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Abstract

We present a fully computer-assisted proof system for solving
a particular family of problems in Extremal Combinatorics.
Existing techniques using Flag Algebras have proven power-
ful in the past, but have so far lacked a computational counter-
part to derive matching constructive bounds. We demonstrate
that common search heuristics are capable of finding con-
structions far beyond the reach of human intuition. Addition-
ally, the most obvious downside of such heuristics, namely
a missing guarantee of global optimality, can often be fully
eliminated in this case through lower bounds and stability re-
sults coming from the Flag Algebra approach.
To illustrate the potential of this approach, we study two re-
lated and well-known problems in Extremal Graph Theory
that go back to questions of Erdős from the 60s. Most notably,
we present the first major improvement in the upper bound of
the Ramsey multiplicity of K4 in 25 years, precisely deter-
mine the first off-diagonal Ramsey multiplicity number, and
settle the minimum number of independent sets of size four
in graphs with clique number strictly less than five.

Introduction
Computers and Artificial Intelligence (AI) have always been
an important tool for mathematicians, allowing one to gather
data and extrapolate connections to formulate conjectures,
most notably the conjecture of Swinnerton-Dyer and Birch
(1965), exhaustively execute case analysis too large to be
done by hand, for example to establish the four color theo-
rem (Appel and Haken 1989), or solve convex programming
problems, as was done to prove the Kepler conjecture (Hales
2005). Lately the rigorous formalization and verification of
proofs has also come to the forefront, cf. (Buzzard 2022).
This has opened up the possibility for computers to execute
fully automated reasoning either through traditional heuris-
tics, as was for example done to prove that Robbins alge-
bras are boolean (McCune 1996), or even through Machine
Learning (ML) approaches (Polu et al. 2022).

The use of computer assistance has been particularly fruit-
ful in Extremal Combinatorics, where the primary interest is
to study the behaviour of abstract discrete structures, such
as graphs, with the goal of determining the constructions
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Figure 1: The blow-up sequence of the Schläfli graph is the
unique solution to the off-diagonal (3, 4)-Ramsey multiplic-
ity problem and was found through search heuristics.

that minimize or maximize a given parameter under cer-
tain restrictions. When studying locally defined restrictions
and parameters, the most formalized and successful compu-
tational approach in this field comes in the form of an ap-
plication of Flag Algebras, allowing one to establish bounds
through a double-counting argument by solving Semidefi-
nite Programming (SDP) problems. Razborov (2007) intro-
duced the notion of Flag Algebras, citing both Bondy’s work
on the Caccetta-Häggkvist conjecture as well as Lovász and
Szegedy’s work on graph limits as inspiration. Since then
this approach has been for example applied to make progress
on Turán’s conjecture (Razborov 2010; Falgas-Ravry and
Vaughan 2013), determine the maximum number of five cy-
cles in triangle-free graphs (Grzesik 2012), to establish that
jumps exist for hypergraphs (Baber and Talbot 2011), and
prove a conjecture of Brandt about the spectrum of triangle-
free graphs (Balogh, Clemen, and Lidickỳ 2022).

In many of these problems the counterpart to the bound
given by the Flag Algebra approach is played by an ex-
plicit construction. Such constructions are commonly ob-
tained by hand based on human combinatorial insights, but
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there is a clear desire, as for example explicitly stated by
Pikhurko, Sliačan, and Tyros (2019), for a computer based
approach that is easily applicable to a wide variety of prob-
lems and can supplement and surpass that human intuition.
We show that for many cases the goal of finding construc-
tive bounds can be explicitly stated as a simple discrete op-
timization problem. While a lot of approaches to find so-
lutions to these problems exist and have been used in the
past, we find that metaheuristics, most notably Simulated
Annealing (Kirkpatrick, Gelatt Jr, and Vecchi 1983) and
Tabu Search (Glover 1986, 1989, 1990), are particularly well
suited to the type of problems described above; they are easy
to implement and tune, allow one to quickly add additional
insights into the problem formulation and solution process,
scale far beyond exhaustive search methods and most im-
portantly work very well in practice with limited computa-
tional resources. The biggest downside of using heuristics,
namely the fact that they offer no guarantee that a found so-
lution is in fact globally optimal, is often mitigated or even
fully eliminated in this application; matching Flag Algebra
lower bounds can not only establish that a found solution
is a (not necessarily unique) global optimum, but one can in
many cases also obtain stability results from them, establish-
ing that anything that comes close to the optimal value must
be close to the extremal construction, which in a strong sense
shows the uniqueness of the solution found by the heuristics.
While these search heuristics are well-established in other
areas, they so far appear undervalued as a tool in Extremal
Combinatorics despite a recent surge in interest in obtain-
ing combinatorially relevant constructions through compu-
tational means (Lidickỳ and Pfender 2017; Rowley 2022;
Wagner 2020, 2021).

To illustrate the potential of this approach, we study some
related and well-known problems in Extremal Graph Theory
that go back to questions of Erdős. The first concerns a gen-
eralisation of Ramsey’s well known theorem: knowing that
any graph of large enough order must either contain a clique
or an independent set of some fixed size t, the Ramsey multi-
plicity problem asks how few such cliques and independent
sets an optimal graph must contain. Goodman (1959) gave
an answer for triangles, that is t = 3, but the exact value
still remains unknown even for t = 4. Using the approach
discussed above, we present the first major improvement on
the upper bound of this problem in over 25 years. We also
study a natural off-diagonal variant of this problem, where
one minimizes the number of cliques of size t and the num-
ber of independent sets of size s, and show that for s = 4
and t = 3 this version of the Ramsey multiplicity problem is
minimized precisely by the sequence of unweighted blow-
ups of the Schläfli graph. The final problem we address con-
cerns the minimum number of independent sets of a given
size in graphs of bounded independence number. In partic-
ular, we settle the minimum number of independent sets of
size four in a graph with clique number strictly less than
five, proving that it is uniquely attained by the sequence of
unweighted blow-ups of the unique (3, 5)-Ramsey graph on
13 vertices.

The upper bounds for all three problems were found us-
ing search heuristics by restating the search for these con-

structive bounds as discrete optimization problems. For the
latter two problems the bounds were found in the space of
all graphs of a given fixed order whereas for the traditional
Ramsey multiplicity problem we biased the search by di-
rectly constructing the generating sets of Cayley graphs in
predetermined groups. The matching lower bounds as well
as stability result for the latter two problems were obtained
using the Flag Algebra approach, establishing that the search
heuristics found unique global minima in two of the three
cases.

Contributions The major contributions of our work can
be summarized as follows:

1. We present both significant improvements on the con-
structive upper bound as well as tight bounds with stabil-
ity results for several long-standing and important open
problems in Extremal Graph Theory.

2. We demonstrate that well-established search heuristics
can construct combinatorial bounds that are far out of
reach of human intuition without relying on significant
prior knowledge. In our applications these heuristics also
significantly surpass more recently proposed Machine
Learning (ML) based approaches.

3. We improve the toolset used to derive stability results
from Flag Algebra based proofs in order to show that
several of the constructive bounds found using search
heuristics in fact represent global optima.

Related Literature This research builds and improves
upon a long list of previous work. The Flag Algebra based
SDP approach was originally proposed by Razborov (2007)
and has since been significantly further developed, most
notably by Baber (2011), Vaughan (2013), and Pikhurko,
Sliačan, and Tyros (2019). Some of the most important uses
of this methodology to derive results in Extremal Combina-
torics have already been listed above.

The use of computers to exhaustively generate combi-
natorial structures of a prescribed size has a long history
in Combinatorics, with some of the most important prac-
tical contributions by McKay (1998). The use of exhaus-
tive bounded tree searches, often imbued with a tremendous
amount of theoretical insights, to find optimal constructions
for a particular parameter has also resulted in several signifi-
cant achievements. The most notable works in this area con-
cern the determination of Ramsey numbers, see for example
McKay and Radziszowski (1995), as well as the more re-
cent work of Heule (2018) on the number-theoretical equiv-
alent Schur numbers, resulting in the largest computer-based
proof to date.

The search for Ramsey numbers in fact has many strong
parallels to the problems studied here and the successful use
of Metaheuristics, in particular Simmulated Annealing and
Tabu Search, to obtain lower bounds on them, see for ex-
ample the work of McKay and Radziszowski (1997), moti-
vated our use of these methods. These heuristics for the most
part have been used to directly construct graphs, but our
approach to construct the generating sets of Cayley graphs
does bear some similarities to the work of Exoo (1998).
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Our methodology is also motivated by recent approaches
to theoretical problems in mathematics based on ML. The
work of Wagner (2021) is perhaps most closely related
to this work, suggesting to find explicit counter examples
to open conjectures in Extremal Combinatorics through a
Search Heuristic based on Reinforcement Learning algo-
rithms. This approach was previously proposed in a dif-
ferent context under the name ‘Active Learning’ by Bello
et al. (2016) and was subsequently also further developed
by Roucairol and Cazenave (2022). We experimented signif-
icantly with learning-based approaches as alternatives to the
more traditional Metaheuristics, but while they also found
improved bounds and solutions to the previously described
problems, we found the traditional Metaheuristics not only
drastically easier to implement and tune but also much
more performant, giving better solutions often using orders
of magnitude less compute time. Nevertheless, the use of
ML remains interesting in this field and some recent works
such as those of Davies et al. (2021) give hope that novel
learning-based approaches can open up new possibilities for
computer-assisted conjectures and proofs.

Outline We begin by formally stating the problems and
results regarding the extremal behavior of graphs summa-
rized in the introduction along with additional context in the
next section. We then outline how to formulate the relevant
discrete optimization problems along with the methods we
used to solve them. Afterwards, we will outline Razborov’s
Flag Algebra approach and how it can be applied to estab-
lish stability results, along with some specific improvements
allowing us to derive stability results for our application.
Lastly, we will discuss some additional problems as well as
a broader context and outlook.

Problem Statements and Results
The type of problems that are amenable to our computa-
tional approach are those where one has at least a reason-
able suspicion that one part of a solution consists of a find-
ing a bound derived from a sequence of constructions that is
finitely describable (though possibly involving randomness)
and whose relevant properties are explicitly computable.
The most well established way of obtaining such finitely
describable sequences of constructions in Extremal Graph
Theory, besides random graph models, is through blow-ups;
here the m-fold blow-up of a graph C is the graph C[m] ob-
tained by replacing every vertex with an independent set of a
size m and connecting two vertices from different indepen-
dent sets if and only if the original vertices were adjacent.
We will also refer to this as the unweighted blow-up of C
since every vertex gets replaced by an independent set of
equal size. Many generalizations and variants of this type of
construction exist throughout all areas of Extremal Combi-
natorics.

The family described above covers a surprising amount of
problems, for example covering many, if not most, problems
in which the Flag Algebra approach has found application,
i.e., those where the parameter to be optimized is describ-
able in terms of densities of smaller structures. In fact the
larger meta question for many of these problems is to decide

whether or not the optimum value is (uniquely) achieved
by a sequence coming from some finite construction. Fa-
mous examples, where this is still undecided but current best
bounds come from finitely describable construction, are the
capset problem (Edel 2004; Ellenberg and Gijswijt 2017),
the Sunflower conjecture by Erdős and Rado (Alweiss et al.
2020), Turán’s (3, 4)-conjecture (Razborov 2010; Falgas-
Ravry and Vaughan 2013), and the Shannon Capacity of odd
cycles (Mathew and Östergård 2017). Other examples in-
clude a conjecture of Brandt on the sum of the first and last
eigenvalue in triangle-free graphs (Csikvári 2022), the ho-
momorphism threshold for odd cycles (Ebsen and Schacht
2020), and the equivalent problems from Additive Combi-
natorics to the problems studied here (Cameron, Cilleruelo,
and Serra 2007; Wolf 2010; Lu and Peng 2012). Let us now
formally introduce the problems we studied in order to illus-
trate the potential of our approach.

Ramsey multiplicity We denote by kt(G) the number
of cliques on t vertices in a graph G and let kt(n) =
min{kt(G) + kt(G) : |G| = n}. We know by Ramsey’s
theorem that kt(n) > 0 when n is sufficiently large depend-
ing on t and since kt(n) is increasing with n, we can study

ct = lim
n→∞

kt(n)/

(
n

t

)
.

The result of Goodman (1959) implies that c3 = 1/4. Since
this is the same value as given in expectation by the Erdős-
Rényi random graph G(n, 1/2), Erdős (1962) conjectured
that ct = 21−t(t−1)/2 holds for arbitrary t. This was soundly
rejected by Thomason (1989) through explicit constructions
based on unweighted blow-ups of for any t ≥ 4. For
t ∈ {4, 5} in particular, Thomason (1997) later also found
the significantly improved bounds of c4 < 0.03029 and
c5 < 0.001720, the former of which was slightly improved
by Even-Zohar and Linial (2015) to yield c4 < 0.03028.
Here we present the following improved upper bounds.
Theorem 1. We have c4 < 0.03015 and c5 < 0.001708.

These bounds are respectively established through the se-
quence of unweighted blow-ups of graphs on 768 and 192
vertices. Regarding lower bounds, Giraud (1979) proved
that c4 ≥ 1/46 using traditional means, see also the up-
dated version of this proof due to Wolf (2010), and Nieß
(2012) and Sperfeld (2011) independently used the Flag Al-
gebra approach to establish a lower bound of around 1/35 >
0.028571. This was later improved by Grzesik et al. (2020)
to 0.0296. To the best of our knowledge, no formal lower
bound has been published for c5, but using the Flag Algebra
approach, we obtained c5 ≥ 0.001524.

Off-diagonal Ramsey multiplicity There is a stark con-
trast between the difficulty of the Ramsey multiplicity prob-
lem for t = 3, which was solved in the 50s, and for t = 4,
which is still open today. To get a grip on the latter, we
propose to investigate a natural off-diagonal version of this
problem by considering

cs,t = lim
n→∞

min

{
ks(G)(

n
s

) +
kt(G)(

n
t

) : |G| = n

}
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for arbitrary s, t ≥ 2. A similar problem has also very re-
cently been studied by Behague, Morrison, and Noel (2022).
The value of c2,t follows from a result of Bollobás (2004) for
every t ≥ 3. Here we establish the first exact results when
t > s ≥ 3 and also show the stability of a unique construc-
tion on 27 vertices.
Theorem 2. We have c3,4 = 689 · 3−8 and the problem is
perfectly stable with respect to the Schläfli graph.

The upper bound is given by the sequence of symmetric
blow-ups of the Schläfli graph, a strongly regular graph on
27 vertices shown in Figure 1. The notion of perfect stability
was introduced by Pikhurko, Sliačan, and Tyros (2019) and
strengthens the standard notion of stability. The lower bound
and stability result are established using the Flag Algebra ap-
proach. Note that we can also show that c5,3 = 24011 · 3−12
where the upper bound is given by the sequence of symmet-
ric blow-ups of the complement of the Schläfli graph, but we
were unable to establish stability in this case.

As already alluded to at the beginning of this section, a
central question underlying the Ramsey multiplicity prob-
lem is whether or not a tight upper bound can be attained by
the sequence of (possibly weighted) blow-ups of some finite
sized graph. For c3 this holds true as the bound of Goodman
is attained by, among other constructions, the sequence of
blow-ups of K2. Already for c4 this question remains unan-
swered.

Graphs with bounded clique number Another question
related to the Ramsey multiplicity problem that goes back to
Erdős concerns

gs,t = lim
n→∞

min{ks(G) : |G| = n, kt(G) = 0}/
(
n

s

)
for arbitrary s, t ≥ 2. Note that cs,t ≤ min{gs,t, gt,s} for
any s, t ≥ 2. We trivially have gs,2 = 1 and the fact that
g2,t = 1/(t − 1) is implied by Turán’s theorem. In a clear
parallel to the conjecture mentioned above, Erdős (1962)
asked if the upper bound given by the Turán graphs Tt−1(n)
is asymptotically tight in general. This holds for triangles,
that is when s = t = 3, as an easy consequence of the re-
sult of Goodman (1959), but Nikiforov (2001) showed that
this upper bound can be sharp only for a finite number of
pairs s, t ≥ 3. Das et al. (2013) as well as Pikhurko and
Vaughan (2013) established tight values for g3,t and gs,3
when 4 ≤ s, t ≤ 7, confirming Erdős’ intuition for the for-
mer and disproving it for the latter. We present one further
tight value for gs,t that improves upon the bound given by
Turán graphs and also show that stability holds with respect
to a particular graph on 13 vertices.
Theorem 3. We have g4,5 = 29 · 13−3 with perfect stability
with respect to the unique (3, 5)-Ramsey graph of order 13.

The unique (3, 5)-Ramsey graph of order 13 can be con-
structed as the Cayley graph on Z13 whose edge relations are
given by the cubic-non-residues. The upper bound is given
by the sequence of unweighted blow-ups of that graph. The
lower bound as well as the stability results was established
using the Flag Algebra approach. Note that Pikhurko and
Vaughan (2013) also found a construction using weighted

x

c3,4(x)

(
0, 3

25

)
- looped complement of C5

(
3

200 ,
6347
64000

)
- 40 vertices

(
1
36 ,

577
6912

)
- 24 vertices

(
41
729 ,

320
6561

)
- Schläfli graph(

563
8192 ,

2469
65536

)
- 128 vertices(

437
6272 ,

33
896

)
- 112 vertices(

1
9 , 0
)

- K3

Figure 2: The known lower bounds and constructions for
c3,4(x). The blue line is the lower bound c3,4 ≥ 689 · 3−8
and the blue dotted line is an additional lower bound, both
obtained by Flag Algebra. The red dots represent optimal
constructions, where the ones on the axis were known be-
fore (Das et al. 2013). The grey dots are additional construc-
tions that we found, where the dashed grey lines merely in-
dicate that these are in convex position.

blow-ups that bounds g4,4 away from the value given by
T3(n) and that is conjectured to be tight.

Understanding the full spectrum Both the study of cs,t
and gs,t are part of a broader question in which one would
like to understand the full extremal tradeoff between the
number of Kt in a graph and the number of Ks in its com-
plement. More precisely, we are interested in

cs,t(x) = lim
n→∞

min

{
ks(G)(

n
s

) : |G| = n,
kt(G)(

n
t

) ≤ x} ,
for s, t ≥ 2 and x ∈ [0, 1]. Clearly cs,t(0) = gs,t and
cs,t(x) = 0 if and only if x ≥ gt,s. This function was com-
pletely determined for s = 2 and arbitrary t by Razborov
(2008), Nikiforov (2001), and a famous result of Reiher
(2016). A simple construction also shows that the lower
bound by Goodman for s = t = 3 is tight in this more
general setting, establishing that c3,3(x) = 1/4 − x for all
x ∈ [0, 1/4].

Very little is known about the shape of cs,t(x) when s 6=
t ≥ 3, though we can show that it is decreasing and differ-
entiable almost everywhere. For s = 3 and t = 4, the newly
determined value of c3,4 implies c3,4(41 · 3−6) = 320 · 3−8
and the previously known values of g3,4 and g4,3 imply that
c3,4(0) = 1/9 and c3,4(3/25) = 0. We can also show that
c3,4(x) is not differentiable at 41 · 3−6 using an additional
lower bound using the Flag Algebra approach. This indicates
that the Schläfli graph determines one of a number of ‘ex-
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tremal points’ of the curve c3,4(x).1 We determined several
additional constructions establishing upper bounds on c3,4
at particular values of x and summarize our findings in Fig-
ure 2.

Constructive Bounds and Metaheuristics
As discussed previously, we are interested in studying prob-
lems where the goal of determining constructive bounds
can be restated as an appropriate optimization problem. The
problems introduced in the previous section fall into this cat-
egory because of the following result of Thomason (1989).
Lemma 4. For any graph C of order n and for m ∈ N
going to infinity, we have

kt(C[m]) =
t! kt(C)

nt

(
mn

t

)
(1 + o(1))

as well as

kt(C[m]) =

∑t
j=1 j!S(t, j) kj(C)

nt

(
mn

t

)
(1 + o(1)).

Here S(t, j) is the Stirling number of the second kind.
This lemma is an immediate consequence of the fact that the
fraction of not necessarily injective homomorphic copies of
cliques of size t in a graph stays the same under blow-up.
The number of homomorphic copies asymptotically matches
the number of injective copies, accounting for the 1 + o(1)
term. This statement also readily generalizes to arbitrary
graphs and not just cliques, as well as to weighted blow-ups
and even quantum graphs.

From a more practical perspective, Lemma 4 means that
we not only have a source of finitely describable construc-
tions in the form of blow-ups of graphs, but we also have an
efficient way of computing the necessary properties of these
constructions. This means we can derive an upper bound on
cs,t from any graph C, as well as an upper bound on gs,t
from any graph C with ω(C) ≤ t− 1.

Given some fixed order n, we therefore associate the bi-
nary vector s = (s1, . . . , sN ) ∈ {0, 1}N where N =

(
n
2

)
with the graph Cs given by the vertex set {1, . . . , n} and
edge set {ij : i < j, s(j−1

2 )+i = 1} and are interested in the
optimization problem

min
s∈{0,1}N

s∑
j=1

S(t, j)nj kj(Cs)

nt
+ λ

nt kt(Cs)

nt
. (1)

Here nj is the falling factorial. We set λ = 1 when we are
interested in bounds for cs,t and when deriving bounds for
gs,t the hard constraint kt(Cs) = 0 is adressed through a
Lagrangian multiplier, i.e., some large enough λ� 1.

While the difficulty of finding a good solution to Equa-
tion (1) is primarily governed by the number N of vari-
ables used to construct the graph, the quality of any solution,

1We are being intentionally vague here with our notion of ex-
tremal points. Most likely we would expect there to be a, possibly
infinite, set of points x in [0, 1] at which c3,4(x) is not differen-
tiable and which correspond to a change in the underlying graph
construction.

at least for the motivating Ramsey multiplicity problem of
K4 problem, seems to primarily depend on the number n
of vertices. Since in the graph space N is quadratic in n,
we also considered a variant of this optimization problem
in which we bias the search space towards Cayley graphs,
which are easily constructed and where the number of vari-
ables only grows linearly with the order of the graph. That
means for a fixed finite and abelian group G and a set
S ⊆ G \ {1} satisfying S = S−1, the corresponding Cay-
ley graph C = C(G, S) has vertex set G and two vertices
g1, g2 are connected by an edge if g1s = g2 for some s ∈ S.
A state s ∈ {0, 1}N represents the generating set

⋃
sA=1A

where each subset A = {g, g−1} for g ∈ G corresponds to
an entry sA in s. This means that N is between |G|/2 and
|G| − 1. Denoting the Cayley graph constructed this way
by C = C(s), the relevant cost function is again given by
Equation (1).

How to solve the optimization problem Regardless of
whether a vector s represents a graph of a fixed order n or a
Cayley graph of a fixed group G, the cost function implied
by Equation (1) is efficiently computable due to Lemma 4.
Many approaches to solve this optimization problem exist,
though methods with guarantees of finding an optimal so-
lution quickly hit a limit once the order n or group G be-
comes too large. However, since the early 80s a plethora of
heuristically motivated methods have been suggested to pro-
vide good feasible solutions to NP-hard optimization prob-
lems. In particular for combinatorial optimization problems
with discrete search spaces, many Metaheuristics have been
proposed that require little to no domain-specific knowl-
edge. We will briefly introduce perhaps the two most well-
established methods and refer the interested reader to the
handbook of Gendreau, Potvin et al. (2010) for further infor-
mation on this subject. We also note that we already briefly
discussed the efficacy of more recent ML-based approaches
for our particular application in the introduction.

Simulated Annealing (SA) was originally proposed by
Kirkpatrick, Gelatt Jr, and Vecchi (1983) and is a proba-
bilistic technique that can be interpreted as a modified lo-
cal search, that attempts to avoid getting trapped in a lo-
cal minimum early on while still ultimately being driven to
better and better states. To more precisely describe SA, let
c : 0, 1N → R denote some cost function we are trying to
minimize and N : {0, 1}N → P({0, 1}N ) some notion of
neighborhoods of the states. We restricted ourselves to con-
sidering states as neighboring if their Hamming distance is
1. The algorithm starts with a randomly initialized state s0
and then executes a fixed number of iterations I where in
each iteration 1 ≤ i ≤ I it picks a candidate state sc uni-
formly at random from N (si−1) and accepts it as si with
probability

min

(
exp

(
c(si−1)− c(sc)

ti

)
, 1

)
, (2)

where (ti)1≤i≤I is a sequence of decreasing temperatures in
R>0. If a state is rejected we reuse si−1 as si. A common
choice for (ti)1≤i≤I consists of linearly decaying it from
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some tuned initial value to 0 over the runtime of the algo-
rithm.

We note that is unclear how critical the individual de-
sign decisions of SA are for its efficacy; Dueck and Scheuer
(1990) for example proposed a variant in the form of Thresh-
old Accepting (TA) that completely avoids the probabilistic
nature of SA along with Metropolis’ criterion, that is Equa-
tion (2). For our particular purposes it is also computation-
ally relatively cheap to determine c(s′) for any s′ ∈ N (s)
compared to determining the cost of a single state. This al-
lows us to implement a version of SA that avoids rejecting
states by directly sampling the candidates from an appropri-
ate distribution dictated by Metropolis’ criterion. This has
previously been suggested by Greene and Supowit (1986).

Tabu Search is an arguably even simpler search heuris-
tic than SA that was originally suggested by Glover (1986,
1989, 1990). Like SA it can be seen as a modified local
search that tries to avoid getting stuck in local optima and
cycles. We again start with a randomly initialized state s0
and require a notion of neighborhood N . We execute I it-
erations where in each each iteration 1 ≤ i ≤ I we pick
the neighboring state s ∈ N (si−1) that has the lowest asso-
ciated cost and has not recently been visited, regardless of
whether it improves upon c(si−1). To make this more pre-
cise, if we let ` ∈ N denote a fixed history length, we choose
si = argmins∈N (si−1)\{si−`,...,si−1} c(s).

There are of course again many degrees of freedom when
implementing this algorithm. One liberty we took in this
case was to modify the way the history is implemented:
rather than storing a history of the last ` states and exclud-
ing those from the update, we simply store a list of the last
` modified bits from a state and exclude any state that dif-
fers from the current one in one of those bits. This slightly
increases the number of states excluded but drastically de-
creases the computational and implementation effort. We
should also note that this method, like SA, is commonly ex-
ecuted in parallel for several different initial states.

How our constructions were found We implemented all
search methods in Python 3.8 and logged the results us-
ing Weights & Biases (Biewald 2020). We also relied
on the GAP (GAP) component in SageMath for the compu-
tations required for the Cayley graphs. We already stated the
constructions used to establish the results regarding c3,4 and
g4,5. Both of these constructions were found by running ei-
ther of the two search heuristics in the graph space. We note
that Tabu Search was significantly faster at finding these so-
lutions compared to SA. They a posteriori turned out to be
particular graphs that have previously already been observed
to have particular properties of interest.

For an upper bound to c4, we ran heuristic searches to
construct graphs on up to 40 vertices and the smallest graph
we found whose blow-up sequence establishes a value be-
low that original conjectured by Erdős was of order 33.
The smallest previously known such graph was described
by Thomason (1989) and was of order 36. We also found a
graph on 32 vertices whose weighted blow-up gives a value
slightly below 1/32. Given that the blow-up sequences of
small graphs seem to yield little of interest, we considered

Cayley graphs next. The best previous blow-up construction
for c4 can be described as a Cayley graph in C×23 ×C

×5
2 (or-

der 288) and a Tabu Search in that particular group yielded
no improvement. However, already in C3×C×62 (order 192)
we were able to find a graph whose blow-up sequence im-
proves upon the value found by Thomason (1997) and Even-
Zohar and Linial (2015), giving an upper bound of 0.03027.
Going up toC3×C×82 (order 768) produced the graph whose
blow-up sequence gives the upper bound stated in Theo-
rem 1.

We note that there seems to be no particular significance
to the fact that we derived these constructions in groups de-
fined only through direct products. In fact, running the Tabu
Search on all groups of order at most 192 revealed (1) that
in general good constructions seem to be found in groups
of order 3 · 2n and (2) many groups of that order perform
significantly better than the group C3 ×C×n2 . For groups of
order 192 for example the best value we found was around
0.03021. Unfortunately we were unable to determine any
patterns indicating which groups might be preferable when
going to groups of order 384 or 768. The sheer number of
these groups and the amount of cliques to consider unfortu-
nately makes it impossible to run a Tabu Search on anything
more than a small selection of them

Regarding the value for c5, the previous best construction
can be described as the blow-up sequence of a Cayley graph
in C3 × C×62 (order 192). A search run on Cayley graphs
in this group yielded the slight improvement presented in
Theorem 1. Due to the fact that we need to consider cliques
of size 5, we were unable to go up Cayley graphs of order
384 or 768 as we did for c4.

Flag Algebra Proofs
Razborov (2007) suggested phrasing a particular subset of
problems in Extremal Combinatorics that deals with the re-
lation of asymptotic densities of combinatorial structures in
the language of finite model theory in order capture and de-
scribe the rich algebraic structure underlying many of the
techniques commonly used in this field. One particular ap-
plication of his approach allows us to derive lower bounds
for precisely the type of minimizations problems of sub-
graph densities studied in this paper by solving an SDP. This
method has found significant use over the last decade as dis-
cussed in the introduction. There exist not only several very
good introductions to the topic (Falgas-Ravry and Vaughan
2013; Pikhurko and Vaughan 2013; Silva, Sato et al. 2016)
but also a tool in the form of flagmatic (Vaughan 2013)
to apply this method with relative ease.

Let us briefly describe the underlying optimization prob-
lem using the example of graphs. For any integer m ∈ N,
we let Gm denote the family of graphs of order m, possibly
avoiding a small set of forbidden subgraphs as for example
when dealing with gs,t. We are interested in solving

max
Q�0

min
H∈Gm

ks(H)(
m
s

) +
kt(H)(

m
t

) − 〈Q, DH〉 , (3)

where DH a matrix representing particular pair densities of
smaller subgraphs in H ∈ Gm and the maximum is over
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positive semidefinite matrices Q. The rows and columns of
Q and DH are indexed by so-called flags, which are cer-
tain partially labelled graphs. While in theory this can po-
tentially give the correct answer to many open problems, the
main bottleneck for the quality of the bound the SDP solver
can produce is predominantly determined by the size of the
problem formulation, i.e., most significantly by the choice
of m. Currently the largest formulations realistically solv-
able by standard solvers such as CSDP (Borchers 1999) and
SDPA (Yamashita et al. 2012) are obtained for m = 8.

We employ this to obtain the lower bounds for our results,
in particular, for c3,4 in Theorem 2 and for g4,5 in Theo-
rem 3. As these two lower bounds match the upper bounds
given by the constructions that we found it is natural to ask
whether the construction is unique and stability holds, i.e.,
if anything that comes close to the optimal value must be
close to the extremal construction. This is of particular inter-
est, because this also implies that the constructions found by
the heuristics are in fact unique global minima. Statements
like this can usually be derived by extracting additional in-
formation from a Flag Algebra based proof and appealing
to the Induced Removal Lemma of Alon et al. (2000). The
process to do so has been formalized by Pikhurko, Sliačan,
and Tyros (2019), who formulated several sufficient but not
necessary criteria to establish various forms of stability. Es-
sentially, these require that the extremal construction is such
that knowing all subgraph densities up to a certain size m
is sufficient for forcing the whole graph to be a blow-up
of it. We improved these criteria in order to apply them to
the problems studied here and to obtain the stability results
stated in Theorem 2 and Theorem 3.

Discussion and Outlook
The main goal of this paper was to use a computer driven
search to obtain constructions of graphs with small density
of cliques of order s and density of independent sets of or-
der t. The most important question regarding the Ramsey
multiplicity of K4 is less its exact value, but rather whether
it is given by the blow-up of a finite graph. We believe
that our answer to the c3,4 problem, where the density of
monochromatic K4 are counted in one color and the density
of monochromaticK3 is counted in the other color, provides
some support to the possibility that the value of c4 will also
be determined by the blow-up sequence of a single graph.
However, if this indeed was the case, then our efforts for
Theorem 1 suggest that such a construction would have to be
truly massive. Of course, we heavily relied on Cayley graph
constructions in order to reduce our search space and there
might be other types of constructions resulting in improved
bounds and more compact descriptions.

Regarding future work that could build upon the presented
tools, we believe there are three major points of interest:

1. Using different methodologies besides the mentioned
search heuristics, the upper bounds derived from the op-
timization problems relating to c4 and c5 could be further
improved. In fact, we believe that these problems could
also serve as a possible source of benchmarks for these
types of heuristics in the future.

2. Using different constructions, i.e., generalizing the no-
tion of blow-ups or using other constructions besides
Cayley graphs as the base, further improvements or even
solutions to c4 and c5 could be obtained. It is quite likely
that an immediate improvement can be gained from the
found constructions using an iterative blow-up construc-
tion as done by Even-Zohar and Linial (2015). More
generally, by incorporating such an iterative (and pos-
sibly weighted) construction into the optimization prob-
lem and using quantum graphs or graphs where edges
are assigned probabilities rather than binary states as the
base, further significant improvements could be found. It
is also possible that the structure underlying the groups
giving good constructions can be better understood, al-
lowing one to more directly bias the search towards rele-
vant constructions in this way.

3. As previously stated, there is a large number of important
problems in Extremal Combinatorics besides the ones
explicitly studied here, where the best current bounds are
obtained by concrete and finitely describable construc-
tions. It would be of great interest to see the methodolo-
gies applied here to the Ramsey Multiplicity problem and
its variants also find application there.

We hope that, by making our results and tools available to
the research community, this work will further stimulate in-
terest both in these types of problems and more broadly to
computational approaches to theoretical problems in mathe-
matics.
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Csikvári, P. 2022. Note on the sum of the smallest and
largest eigenvalues of a triangle-free graph. Linear Algebra
and its Applications.
Das, S.; Huang, H.; Ma, J.; Naves, H.; and Sudakov, B. 2013.
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