤∇yf(x, y

∗(x)). (3)

It is shown in (Domke 2012) that, when p and q are absent,
y∗ and Φ are differentiable under certain assumptions. The
differentiability of y∗ and Φ is used by the AID based ap-
proaches in (Pedregosa 2016; Gould et al. 2016; Ghadimi and
Wang 2018; Grazzi et al. 2020; Domke 2012) to approximate
∇y∗ and minimize Φ by gradient descent. However, it is not
the case as the lower-level problem (2) is constrained.

Theorem 1 states the conditions under which y∗(x) is
directional differentiable.
Theorem 1. Suppose Assumptions 1, 2, 3 hold. The following
properties hold for any x.
(i) The global minimum y∗(x) of P (x) exists and is unique.

The KKT conditions hold at y∗(x) with unique La-
grangian multipliers λ(x) and ν(x).

(ii) The vector function z(x) ≜ [y∗(x)⊤, λ(x)⊤, ν(x)⊤]⊤ is
continuous and locally Lipschitz. The directional deriva-
tive of z(x) on any direction exists.

As shown in part (i) of Theorem 1, y∗(x), λ(x) and ν(x)
are uniquely determined by x. So we simplify the notations
of Definition 1 in the rest of this paper: J(x, y∗(x)) is de-
noted as J(x), J+(x, y∗(x), λ(x)) is denoted as J+(x), and
J0(x, y∗(x), λ(x)) is denoted as J0(x). In part (ii), the com-
putation of the directional derivative of z(x) is given in The-
orem 6 in Appendix C.
Definition 3. Suppose that the KKT conditions hold at y
for P (x) with the Lagrangian multipliers λ and ν. The Strict
Complementarity Slackness Condition (SCSC) holds at y w.r.t.
λ for P (x), if λj > 0 for all j ∈ J(x, y).
Remark 1. The KKT conditions include the Complementar-
ity Slackness Condition (CSC). The SCSC is stronger than
the CSC, which only requires that λj ≥ 0 for all j ∈ J(x, y).

Theorem 2 states the conditions under which y∗(x) is
continuously differentiable and derives∇y∗(x).
Theorem 2. Suppose Assumptions 1, 2, 3 hold. If the SCSC
holds at y∗(x) w.r.t. λ(x), then z(x) is continuously differen-
tiable at x and the gradient is computed as[
∇xy

∗(x)⊤,∇xλ
⊤
J(x)(x),∇xν(x)

⊤
]⊤

= −M−1
+ (x)N+(x)

(4)
and ∇xλJ(x)C (x) = 0, where M+(x) ≜

∇2
yL ∇yp

⊤
J+(x) ∇yq

⊤

∇ypJ+(x) 0 0

∇yq 0 0

 (x, y∗(x), λ(x), ν(x))

is nonsingular and N+(x) ≜

[∇2
xyL⊤,∇xp

⊤
J+(x),∇xq

⊤]⊤(x, y∗(x), λ(x), ν(x)).

Theorem 2 shows that, if z(x) is not continuously differ-
entiable, then the SCSC does not hold at y∗(x) w.r.t. λ(x).
Definition 3 implies that the SCSC holds at y w.r.t. λ for
P (x) if and only if J0(x) = ∅. It concludes that if y∗(x) is
not continuously differentiable at x, J0(x) ̸= ∅, i.e., the non-
differentiability of y∗(x) occurs at points with non-strictly
active constraints. Example 1 illustrates such claim.
Example 1. Consider a bilevel optimization problem
Φ(x) = y∗(x) and the lower-level problem P (x): y∗(x) =
argminy{(y−x2)2 : p1(x, y) = −x−y ≤ 0}, where x, y ∈
R. The analytical solution of z(x) = [y∗(x), λ(x)] is given
by: y∗(x) = x2, λ(x) = 0 when x ∈ (−∞,−1] ∪ [0,+∞);
y∗(x) = −x, λ(x) = −2x(1 + x) when x ∈ [−1, 0]. Corre-
spondingly, when x ∈ (−1, 0), J(x) = {1}, J+(x) = {1},
J0(x) = ∅; when x ∈ (−∞,−1) ∪ (0,+∞), J(x) = ∅,
J+(x) = ∅, J0(x) = ∅; when x ∈ {−1, 0}, J(x) = {1},
J+(x) = ∅, J0(x) = {1}. As shown in Fig. 1, y∗(x) is con-
tinuously differentiable everywhere except when J0(x) ̸= ∅.

Figure 1: Occurrence of non-differentiability.

The computation of the gradient of z(x) in (4) is derived
from the implicit differentiation of the KKT conditions of
problem P (x), which is also used in (Fiacco and Ishizuka
1990; Amos and Kolter 2017; Agrawal et al. 2019). Com-
pared with these papers, Theorem 2 directly determines
∇xλJ(x)C (x) = 0 and excludes λJ(x)C (x) from the com-
putation of the inverse matrix in (4), when z(x) is continu-
ously differentiable. Theorem 6 in Appendix C derives the
directional derivative of z(x) when it is not differentiable.

Consider a special case where the lower-level optimiza-
tion problem P (x) is unconstrained. Since the SCSC is not
needed anymore, the assumptions in Theorem 2 reduce to
that g is twice continuously differentiable and g(x, y) is
µ-strongly-convex w.r.t. y for x ∈ Rdx . By Theorem 2,
the optimal solution y∗(x) is continuously differentiable,
the matrix ∇2

yg(x, y) is non-singular, and the gradient is
computed as∇y∗(x) = −[∇2

yg(x, y)]
−1∇2

xyg(x, y). These
results are well-known and widely used in unconstrained
bilevel optimization analysis and applications (Pedregosa
2016; Franceschi et al. 2017, 2018; Ji, Yang, and Liang 2021).

4 The Gradient Approximation Method
In this section, we develop the gradient approximation
method to efficiently solve problem (2), whose objective func-
tion is non-differentiable and non-convex. First, we define the
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Clarke subdifferential (Section 4.1) and efficiently approxi-
mate the Clarke subdifferential of the objective function Φ(x)
(Section 4.2). Next, we propose the gradient approximation
algorithm, provide its convergence guarantee (Section 4.3),
and present its implementation details (Section 4.4).

4.1 Clarke Subdifferential of Φ
As shown in Section 2 and also shown in (Dempe and Franke
2016; Liu et al. 2021a), the objective function Φ (x) of prob-
lem (2) is usually non-differentiable and non-convex. To deal
with the non-smoothness and non-convexity, we introduce
Clarke subdifferential and Clarke stationary point.

Definition 4 (Clarke subdifferential and Clarke station-
ary point (Clarke 1975)). For a locally Lipschitz func-
tion f : Rn → R, the Clarke subdifferential of f at
x is defined by the convex hull of the limits of gradi-
ents of f on sequences converging to x, i.e., ∂̄f(x) ≜
conv

{
limj→∞∇f

(
yj
)
:
{
yj
}
→ x where f is differen-

tiable at yj for all j ∈ N}. The Clarke ϵ-subdifferential of f
at x is defined by ∂̄ϵf(x) ≜ conv{∂̄f(x′) : x′ ∈ B(x, ϵ)}. A
point x is Clarke stationary for f if 0 ∈ ∂̄f(x).

If y∗ is differentiable at x, we have ∂̄y∗(x) = {∇y∗(x)}
and ∂̄Φ(x) = {∇xf(x, y

∗(x)) +∇y∗(x)⊤∇yf(x, y
∗(x))};

otherwise, ∂̄Φ(x) = {∇xf(x, y
∗(x)) + w⊤∇yf(x, y

∗(x)) :
w ∈ ∂̄y∗(x)}. Take the functions shown in Example 1 and
Fig. 1 as an example, ∂̄ϵΦ(−1) = ∂̄ϵy

∗(−1) = conv{[−2−
2ϵ,−2]∪{−1}} = [−2−2ϵ,−1], and ∂̄ϵΦ(0) = ∂̄ϵy

∗(0) =
conv{[0, 2ϵ] ∪ {−1}} = [−1, 2ϵ].

4.2 Clarke Subdifferential Approximation
Gradient-based methods have been applied to convex and
non-convex optimization problems (Hardt, Recht, and Singer
2016; Nemirovski et al. 2009). The convergence requires that
the objective function is differentiable. If there exist points
where the objective function is not differentiable, the proba-
bility for the algorithms to visit these points is non-zero and
the gradients at these points are not defined (Bagirov et al.
2020). Moreover, oscillation may occur even if the objec-
tive function is differentiable at all visited points (Bagirov,
Karmitsa, and Mäkelä 2014).

To handle the non-differentiability, the gradient sampling
method (Burke, Lewis, and Overton 2005; Kiwiel 2007) uses
gradients in a neighborhood of the current estimate to approx-
imate the Clarke subdifferential and determine the descent
direction. Specifically, the method samples a set of points
inside the neighborhood B(x0, ϵ), select the points where
the objective function is differentiable, and then compute the
convex hull of the gradients on the sampled points.

However, in problem (2), the point sampling is highly com-
putationally expensive. For each sampled point xj , to check
the differentiability of Φ, we need to solve the lower-level
optimization P (xj) to obtain y∗(xj), λ(xj) and ν(xj), and
check the SCSC. Moreover, after the points are sampled, the
gradient on each point is computed by (4). As the dimension
dx increases, the sampling number increases to ensure the
accuracy of the approximation. More specifically, as shown
in (Kiwiel 2007), the algorithm is convergent if the sampling

Figure 2: The SCSC holds on B(x0, ϵ)

Figure 3: Subsets inside B(x0, ϵ)

number is large than dx+1. The above procedure is executed
in each optimization iteration.

Addressing the computational challenge, we approximate
the Clarke ϵ-subdifferential by a small number of gradients,
which can represent the gradients on all points in the neigh-
borhood. The following propositions distinguish two cases:
Φ is continuously differentiable on B(x0, ϵ) (Proposition 1)
and it is not (Proposition 2).
Proposition 1. Suppose Assumptions 1, 2, 3 hold. Consider
x0 ∈ Rdx . There is sufficiently small ϵ > 0 such that, if the
SCSC holds at y∗(x) w.r.t. λ(x) for any x ∈ B(x0, ϵ), then
∇Φ(x0) ∈ ∂̄ϵΦ(x

0) and

|∥∇Φ(x0)∥ − d(0, ∂̄ϵΦ(x
0))| < o(ϵ).

Proposition 1 shows that the gradient∇Φ at a single point
x0 can be used to approximate the Clarke ϵ-subdifferential
∂̄ϵΦ(x

0) and the approximation error is in the order of ϵ. Re-
call that the gradient∇Φ(x0) can be computed by (3) and (4).
Fig. 2 illustrates the approximation on the problem in Exam-
ple 1. The SCSC holds at y∗(x) and Φ(x) is continuously dif-
ferentiable on B(x0, ϵ), then ∂̄ϵΦ(x

0) = [2x0−2ϵ, 2x0+2ϵ]
can be approximated by∇Φ(x0) = 2x0, and the approxima-
tion error is 2ϵ. The approximations of ∂̄ϵΦ(x1) and ∂̄ϵΦ(x

2)
can be done in an analogous way.

Consider Φ(x) is not continuously differentiable at some
points in B(x0, ϵ). Define the set Iϵ(x0) which contains
all j such that there exist x′, x′′ ∈ B(x0, ϵ) with j ∈
J+(x′)C and j ∈ J+(x′′). Define the set Iϵ+(x

0) which con-
tains all j such that j ∈ J+(x) for any x ∈ B(x0, ϵ). If
Iϵ(x0) is not empty, there exists a point x ∈ B(x0, ϵ) such
that the SCSC does not hold at y∗(x). The power set of
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Iϵ(x0) partitions B(x0, ϵ) into a number of subsets, where
Φ(x) and y∗(x) are continuously differentiable in each sub-
set. An illustration on the problem in Example 1 is shown in
Fig. 3. The point x′ = −1 belongs to (x0 − ϵ, x0 + ϵ) and
the SCSC does not hold at y∗(x′). Notice that Iϵ+(x

0) = ∅
and Iϵ(x0) = {1}. Then, Iϵ(x0) = {1} has the power set
{S(1), S(2)}with S(1) = ∅ and S(2) = {1}. Then, B(x0, ϵ) is
partitioned to two subsets: the subset where the constraint p1
is inactive (blue side in the ball) which corresponds to S(1),
and the subset where the constraint p1 is strictly active (red
side in the ball) which corresponds to S(2). Their boundary is
the point x′ where the constraint p1 is non-strictly active. It
can be seen that y∗(x) is continuously differentiable on each
subset and the gradient variations are small inside the subset
when ϵ is small. In contrast, the gradient variations between
two subsets are large. Inspired by Proposition 1, we compute
a representative gradient to approximate∇y∗(x) inside each
subset of B(x0, ϵ).

Now we proceed to generalize the above idea. Recall that
∇Φ(x) is computed by (3) and f is twice continuously dif-
ferentiable. Define

G(x0, ϵ) ≜ {∇xf
(
x0, y∗

(
x0

))
+ wS(x0)⊤

∇yf
(
x0, y∗

(
x0

))
: S ⊆ Iϵ(x0)},

(5)

where wS(x0) is obtained by extracting the first dx rows
from matrix −MS

ϵ (x
0, y∗(x0))−1NS

ϵ (x
0, y∗(x0)), with

MS
ϵ ≜


∇2

yL ∇yp
⊤
Iϵ
+(x0) ∇yq

⊤ ∇yp
⊤
S

∇ypIϵ
+(x0) 0 0 0

∇yq 0 0 0

∇ypS 0 0 0

 ,

and NS
ϵ ≜

[
∇2

xyL⊤,∇xp
⊤
Iϵ
+(x0),∇xq

⊤,∇xp
⊤
S

]⊤
. Here, S

is a subset of Iϵ(x0), and wS(x0) is the representative gra-
dient to approximate ∇y∗(x) inside the subset of B(x0, ϵ)
which corresponds S. Proposition 2 shows that the Clarke
ϵ-subdifferential ∂̄ϵy∗(x0) can be approximated by represen-
tative gradient set G(x0, ϵ), and the approximation error is in
the order of ϵ.
Proposition 2. Suppose Assumptions 1, 2, 3 hold. Consider
x0 ∈ Rdx , and assume there exists a sufficiently small ϵ > 0
such that, there exists x ∈ B(x0, ϵ) such that y∗(x) is not
continuously differentiable at x. Then, for any z ∈ Rdx ,

|d(z, convG(x0, ϵ))− d(z, ∂̄ϵΦ(x
0))| < o(ϵ).

The computation of the representative gradient wS(x0) of
Example 1 is demonstrated in Fig. 4. Since x0 is near the
boundary of two subsets, Proposition 2 employs wS(1)(x0) =
∇y∗(x0) to approximate the gradients of the subset with the
inactive constraint (blue side), and wS(2)(x0) = ∇ỹ∗(x0)
to approximate the gradients in the subset with the strictly
active constraint (red side). The twice-differentiable function
ỹ∗(x) is an extension of y∗(x) (refer to the definition of
xI(·) in (12.8) of (Dempe 1998)). The gradients ∇y∗(x0)

and ∇ỹ∗(x0) are computed in the matrices −MS(1)
ϵ

−1
N

S(1)
ϵ

Figure 4: Approximate ∂̄ϵy
∗(x0)

and −MS(2)
ϵ

−1
N

S(2)
ϵ , respectively. Then, the representative

gradients wS(1)(x0) and wS(2)(x0) are used to approximate
∂̄ϵy

∗(x0). Then, we can compute G(x0, ϵ) = {2x0,−1} and
∂̄ϵΦ(x

0) = [2x0 − 2ϵ,−1] with −1 ∈ [x0 − ϵ, x0 + ϵ]. The
approximation error |d(z, convG(x0, ϵ)) − d(z, ∂̄ϵΦ(x

0))|
is smaller than or equal to 2ϵ for any z.

4.3 The Gradient Approximation Algorithm
Our proposed gradient approximation algorithm, summarized
in Algorithm 1, is a line search algorithm. It uses the approx-
imation of the Clarke subdifferential as the descent direction
for line search. In iteration k, we firstly solve the lower-level
optimization problem P (xk) and obtain y∗(xk), λ(xk) and
ν(xk). To reduce the computation complexity, the solution
in iteration k serves as the initial point to solve P (xk+1) in
iteration k + 1. Secondly, we check the differentiability of
y∗ on B

(
xk, ϵk

)
and its implementation details are shown in

Section 4.4. If y∗ is continuously differentiable on B
(
xk, ϵk

)
,

we use ∇Φ(xk) to approximate ∂̄ϵΦ(x
k) which corresponds

to Proposition 1. Otherwise, G(xk, ϵk) is used which corre-
sponds to Proposition 2. The details of computing G(xk, ϵk)
are shown in (5) and Section 4.4. Thirdly, the line search
direction gk is determined by a vector which has the small-
est norm over all vectors in the convex hull of G(xk, ϵk).
During the optimization steps, as the iteration number k in-
creases, the approximation radius ϵk decreases. According to
Propositions 1 and 2, the approximation error of the Clarke
subdifferential is diminishing. We next characterize the con-
vergence of Algorithm 1.
Theorem 3. Suppose Assumptions 1, 2, 3 hold and Φ(x) is
lower bounded on Rdx . Let {xk} be the sequence generated
by Algorithm 1 with νopt = ϵopt = 0. Then,
(i) For each k, the line search in line 17 has a solution tk.

(ii) limk→∞ νk = 0, limk→∞ ϵk = 0.
(iii) lim infk→∞ d(0, ∂̄Φ(xk)) = 0.
(iv) Every limit point of {xk} is Clarke stationary for Φ.

If the objective function Φ is non-convex but smooth, prop-
erty (iii) reduces to lim infk→∞ ∥∇Φ(xk)∥ = 0, which is a
widely used convergence criterion for smooth and non-convex
optimization (Nesterov 2003; Jin et al. 2021). A sufficient
condition for the existence of limit point of {xk} is that the
sequence is bounded.

12513



Algorithm 1: Gradient Approximation Method

Require: Initial point x0; Initial approximation radius ϵ0 ∈
(0,∞); Initial stationarity target ν0 ∈ (0,∞); Line
search parameters (β, γ) ∈ (0, 1)× (0, 1); Termination
tolerances (ϵopt; νopt) ∈ [0,∞)× [0,∞); Discount fac-
tors (θϵ, θν) ∈ (0, 1)× (0, 1).

1: for k ∈ N do
2: Solve the lower-level optimization problem P (xk) and

obtain y∗(xk), λ(xk), and ν(xk)
3: Check the differentiability of y∗ on B

(
xk, ϵk

)
by (6)

and (7)
4: if y∗ is continuously differentiable on B

(
xk, ϵk

)
then

5: Compute gk = ∇Φ(xk) by (3)
6: else
7: Compute G(xk, ϵk) by (5)
8: ∂̄ϵkΦ(x

k) = convG(xk, ϵk)
9: Compute gk = min{∥g∥ : g ∈ convG(xk, ϵk)}

10: end if
11: if

∥∥gk∥∥ ≤ νopt and ϵk ≤ ϵopt then
12: Output: xk and terminate
13: end if
14: if

∥∥gk∥∥ ≤ νk then
15: νk+1 ← θννk, ϵk+1 ← θϵϵk, and tk ← 0
16: else
17: Compute tk by the line search: tk = max{t ∈

{γ, γ2, . . .} : Φ(xk − tgk) < Φ(xk)− βt∥gk∥2}
18: νk+1 ← νk and ϵk+1 ← ϵk
19: end if
20: xk+1 ← xk − tkg

k

21: end for

4.4 Implementation Details
Check differentiability of y∗ on B

(
x0, ϵ0

)
We propose

Proposition 3 to check differentiability of y∗ on B
(
x0, ϵ0

)
,

which is required by line 3 of Algorithm 1.

Proposition 3. Consider x0 ∈ Rdx and ϵ > 0. Suppose
Assumptions 1, 2, 3 hold. Then, Lipschitz constants of func-
tions Φ(x), λj(x) and pj(x, y

∗(x)) on B(x0, ϵ) exist and are
denoted by lΦ(x

0, ϵ), lλj
(x0, ϵ) and lpj

(x0, ϵ), respectively.
Further, suppose the SCSC holds at y∗(x0) w.r.t. λ(x0). If
there exists ϵ1 > 0 such that

λj(x
0) > lλj (x

0, ϵ1)ϵ1 for all j ∈ J(x0),

pj(x
0, y∗(x0)) < −lpj

(x0, ϵ1)ϵ1 for all j ̸∈ J(x0),
(6)

then y∗ is continuously differentiable on B(x0, ϵ1).

Proposition 3 shows that, y∗ is continuously differen-
tiable on a neighborhood of x0, if for any j, either (i) λj

is larger than zero with non-trivial amount when the con-
straint pj(x

0, y∗(x0)) is active; or (ii) the satisfaction of
pj(x

0, y∗(x0)) is non-trivial when it is inactive. For case
(i), λj(x) > 0 and the constraint is strictly active for all
x ∈ B(x0, ϵ); for case (ii), pj(x, y∗(x)) < 0 and the con-
straint is inactive for all x ∈ B(x0, ϵ). As a illustration on
the problem in Example 1 shown in Fig. 2, y∗ is continu-

ously differentiable on B(x0, ϵ), B(x1, ϵ) and B(x2, ϵ), and
the constraint is inactive or strictly active in each ball.

We evaluate the differentiability of y∗(x) and Φ(x) on
B(x0, ϵ) by Proposition 3. In particular, we approximatively
regard that y∗ and Φ is continuously differentiable onB(x0, ϵ)
if (6) is satisfied; otherwise, there exists x ∈ B(x0, ϵ) such
that y∗ and Φ is not continuously differentiable at x. The
Lipschitz constants lλj

(x0, ϵ) and lpj
(x0, ϵ) are computed as

lλj (x
0, ϵ) = ∥∇λj(x

0)∥+ δ,

lpj
(x0, ϵ) = ∥∇xpj(x

0, y∗(x0))+

∇y∗(x0)⊤∇ypj(x
0, y∗(x0))∥+ δ,

(7)

where δ is a small parameter, and ∇xpj(x
0, y∗(x0)) and

∇λj(x
0) are given in (4). Here, for a function f , we ap-

proximate its Lipschitz constant on B(x0, ϵ), which is de-
fined as lf (x

0, ϵ) ≜ supx{∥∇f(x)∥ : x ∈ B(x0, ϵ)}, as
lf (x

0, ϵ) ≈ ∥∇f(x0)∥+ δ. As ϵ decreases, f in B(x0, ϵ) is
approximating to an affine function, and then the approxima-
tion error of lf (x0, ϵ) decreases.

Computation of G(x0, ϵ) To compute G(x0, ϵ) in line 7 of
Algorithm 1, we need to compute the sets Iϵ+(x

0) and Iϵ(x0)
defined in Proposition 2. Similar to the idea in Proposition 3,
we evaluate Iϵ+(x

0) and Iϵ(x0) as

Iϵ+(x
0) =

{
j ∈ J(x0) : λj(x

0) > lλj
(x0, ϵ)ϵ

}
,

Iϵ−(x
0) =

{
j ̸∈ J(x0) : pj(x

0, y∗(x0)) < −lpj (x
0, ϵ)ϵ

}
,

Iϵ(x0) =
{
j : j ̸∈ Iϵ+(x

0) ∪ Iϵ−(x
0)
}
. (8)

Recall that the KKT conditions hold at y∗(x0) for problem
P (x0), then for any x ∈ B(x0, ϵ), pj(x, y∗(x)) = 0 for
j ∈ Iϵ+(x

0) and λj(x) = 0 for j ∈ Iϵ−(x
0). Here, we also

use lλj
and lpj

given in (7) as the Lipschitz constants. When
y∗ and λ are not differentiable at x0, we sample a point
x′ near x0 such that y∗ and λ are differentiable at x′, then
replace∇λ(x0) and∇y∗(x0) in (7) by∇λ(x′) and∇y∗(x′).

5 Experiments
5.1 Hyperparameter Optimization
Hyperparameter optimization (HO) has been widely stud-
ied (Pedregosa 2016; Franceschi et al. 2017; Ji, Yang, and
Liang 2021). However, existing methods cannot handle HO of
constrained learning problems, such as the supported vector
machine (SVM) classification (Cortes and Vapnik 1995), con-
strained reinforcement learning (Achiam et al. 2017; Chen,
Dong, and Wang 2021; Xu, Liang, and Lan 2021). We apply
the proposed algorithm to HO of constrained learning.

HO of SVM We optimize the hyperparameter in SVM op-
timization, i.e., the penalty terms of the separation violations.
We conduct the experiment on linear SVM and kernelized
SVM on the dataset of diabetes in (Dua and Graff 2017). It
is the first time to solve HO for SVM. We provide details of
the problem formulation and the implementation setting in
Appendix B.1. As shown in Fig. 5, the loss is nearly conver-
gent for both linear and kernelized SVM, and the final test
accuracy is much better than that of randomly selected hyper-
parameters, which is the initial point of the optimization.
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Figure 5: Loss and accuracy v.s. running time in HO of linear
and kernelized SVM

Data Hyper-Cleaning Data hyper-cleaning (Franceschi
et al. 2017; Shaban et al. 2019) is to train a classifier in a
setting where the labels of training data are corrupted with a
probability p (i.e., the corruption rate). We formulate the prob-
lem as a HO of SVM and conduct experiments on a breast
cancer dataset (Dua and Graff 2017). The problem formula-
tion and the implementation setting are provided in Appendix
B.1. We compare our gradient approximation method with
directly gradient descent used in (Amos and Kolter 2017;
Lee et al. 2019). It is shown in Fig. 6 that, our method con-
verges faster than the benchmark in terms of the loss and
accuracy in both the training and test stages. Moreover, both
the two methods achieve the test accuracy 96.2% using the
corrupt data (p = 0.4). The accuracy is comparable to the test
accuracy 96.5% of an SVM model where the data is clean.

5.2 Meta-Learning
Meta-learning approaches for few-shot learning have been
formulated as bilevel optimization problems in (Rajeswaran
et al. 2019; Lee et al. 2019; Ji, Yang, and Liang 2021). In
particular, the problem in MetaOptNet (Lee et al. 2019) has
the form of problem (2) with the lower-level constraints.
However, its optimization does not explicitly consider the
non-differentiability of the objective function and cannot
guarantee convergence. In the experiment, we compare our
algorithm with the optimization in MetaOptNet on datasets
CIFAR-FS (Bertinetto et al. 2018) and FC100 (Oreshkin,
Rodrı́guez López, and Lacoste 2018), which are widely used
for few-shot learning. Appendix B.2 provides details of the
problem formulation and the experiment setting.

Fig. 7 compares our gradient approximation method and
the direct gradient descent in MetaOptNet (Lee et al. 2019).
The two algorithms share all training configurations, includ-
ing the network structure, the learning rate in each epoch and
the batch size. For both CIFAR-FS and FC100 datasets, our
method converges faster than the optimization in MetaOptNet
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Figure 6: Comparison of gradient descent (GD) and gradient
approximation method (GAM) in data hyper-cleaning with
the corruption rate p = 0.4.

0 1000 2000 3000
Running time /s

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 lo
ss

Dataset: CIFAR-FS (5-way 5-shot)
GAM
MetaOptNet

1000 2000 3000
Running time /s

0.76

0.78

0.80

0.82

0.84

Te
st

 a
cc

ur
ac

y

Dataset: CIFAR-FS (5-way 5-shot)

GAM
MetaOptNet

0 250 500 750 1000
Running time /s

0.6

0.8

1.0

1.2

1.4
Tr

ai
ni

ng
 lo

ss
Dataset: FC100 (5-way 5-shot)

GAM
MetaOptNet

0 200 400 600 800 1000
Running time /s

0.50

0.52

0.54

0.56

Te
st

 a
cc

ur
ac

y

Dataset: FC100 (5-way 5-shot)

GAM
MetaOptNet

Figure 7: Comparison of MetaOptNet and gradient approxi-
mation method (GAM).

in terms of the training loss and test accuracy, and achieves
a higher final test accuracy. Note that the only difference
between the two algorithms in this experiment is the compu-
tation of the descent direction. The result shows the Clarke
subdifferential approximation in our algorithm works better
than the gradient as the descent direction. This is consistent
with Proposition 2, where a set of representative gradients
instead one gradient is more suitable to approximate the
Clarke subdifferential. More comparison results with other
meta-learning approaches are given in Appendix B.2.

6 Conclusion
We develop a gradient approximation method for the bilevel
optimization where the lower-level optimization problem is
convex with equality and inequality constraints and the upper-
level optimization is non-convex. The proposed method effi-
ciently approximates the Clarke Subdifferential of the non-
smooth objective function, and theoretically guarantees con-
vergence. Our experiments validate our theoretical analysis
and demonstrate the superior effectiveness of the algorithm.
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