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Abstract
Electrophysiological Source Imaging (ESI) refers to recon-
structing the underlying brain source activation from non-
invasive Electroencephalography (EEG) and Magnetoen-
cephalography (MEG) measurements on the scalp. Estimat-
ing the source locations and their extents is a fundamental
tool in clinical and neuroscience applications. However, the
estimation is challenging because of the ill-posedness and
high coherence in the leadfield matrix as well as the noise
in the EEG/MEG data. In this work, we proposed a combi-
natorial search framework to address the ESI problem with a
provable optimality guarantee. Specifically, by exploiting the
graph neighborhood information in the brain source space, we
converted the ESI problem into a graph search problem and
designed a combinatorial search algorithm under the frame-
work of A∗ to solve it. The proposed algorithm is guaranteed
to give an optimal solution to the ESI problem. Experimen-
tal results on both synthetic data and real epilepsy EEG data
demonstrated that the proposed algorithm could faithfully re-
construct the source activation in the brain.

Introduction
Neuronal firing and interactions between neural circuits
at different brain regions serve as a fundamental mecha-
nism for brain sensory and cognitive functions. The brain
physiological and cognitive behaviors generate electromag-
netic and metabolic signals that can be measured with dif-
ferent neuroimaging modalities. Typically, these modali-
ties are classified into two categories: (i) invasive mea-
surement modalities, such as stereoelectroencephalography
(sEEG) (Iida and Otsubo 2017) and electrocorticography
(ECoG) (Keene, Whiting, and Ventureyra 2000); (ii) non-
invasive measurement modalities, such as Electroencephalo-
gram (EEG) and Magnetoencephalogram (MEG) (Cuffin
and Cohen 1979; Phillips, Rugg, and Friston 2002), func-
tional magnetic resonance imaging (fMRI) (Huettel et al.
2004), positron emission tomography (PET) (Muehllehner
and Karp 2006), and single-photon emission computed to-
mography (SPECT) (He et al. 2018). EEG/MEG directly
*Corresponding author.
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measures electrical firing patterns between neurons. In con-
trast, fMRI, another important non-invasive brain imag-
ing modality, measures the blood-oxygen-level-dependent
(BOLD) signal that is a secondary metabolic signal (Liu
et al. 2022). EEG/MEG provides uniquely high temporal
resolution at the millisecond scale for underlying brain ac-
tivities and contains rich information about brain function
and dysfunction, making EEG/MEG studies highly valuable
for clinical, cognitive, and behavioral brain investigations.

Electrophysiological Source Imaging (ESI), also known
as EEG/MEG Source Localization, is a non-invasive neu-
roimaging technology used to reconstruct the brain source
activation from EEG/MEG measurements, utilizing a head
model to characterize the effect of volume conduction or
field propagation (He and Ding 2013; Yang et al. 2016; Liu
et al. 2017; He et al. 2018; Guo et al. 2022). In some event-
related experimental designs, a reasonable assumption is
that only a small fraction of the brain sources is consistently
activated (Gramfort et al. 2013), implying that ESI solutions
for such experiments are spatially sparse (Babadi et al. 2014;
Costa et al. 2015). In addition, the brain source activation
has a temporal structure that can be exploited to improve
ESI performance, such as using a state-space model (Piron-
dini et al. 2017) or a temporal smooth regularization (Qin
et al. 2017; Liu et al. 2018).

The accurate estimation of the activated area, including
the sources and their extents, is crucial for detecting the lo-
cation and size of the epileptogenic zone (Ding, Wilke, and
et al. 2007; Sohrabpour and He 2021; Sun et al. 2022). To
improve the accuracy and spatial smoothness of ESI, many
studies leveraged the spatial structure of the source signal,
such as using the total variation (TV) defined in the source
space (Ding and He 2008) and using a predefined Gaussian
kernel (Haufe et al. 2011; Liu et al. 2020). The TV regu-
larization defined on the irregular 3D brain mesh can help
render an extended source activation pattern. However, the
transformation matrix can regulate the activation pattern of
the source signal; for example, it promotes the same signal
magnitude in the neighboring source space. As a result, us-
ing a TV regularization provides a sub-optimal solution and
is not flexible to capture the complicated activation pattern.
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In this work, we presented a combinatorial search ap-
proach to addressing the ESI problem in neuroscience. In-
stead of imposing a TV regularization term in the objective
function, we directly employed the neighborhood connectiv-
ity structure in the brain source space to enforce the spatial
smoothness of the activation pattern. Specifically, we refor-
mulated the original ESI problem into a graph search prob-
lem of the leadfield matrix and introduced a combinatorial
search framework in a setting similar to the A∗ algorithm,
which is optimized to provide a provably optimal solution.
Our main contributions are summarized as follows:
• We converted the ESI problem into a column search

problem of the leadfield matrix.
• We described a combinatorial search framework with a

provable optimality guarantee to address the problem.
• Extensive experimental results demonstrated the effec-

tiveness of the proposed approach.
The code: https://github.com/ghwanlab/ESI-AStar.

The EEG/MEG Source Imaging Problem
EEG/MEG measures electromagnetic signals generated
from neuronal activities in the brain. The relationship be-
tween the source signal activation and the EEG/MEG mea-
surements is characterized by a linear mapping matrix called
a leadfield matrix or a head model. The ESI forward model
can be expressed as follows:

X = LΦ + E, (1)
where X∈Rc×τ represents the EEG/MEG data, c is the
number of EEG/MEG channels, τ is the number of time
points, L∈Rc×m is the leadfield matrix, m is the number
of brain sources, Φ∈Rm×τ represents the electrical poten-
tials in the source space for all the τ time points, and E is
the noise in the EEG/MEG channels. Since the number of
channels c is much smaller than the number of sources m,
estimating Φ becomes ill-posed and has infinite solutions.
Thus, regularization terms based on prior assumptions are
commonly used:

min
Φ
‖X − LΦ‖2F + λR(Φ). (2)

The first term is the data fitting term to find Φ to explain the
observed EEG/MEG data, and the second term is the regu-
larization term to address the ill-posedness property of the
ESI problem while promoting a neurophysiologically plau-
sible solution. The widely used options include `1 norm for
the Minimum Current Estimation (MCE) algorithm (Uutela,
Hämäläinen, and Somersalo 1999), `2 norm for the Mini-
mum Norm Estimate (MNE) algorithm (Hämäläinen and Il-
moniemi 1994) and its variants, such as sLORETA (Pascual-
Marqui 2002) and dSPM (Dale et al. 2000).

To promote a preference for an extended area of source
reconstruction, both TV regularization and sparsity regular-
ization are reasonable choices (Xu et al. 2021). Then, the
objective function is given as follows:

min
Φ
‖X − LΦ‖2F + α ‖V Φ‖1 + β ‖Φ‖1 , (3)

where V is the discrete gradient operator (Ding and He
2008; Sohrabpour et al. 2020). However, including TV reg-
ularization in the objective function can sometimes render

unexpected results, as shown in Section 2.2 of (Liu et al.
2022). This observation motivates us to develop an algo-
rithm that directly leverages the spatial connectivity struc-
ture in the brain source space for reconstructing an extended
and focal source activation pattern.

We assume that the brain source activation is sparse in the
cortex, which is a reasonable assumption under the event-
related potential (ERP) paradigm (Gramfort, Kowalski, and
Hämäläinen 2012). Let k be the number of activated sources
corresponding to k columns in the leadfield matrix L. If the
k activated columns of L, referred to as S, are known, then
estimating the source potential A is trivial:

e(S) = min
A
‖X − SA‖2F , (4)

where S ∈ Rc×k is constructed from k columns of L, and
A ∈ Rk×τ is the source potential corresponding to the k
nonzero rows of Φ in Eq. (2). When S is known, A can be
derived from A = S+X , where S+ is the pseudo-inverse of
S (Marshall, Olkin, and Arnold 2011). Thus, the ESI prob-
lem can be viewed as a column selection problem, which is
to identify k columns from L to represent X such that the
error in Eq. (4) is minimized.

In the EEG/MEG source space, all potential sources are
represented by vertices defined on a tessellated triangular
mesh of the brain, as illustrated in Figure 1. When a ver-
tex is activated, its neighbors are also activated with a high
likelihood, as the brain tissues serve as electrical conductors
for the electromagnetic signal. Thus, the identified columns
in S are expected to be connected. As shown by Liu et al.
(2022), total variation regularization may not always pro-
vide desirable solutions. In this work, a search graph based
on the neighborhood of brain sources is constructed and uti-
lized to identify the connected activated area. To avoid am-
biguity, we refer to the brain mesh and its vertices as “mesh”
and “vertices”, and the graph for combinatorial search and
its nodes as “graph” and “nodes”.

The Proposed Optimization Framework
Combinatorial Search
A∗ (Hart, Nilsson, and Raphael 1968) is a classic combi-
natorial search framework, which has been widely used in
graph traversal and path search. The first step is to model
the problem as a graph search problem, and then the best-
first strategy is used to guide the search for a path from a root
node to a goal node, which minimizes the cost. In general,
two lists of nodes are maintained: (i) a fringe list, containing
nodes that have been generated but not yet expanded; (ii) a
closed list, containing all expanded nodes to avoid revisiting.

Figure 1: Illustration of a brain mesh and the 0/1/2-level
neighborhood activation of brain sources.
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S:{0}
S:{N (0)}
f=0.42

S:{1}
S:{N (1)}
f=0.27

S:{2}
S:{N (2)}
f=0.12

S:{3}
S:{N (3)}
f=0.49

. . . . . .
S:{m−1}

S:{N (m−1)}
f=0.36

S:{2, 1}
S:{N (2),N (1)}

f=0.35

S:{2, 3}
S:{N (2),N (3)}

f=0.45

S:{2, 4}
S:{N (2),N (4)}

f=0.32

S:{2, 5}
S:{N (2),N (5)}

f=0.52

S:{2, 6}
S:{N (2),N (6)}

f=0.37

. . . . . .

S:{2, 4, 3}
S:{N (2),N (4),N (3)}

f=0.35

S:{2, 4, 5}
S:{N (2),N (4),N (5)}

f=0.45

S:{2, 4, 6}
S:{N (2),N (4),N (6)}

f=0.37

S:{2, 4, 7}
S:{N (2),N (4),N (7)}

f=0.42

S:{2, 4, 8}
S:{N (2),N (4),N (8)}

f=0.51

. . . . . .

Figure 2: An example of search graph for 1-level neighborhood activation, where N (v, l) is simplified as N (v). N (2) =
{2, 1, 3, 4, 5, 6} and N (4) = {4, 2, 3, 5, 6, 7, 8}. The f values are used to guide the search.

Each node on the search graph has a heuristic value based on
an approximate cost of a least-cost path. In each iteration,
the node with the smallest heuristic value in the fringe list is
picked and expanded until a goal node is found. With certain
conditions on heuristics, A∗ is guaranteed to find an optimal
solution. Recent studies have applied A∗ and its weighted
variants to address important problems in data science, such
as robust principal component analysis (Wan and Schweitzer
2021a), and unsupervised feature selection (He et al. 2019).
The algorithm we propose in this work is based on the stan-
dard A∗ algorithm and customized for the ESI problem.

Search Graph for the ESI Problem
In this section, we show how to construct the search graph
for the ESI problem. Suppose each vertex on the brain mesh
is indexed from 0 to m−1 corresponding to the m columns
in the leadfield matrix L. Let N (v, l) be a function that out-
puts the neighbors of any vertex v (including itself) with the
neighborhood level ≤ l. Now we can build the search graph
starting by creating m nodes at the root level corresponding
to the m vertices. As shown in Figure 2, a node consists of
a set S, a set S, and a heuristic value f . The set S con-
tains main activated vertices, the set S contains neighbors
of all main activated vertices based on l-level neighborhood
activation, and the heuristic value f is based on the error de-
fined in Eq. (4), which will be defined later. Children of a
node are created by adding a new vertex on the mesh into
the parent-level S and the corresponding neighbors of this
vertex into the parent-level S. To promote spatial continuity
of an activated area, only the vertices in S at the parent level
can be used to create children. A goal node is a node with S
containing k vertices. With slightly ambiguous use of nota-
tion, both the vertex set and the submatrix of L containing
the corresponding columns are denoted as S.

Unlike search graphs for the standard A∗, which starts
with a root node, we start from m nodes corresponding to
all vertices on the brain mesh. Another difference is that the
order of vertices in S and S is irrelevant. For example, a
node with S={2, 4} is equivalent to a node with S={4, 2}
and the heuristic values for them are same. When one of
them is created, we do not need to create another.

Algorithm 1: The ESI-A∗ Algorithm.
Input: X: EEG/MEG data matrix. L: the leadfield matrix.
k: the desired number of vertices of an activated area.
N (v, l): the neighborhood function for a vertex v and the

desired l-level neighborhood activation.
f(S): a heuristic function to compute the heuristic value f

for a node n with S to guide the search.
Output: A solution set S consisting of k activated vertices.
Initialization: Add the m nodes at the root level (corre-
sponding to all vertices on the brain mesh) into the Fringe
list F and the Closed list C.
Procedure:

1: while F 6= ∅ do
2: Find node np (containing Sp and Sp) with the small-

est heuristic value fp from F . Ties are resolved by
choosing the node with more vertices in Sp.

3: Remove node np from F .
4: if np is a goal node (Sp contains k vertices) then
5: Return Sp as the solution.
6: else
7: for each child ni of np such that ni 6∈ C do
8: compute the heuristic value fi for ni.
9: put ni into F and C.

10: end for
11: end if
12: end while

The Combinatorial Search Algorithm
The search algorithm defined on the search graph for the ESI
problem is described in Algorithm 1. It is similar to the stan-
dard A∗ and we refer to it as “ESI-A∗”. The heuristic func-
tion based on the error Eq. (4) is used to guide the search.

When a node at the parent level np is picked up at Line 2,
it will be expanded for a bigger activated area by creating
its children according to the l-level neighborhood activation.
In the next iteration, one of its children or another poten-
tially promising node is selected and expanded. Guided by
the heuristic values, only the promising nodes, not all nodes,
are expanded. In the end, an activated area of k vertices is
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found. Note that when l>0, in each iteration S is expanded
by adding one or more vertices. For example, if a vertex on
the brain mesh has 7 neighbors (including itself), when l=1
in each iteration S can grow larger by adding 1, 2, or 3 ver-
tices. (At least 4 neighbors must be already included.) There-
fore, an activated area of exact k vertices may not exist. To
deal with this, we can add tolerance for k or simply run the
algorithm with another k value. Since the order of vertices
in S and S is irrelevant, Line 9 puts a node into F and C
simultaneously such that C is a superset of F .

We proceed to define the heuristic function and show that
ESI-A∗ is guaranteed to find an optimal solution for a given
l-level neighborhood activation.

The Heuristic Function
The goal of the ESI-A∗ algorithm is to detect a node with
a set S containing k connected vertices representing an ac-
tivated area in the brain such that the error defined in (4) is
minimized. Given a node ni with Si of size ki on the search
graph, define eexact as the minimum error if these ki vertices
in Si are included in the final solution. This means we need
to complete Si from ki to k:

eexact(Si) = min
Sj ,Ai,Aj

‖X − SiAi − SjAj‖2F , (5)

where Sj contains k − ki vertices, Ai and Aj are the coeffi-
cient matrices. It is easy to prove that using eexact(Si) as the
heuristic function, ESI-A∗ is optimal. However, it is chal-
lenging to compute eexact(Si) efficiently as finding Sj can
be viewed as an ESI problem on the reducedX and L by Si.
We approximate it by a lower bound:

elower(Si) = min
U,Ai,Au

‖X − SiAi − UAu‖2F , (6)

where U ∈ Rc×(k−ki) contains k−ki unconstrained vectors
(not necessarily from L), and Au is the coefficient matrix.
By relaxing the condition on Sj (must be a submatrix of
L), elower can be computed efficiently since U formed by
the k − ki left eigenvectors of X − SiAi corresponding to
the largest k − ki singular values minimizes the error and
Ai = S+

i X (Marshall, Olkin, and Arnold 2011). Let Xi =
X − SiAi. Then elower(Si) can be computed as:

elower(Si) = trace(Xi)−
k−ki−1∑
z=0

σ2
z , (7)

where σ0 ≥ · · · ≥ σk−ki−1 are the largest k − ki singular
values of Xi. See (Wan and Schweitzer 2021c) for proof.
Theorem 1. If f(Si) = elower(Si), the ESI-A∗ algorithm
finds an optimal solution for (4).

We are also concerned with adding the spatial smoothness
criterion. Let A‡ be the solution in Eq. (4) for a given S.
Consider the following error:

e(S, α) = e(S) + α|VkA‡|1, (8)

where Vk contains k columns of the discrete gradient opera-
tor V corresponding to the k selection of S. Analogously to
Eq. (5) at a node ni we have:

eexact(Si, α) = eexact(Si) + α(|ViA‡i |1 + |VjA‡j |1), (9)

where A‡i and A‡j are the solutions of Eq. (5), Vi, and Vj are
the corresponding columns of the discrete gradient operator.
We define a lower bound of eexact(Si, α) as follows:

elower(Si, α) = elower(Si) + α|ViA‡i |1. (10)
Theorem 2. If f(Si, α) = elower(Si, α), the ESI-A∗ algo-
rithm finds an optimal solution for (8).

When α = 0, Eq. (4) is equivalent to Eq. (8). Proofs of
Theorem 1 and Theorem 2 are given in the following section.

Optimality of the ESI-A∗ Algorithm
The strategy to prove the optimality of the ESI-A∗ algorithm
(Theorem 1 and Theorem 2) is similar but not identical to the
strategy for the optimal variants of the combinatorial search
algorithms summarized in (Wan 2021).
Lemma 1. Let Si be a vertex set of size ki at a node ni on
the search graph. Then:
i. elower(Si) ≤ eexact(Si);
ii. if k = ki, then elower(Si) = eexact(Si) = e(Si);
iii. elower(Si) is monotonically increasing along any path.
Proof: For i, from the definition of elower(Si) and eexact(Si),
it follows that replacing Sj by U with unrestricted columns
cannot increase the error. For ii, it is straightforward. For iii,
let np associated with Sp of size kp be the parent node of Si,
then we need to prove that elower(Sp) ≤ elower(Si). Let Sa
be ki − kp be additional vertices in Si compared to Sp, then
elower(Si) can be written as:
elower(Si) =elower(Sp ∪ Sa)

= min
U,Ap,Aa,Aj

‖X − SpAp − SaAa − UAj‖2F .

Since elower(Sp) = minUp,Ap,Aj ‖X − SpAp − UpAj‖
2
F . It

can be viewed as replacing ki−kp unrestricted columns in
Up by Sa. Then elower(Sp) cannot be less than elower(Si). �
Lemma 2. Let n∗ (associated with S∗) is an optimal node
(S∗ is an optimal set and e(S∗) is the smallest possible error)
for a search graph constructed by using l-level neighborhood
activation. Suppose Theorem 1 is false. Then for any node
ng (associated with Sg) on a path from a root node to an
optimal goal node, we have: f(Sg) < f(S).
Proof: The falsehood of Theorem 1 can be written as:
e(S)>e(S∗). Since S and S∗ are both of size k, Lemma 1.ii
implies: elower(S)=e(S)=f(S), elower(S∗)=e(S∗)=f(S∗).
Therefore:
f(S) = elower(S) = e(S) > e(S∗) = f(S∗) = elower(S∗)

≥ elower(Sg) = f(Sg), where elower(S∗)≥elower(Sg),

which is followed from Lemma 1.iii. �
Lemma 3. During the run of the ESI-A∗ algorithm the
fringe list F always contains a node ng that is on the path to
an optimal node n∗.
Proof: Straightforward. It can be done by induction. �
Proof of Theorem 1: The proof is by contradiction. Sup-
pose Theorem 1 is false. From Lemma 3, there is a node ng
(associated with Sg) on the path to an optimal node in the
fringe list F . From Lemma 2, f(Sg) < f(S). So the node
ng with Sg will be selected before the solution node with S,
which leads to a contradiction. �

12494



Lemma 4. Let Si be a vertex set of size ki at a node ni on
search graph. Then:
i. elower(Si, α) ≤ eexact(Si, α);
ii. if k=ki, then elower(Si, α) = eexact(Si, α) = e(Si, α).
iii. elower(Si, α) is monotonically increasing along any path.

Proof: For i and ii, the proof is straightforward. For iii, let
np associated with Sp of size kp be the parent node of Si,
then we need to prove that elower(Sp, α) ≤ elower(Si, α).
Since elower(Sp) ≤ elower(Si), we need to prove |VpA‡p|1 ≤
|ViA‡i |1, where A‡p and A‡i are the corresponding solutions
of Eq. (5), Vp, and Vi are the columns of the discrete gra-
dient operator corresponding to the Sp and Si. We have:
A‡i = S+

i X = QTi X and A‡p = S+
p X = QTpX , where

Qi and Qp are the span of Si and Sp (Marshall, Olkin, and
Arnold 2011; Golub and Van Loan 2013). Then:

|VpA‡p|1 = |VpQTpX|1, |ViA
‡
i |1 = |ViQTi X|1.

Since Si is a column super set of Sp, Vi is a column super
set of Vi and Qi can be formed as a column super set of Qp.
This completes the proof. �
Proof of Theorem 2: The proof strategy is identical to the
one for Theorem 1 and is done by using Lemma 4. �

Implementation and Complexity
We discuss the implementation of Algorithm 1 with Eq. (4)
using elower(Si) in Eq. (7) as the heuristic function. The im-
plementation with Eq. (8) is similar, except for the additional
computation of the spatial smoothness term. The implemen-
tation method follows from the work for the supervised col-
umn selection problem (Wan and Schweitzer 2021b).

To compute the heuristic value for a node, only the largest
O(k) singular values along with the trace are needed (see
Eq. (7)). However, the singular values have to be calculated
for every node, direct computation based on Eq. (7) is im-
practical. Note that the singular values of a matrix can be
computed from the eigenvalues of the corresponding cor-
relation matrix by taking the square root (e.g., (Golub and
Van Loan 2013)). In our case, the singular values of Xi can
be computed from the eigenvalues of Bi = XiX

T
i .

Preprocessing
The EEG/MEG data X is of size c × τ , and the leadfield
matrix L is of size c × m, where the channel number c
is much smaller than the number of sources m. In the ini-
tial step, we perform the eigendecomposition of the matrix
B = XXT . This gives: B = UDUT , where the matrix U
contains eigenvectors, and D is a diagonal matrix with the
eigenvalues as the diagonal elements. Set r = min(c, τ). We
use the following D and P to replace X:

i. D ∈ Rr×r;

ii. P ∈ Rr×c = D
1
2UT .

(11)

This initial preprocessing can be performed efficiently by us-
ing randomized algorithms for matrix decompositions (e.g.,
(Halko, Martinsson, and Tropp 2011)). The time complexity
is O(cτr). The memory complexity is O(cr).

Eigendecomposition at a Node
Instead of working on Bi = XiX

T
i at a node ni, we use a

related matrixHi which has a special structure and the same
eigenvalues as Bi, allowing efficient computation. Then, the
singular values of Xi in Eq. (7) can be computed from the
eigenvalues of Hi.

Lemma 5. Let Qi be an orthonormal basis of Si of size
c× ki. Given D and P from Eq. (11), define:

Hi ∈ Rr×r = D − ZiZTi = D −
ki−1∑
j=0

zjz
T
j , (12)

where Zi = PQi, zi = Pqi, and qi is the ith column of Qi.
Then: Hi and Bi have the same nonzero eigenvalues.

See (Wan and Schweitzer 2021b) for proof. At each node,
the complexity of computing the O(k) eigenvalues is
O(crk) by using the randomized eigendecomposition algo-
rithm (e.g., (Halko, Martinsson, and Tropp 2011)).

Complexity
Initially, we need to addm root nodes into the fringe list. The
complexity is O(mcrk). Suppose that a vertex on the brain
mesh has O(d) neighbors. In each iteration, there are O(d)
children to be created. Let T be the number of iterations.
Then the overall time complexity isO(mcrk+Tdcrk). The
initial preprocessing time is ignored as m is bigger than τ .
The value of T depends on the l−level neighborhood acti-
vation, d, and k. A larger l, a smaller d, and a smaller k lead
to a smaller number of iterations T .

Experimental Results
We conducted experiments on both synthetic and real EEG
data. In the experiments on the synthetic data, the pro-
posed ESI-A∗ algorithm was compared with the follow-
ing algorithms: (i) deep learning approaches, which need
to be trained by paired samples of EEG/MEG data X and
source potentials Φ, including BiLSTM (Jiao et al. 2022),
and Fully connected deep Neural Network (FNN) (Goodfel-
low, Bengio, and Courville 2016); (ii) well-known conven-
tional ESI methods, which do not require training, including
MxNE (implemented by MultiTaskLasso (MTL)) (Gram-
fort, Kowalski, and Hämäläinen 2012; Pedregosa et al.
2011), sLORETA (Pascual-Marqui 2002), dSPM (Dale et al.
2000), and MNE (Hämäläinen and Ilmoniemi 1994). In the
experiments on the real EEG data, the proposed ESI-A∗ al-
gorithm was additionally compared with the results of Deep-
SIF (Sun et al. 2022), the surgical resection, and intracranial
EEG defined seizure onset zone (SOZ).

Experiments on Synthetic Data
The brain forward model or the leadfield matrix was calcu-
lated using T1-MRI images from a 26-year-old male subject
scanned at Massachusetts General Hospital, Boston, MA.
We utilized a 128-channel BioSemi EEG cap layout, co-
registered EEG channels with the head model using Brain-
storm, and visualized using MNE-Python (Gramfort et al.
2014). The source space contains 1026 sources in each
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Method the activated area: 2 cm the activated area: 4 cm
LE (std) AUC (std) LE (std) AUC (std)

SNR = 40 dB
MNE 38.6 (46.3) 0.92 (0.11) 38.4 (46.3) 0.89 (0.10)
sLORETA 27.7 (36.0) 0.94 (0.09) 26.3 (33.7) 0.91 (0.08)
dSPM 29.9 (19.4) 0.93 (0.08) 33.4 (21.2) 0.88 (0.09)
MTL 19.1 (09.0) 0.61 (0.07) 18.8 (09.3) 0.56 (0.02)
FNN 29.3 (27.5) 0.95 (0.12) 13.0 (21.8) 0.98 (0.08)
BiLSTM 33.9 (36.6) 0.94 (0.15) 14.8 (27.4) 0.98 (0.09)
Proposed 10.7 (04.9) 1.00 (0.00) 14.5 (05.9) 0.96 (0.05)

SNR = 30 dB
MNE 61.3 (61.4) 0.86 (0.16) 60.9 (61.2) 0.82 (0.14)
sLORETA 46.0 (52.2) 0.89 (0.14) 45.5 (51.5) 0.85 (0.12)
dSPM 36.0 (28.8) 0.88 (0.14) 38.7 (29.1) 0.83 (0.12)
MTL 19.1 (09.0) 0.61 (0.07) 18.9 (09.7) 0.56 (0.02)
FNN 29.0 (27.7) 0.95 (0.12) 13.6 (23.5) 0.98 (0.08)
BiLSTM 34.1 (36.8) 0.93 (0.16) 14.8 (27.7) 0.98 (0.10)
Proposed 10.7 (04.9) 1.00 (0.00) 15.2 (06.8) 0.89 (0.07)

SNR = 20 dB
MNE 100.6 (64.2) 0.75 (0.19) 102.2 (62.3) 0.71 (0.16)
sLORETA 87.1 (63.6) 0.79 (0.18) 90.4 (62.4) 0.74 (0.15)
dSPM 52.0 (43.9) 0.78 (0.18) 51.4 (41.2) 0.72 (0.15)
MTL 19.1 (09.3) 0.60 (0.06) 19.4 (10.3) 0.57 (0.03)
FNN 28.4 (27.2) 0.95 (0.12) 13.3 (20.4) 0.98 (0.09)
BiLSTM 33.0 (34.4) 0.94 (0.14) 15.4 (27.3) 0.97 (0.11)
Proposed 10.7 (05.0) 1.00 (0.00) 14.2 (06.9) 0.86 (0.06)

SNR = 10 dB
MNE 122.1 (53.1) 0.62 (0.20) 123.1 (51.8) 0.60 (0.16)
sLORETA 116.4 (53.0) 0.62 (0.19) 120.1 (50.9) 0.60 (0.15)
dSPM 85.4 (54.5) 0.62 (0.19) 83.2 (54.0) 0.59 (0.14)
MTL 19.4 (10.4) 0.63 (0.07) 21.2 (12.9) 0.56 (0.03)
FNN 33.6 (33.4) 0.92 (0.16) 20.1 (32.1) 0.96 (0.12)
BiLSTM 37.7 (39.3) 0.91 (0.18) 20.9 (33.1) 0.95 (0.14)
Proposed 11.1 (05.1) 0.99 (0.05) 15.9 (08.5) 0.87 (0.06)

Table 1: Performance comparison with different SNR levels.

hemisphere (2052 in total), resulting in a leadfield matrix L
of size 128×2052. We used an autoregressive model with
an order of 5 to generate the time series (Haufe and Ewald
2016). We randomly selected locations in the cortex to be
activated. To simulate the source extent pattern, we also ac-
tivated the first and/or second levels of neighbors. The di-
ameter of the activated area with the 1-level neighborhood
activation is approximately 2 cm (about 7 vertices), and the
diameter of the activated area with the 2-level neighborhood
activation is approximately 4 cm (about 19 vertices).

The forward model in Eq. (1) was used to generate the
scalp EEG data X with additive channel noise specified un-
der different signal-to-noise ratio (SNR) settings (SNR=40,
30, 20, and 10 dB). SNR is defined as the ratio of the
signal power Psignal to the noise power Pnoise: SNR =
10 log(Psignal/Pnoise). For each combination of the SNR set-
ting and neighborhood level, we randomly picked 20 loca-
tions on the brain mesh to conduct the source reconstruction.
We set the length of EEG data in each experiment to be 1
second with a 100 Hz sampling rate; thus, the dimension of
EEG data X is 128 by 100. In total, there were 160 exper-
iments (X and Φ pairs): 4 (SNRs) × 2 (neighborhoods) ×
20 (locations). These data sets were used for evaluating the
performance of the algorithms. For deep learning methods,
additional training data was generated with SNR=20 by ran-

Figure 3: Source activation reconstruction comparison under
different SNRs. Top row: 40 dB, middle row: 20 dB, and
bottom row: 10 dB. The size of the activated area is 2 cm.

Figure 4: Source activation reconstruction comparison under
different SNRs. Top row: 40 dB, middle row: 20 dB, and
bottom row: 10 dB. The size of the activated area is 4 cm.

domly activating different source locations. We used a total
training data of 200,000 pairs of X and Φ.
Experimental settings. For the BiLSTM, the hidden layer
contains 3200 LSTM units, connecting the input and output
layers. The FNN has an input layer with a dimension of 128,
and 3 hidden layers with 1280, 1280, and 2560 neurons in
each layer, and the output layer’s dimension is 2052. The
MNE, sLORETA and dSPM algorithms were used with the
default settings from MNE-python (Gramfort et al. 2014).
We applied the MultiTaskLasso (MTL) implementation of
MxNE from the scikit-learn library (Pedregosa et al. 2011),
using `1 in the spatial domain and `2 in the temporal do-
main. Thus, `1,2 norm was used for MTL. The ESI-A∗ al-
gorithm was optimized on (4) with k=7 when the activated
area size is 2 cm and k=17 when the activated area size is
4 cm. The reconstruction results from all algorithms and the
ground truth (GT) based on one activated area are presented,
which is a typical activation pattern in focal epilepsy patients
(Flanagan, Badawy, and Jackson 2014; Sun et al. 2022).

The experiments were conducted on a Windows PC with
i9 CPUs and 64 GB memory, and the deep learning models
were trained using an NVIDIA V100 with 32 GB memory.
Evaluation criteria. We quantitatively evaluated algorithms
based on two metrics: (i) Localization Error (LE): It is
widely used to evaluate the performance of algorithms for
the ESI problem (Sohrabpour et al. 2020), measuring the
geodesic distance between two activated areas using the Di-
jkstra shortest path algorithm. (ii) Area Under Curve (AUC):
It is particularly useful to characterize the overlap between
two activated areas. A better algorithm should have a lower
LE value and a higher AUC value.
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Figure 5: Boxplots when SNR: 10dB and the area size: 4cm.
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Figure 6: The change in error (Y-axis) as a function of k (X-
axis). The true number of activated vertices is 19.

Table 1 presents the detailed comparison results. Figure 3
and Figure 4 show the source reconstruction comparison
of the conventional methods (MNE, sLORETA, dSPM, and
MTL), the deep learning methods (FNN and BiLSTM), and
the proposed algorithm (ESI-A∗). The proposed algorithm,
which did not require training, compared favorably with the
deep learning methods that required tremendous training
data (200,000 samples). When the activated area size is 4 cm
and SNR = 30/20/10 dB, the AUC values of the proposed
algorithm deteriorated slightly compared to the FNN and
BiLSTM. However, the reconstructed sources from FNN
and BiLSTM presented a much larger variance (long tails
in the boxplots in Figure 5), indicating that the reconstruc-
tion sometimes can be far away from the true activated area.
Compared to other conventional methods, the proposed al-
gorithm could render more accurate reconstructions.
The parameter k. The proposed algorithm requires an esti-
mate of the number of vertices in an activated area. We in-
vestigated the change of the optimization error (4) as a func-
tion of k (Figure 6). The true number of activated vertices is
19 (the activated area of size 4 cm). The results showed that
when k≥14, the proposed algorithm can identify the correct
activated vertices. As expected, when SNR is low (e.g., 20
dB), the error gradually decreases after k=10. When SNR is
high (e.g., 40 dB), the error tends to be 0 after k=13.

Evaluations on Real Epilepsy Data
The proposed algorithm was validated on a cohort of 20 pa-
tients with drug-resistant epilepsy who underwent resection

Figure 7: Comparison of reconstructed epileptogenic zones.

Figure 8: Epileptogenic zones for six patients (#2, #3, #7,
#14, #15, and #17) detected by ESI-A∗. The results of the
DeepSIF and the “ground truth” (the resection and seizure
onset zone) can be found in Figure S14 of Sun et al. (2022).

surgery with seizure-free outcomes for at least one year (Sun
et al. 2022). The EEG data and MRI images were collected
at the Mayo Clinic, Rochester, MN. The outcome of the
surgical intervention was scored based on the International
League Against Epilepsy (ILAE) system by physicians with
a follow-up period of 20 ± 9 months. The number of chan-
nels is 75 after removing a reference electrode. Interictal
spikes were extracted from the EEG data, and an averaged
spike was used for seizure onset zone (SOZ) reconstruction.

The reconstructed results for patient #2 (Sun et al. 2022)
are shown in Figure 7. The ground truth can be found in
Figure S14 and Figure 5.A of Sun et al. (2022). The pro-
posed algorithm detected the SOZ and the resection region
accurately. Additional reconstruction results for additional
patients using the proposed method with k=20 are presented
in Figure 8. The ground truth and the results of DeepSIF can
be found in Figure S14 of Sun et al. (2022). The identified
regions by the proposed ESI-A∗ algorithm have a high con-
cordance with the resection and SOZ. For patient #17, the
proposed algorithm succeeded in detecting the ground truth
region, while the result given by DeepSIF was less accurate.

Conclusion
In neuroscience, reconstructing the brain source activation
is fundamental for understanding the brain mechanism and
disorders. We propose a combinatorial search approach by
exploiting the graph-structured sources defined on the brain
mesh, and the proposed algorithm enjoys a provable opti-
mality guarantee. This new algorithm to address the ESI
problem showed good concordance in reconstructing the
underlying source activation in both simulated studies and
epileptogenic area detection for epilepsy patients.

The proposed algorithm requires an estimate of the num-
ber of vertices in an activated area, allowing a series of po-
tential solutions to characterize the possible SOZs. Different
potential solutions, along with the corresponding EEG data
fitting errors and activated sizes, will help neurosurgeons
make better decisions. The proposed algorithm needs to be
further validated on real patient data.
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M. S.; and Kowalski, M. 2013. Time-frequency mixed-
norm estimates: Sparse M/EEG imaging with non-stationary
source activations. NeuroImage, 70: 410–422.
Guo, Y.; Jiao, M.; Wan, G.; Xiang, J.; Wang, S.; and Liu, F.
2022. EEG Source Imaging using GANs with Deep Image
Prior. In 2022 44th Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC),
572–575. IEEE.

Halko, N.; Martinsson, P. G.; and Tropp, J. A. 2011. Find-
ing structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Re-
view, 53(2): 217–288.
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