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Abstract

Machine learning models have liberated manpower greatly in
many real-world tasks, but their predictions are still worse
than humans on some specific instances. To improve the per-
formance, it is natural to optimize machine learning models to
take decisions for most instances while delivering a few tricky
instances to humans, resulting in the problem of Human As-
sisted Learning (HAL). Previous works mainly formulated
HAL as a constrained optimization problem that tries to find
a limited subset of instances for human decision such that the
sum of model and human errors can be minimized; and em-
ployed the greedy algorithms, whose performance, however,
may be limited due to the greedy nature. In this paper, we
propose a new framework HAL-EMO based on Evolutionary
Multi-objective Optimization, which reformulates HAL as a
bi-objective optimization problem that minimizes the num-
ber of selected instances for human decision and the total er-
rors simultaneously, and employs a Multi-Objective Evolu-
tionary Algorithm (MOEA) to solve it. We implement HAL-
EMO using two MOEAs, the popular NSGA-II as well as the
theoretically grounded GSEMO. We also propose a specific
MOEA, called BSEMO, with biased selection and balanced
mutation for HAL-EMO, and prove that for human assisted
regression and classification, HAL-EMO using BSEMO can
achieve better and same theoretical guarantees than previ-
ous greedy algorithms, respectively. Experiments on the tasks
of medical diagnosis and content moderation show the su-
periority of HAL-EMO (with either NSGA-II, GSEMO or
BSEMO) over previous algorithms, and that using BSEMO
leads to the best performance of HAL-EMO.

Introduction
To solve complex real-world problems, one often needs hu-
man experts to make decisions, which, however, has several
limitations. For example, some decisions with significant
consequences require to be made quickly, while the expert
resources may be in short supply. Taking medical diagnosis
as an example, patients may need to wait for months to be di-
agnosed by a specialist. Furthermore, the massive decisions
to be made may increase the tiredness of experts, affecting
the quality of decision-making. Taking content moderation
as an example, reviewers of social network platforms need
to review a large number of comments every day to check
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whether these comments satisfy some requirements (e.g., no
racial or sex discrimination), while their fatigue will proba-
bly make some non-compliant comments overlooked.

Machine learning models, which are trained from data,
can make decisions automatically, and have achieved signifi-
cant successes, liberating manpower greatly. Though achiev-
ing or even exceeding the average performance of human
experts, the machine models may still make worse decisions
than humans on some instances. HAL is then naturally intro-
duced (Raghu et al. 2019), whose goal is to develop machine
learning models that are optimized to take decisions for most
instances, and outsource the remaining ones to humans. By
outsourcing a small number of tricky instances to human ex-
perts for decision-making, HAL can reduce the difficulty of
model training, and lead to the performance improvement
without using too many expert resources.

HAL is quite different from active learning (Sabato and
Munos 2014; Hashemi et al. 2019) and human-machine col-
laboration (Tschiatschek et al. 2019; Kamalaruban et al.
2019). The goal of active learning is to select a valuable
subset of instances for human labeling, such that the trained
supervised model can have a good generalization ability. Ac-
tive learning requires the trained model to perform well over
the entire instance space, while HAL only requires that it
can perform well on those instances similar to that assigned
to the machine during training, while delivering the other
instances to human experts. Human-machine collaboration
focuses more on the interaction between machine and hu-
man, where the model training may need the help of humans,
while HAL is mainly to decide which instance is suitable for
model prediction and which is suitable for human prediction.

Most previous works usually develop a heuristic policy
for deciding which instance should be outsourced to hu-
mans (Raghu et al. 2019; Wilder, Horvitz, and Kamar 2020;
Mozannar and Sontag 2020; Bordt and von Luxburg 2020).
For example, Raghu et al. (2019) proposed two algorithms
for human assisted classification, i.e., triage based on algo-
rithmic uncertainty and predicted error. The former trains
the classification model on the whole training set and out-
sources to humans the top k test instances with the highest
classification uncertainty of the model. The latter also trains
the classification model on the whole training set, but out-
sources to humans the top k test instances with the highest
difference between the prediction of models and humans.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12453



Recently, some HAL algorithms with theoretical guaran-
tees have been proposed (De et al. 2020, 2021). HAL is for-
mulated as a constrained optimization problem that tries to
find a limited subset of instances for human decisions such
that the sum of model and human errors can be minimized.
For human assisted ridge regression, where the model is
ridge regression, De et al. (2020) proved that the objective
function (i.e., the sum of model and human errors) satisfies
the α-approximately submodular property, and then applied
the greedy algorithm (Gatmiry and Gomez-Rodriguez 2018)
achieving an (1 + 1

1−α )
−1-approximation ratio, where 0 ≤

α ≤ 1. For human assisted Support Vector Machine (SVM),
De et al. (2021) showed that the objective function can be
rewritten as the difference of a monotone γ-approximately
submodular function g and a modular function c, and then
applied the distorted greedy algorithm as well as its stochas-
tic variant (Harshaw et al. 2019) that can achieve an approx-
imation guarantee of (1− e−γ) · g(Xopt)− c(Xopt), where
0 ≤ γ ≤ 1 and Xopt denotes an optimal solution.

The above-mentioned algorithms with theoretical guar-
antees mainly employ the greedy procedure for optimiza-
tion, whose performance, however, may be limited due
to the greedy nature. In this paper, we propose a new
framework based on Evolutionary Multi-objective Opti-
mization (Knowles, Watson, and Corne 2001; Friedrich and
Neumann 2015; Qian, Yu, and Zhou 2015), briefly called
HAL-EMO, which reformulates HAL as a bi-objective op-
timization problem that minimizes the size of the selected
subset of instances for human decision and an error-related
objective simultaneously. That is, HAL-EMO tries to opti-
mize the performance of the human assisted model while
requiring as few human resources as possible. HAL-EMO
can be equipped with any MOEA to solve this bi-objective
problem, and we employ the popular NSGA-II (Deb et al.
2002) as well as the theoretically grounded GSEMO (Lau-
manns, Thiele, and Zitzler 2004). Empirical results on the
tasks of medical diagnosis and content moderation show that
using either NSGA-II or GSEMO, HAL-EMO performs bet-
ter than previous algorithms.

To further improve the performance of HAL-EMO, we
design a specific MOEA called BSEMO, employing a biased
selection strategy and a balanced mutation operator. For hu-
man assisted ridge regression, we prove that HAL-EMO us-
ing BSEMO achieves an approximation ratio of 1−e−(1−α),
which is better than (1+ 1

1−α )
−1 of the greedy algorithm (De

et al. 2020). For human assisted SVM, it achieves the same
approximation guarantee of (1−e−γ)·g(Xopt)−c(Xopt) as
the distorted greedy algorithm (De et al. 2021). Experiments
on medical diagnosis and content moderation show that us-
ing BSEMO can lead to the best performance of HAL-EMO.

Human Assisted Learning
Let V = {v1, v2, . . . , vn} denote the training data set, where
vi = (xi, yi), xi is the i-th instance and yi is the correspond-
ing target, which can be continuous or take a finite number
of categories, corresponding to regression or classification.
We use c(xi, yi) to denote the human error on the instance
(xi, yi), and ℓ(w,xi, yi) to denote the error of the machine

learning model with the parameter vector w.
As presented in Definition 1, HAL is to select a lim-

ited subset X of instances for human decision and deliver
the remaining ones for a machine learning model, such
that the sum of human and machine learning model errors
can be minimized. The human error on X is represented
as

∑
(xi,yi)∈X c(xi, yi). The error of the machine learning

model with a specific parameter vector w on the remain-
ing instances is represented as

∑
(xi,yi)∈V \X ℓ(w,xi, yi).

Note that the machine learning model can be optimized si-
multaneously by adjusting w, and thus its error is actually
minw

∑
(xi,yi)∈V \X ℓ(w,xi, yi).

Definition 1 (Human Assisted Learning). Given a training
data set V , a human error function c, an error function ℓ of
machine learning model (whose parameter vector is denoted
as w), and a budget k, to select a subset X ⊆ V such that

argmin
X⊆V

( ∑
(xi,yi)∈X

c(xi, yi) + min
w

∑
(xi,yi)∈V \X

ℓ(w,xi, yi)
)

s.t. |X| ≤ k.

Next, we will introduce two specific HAL problems, hu-
man assisted ridge regression and SVM, where the machine
learning models are ridge regression and SVM, respectively.

Human Assisted Ridge Regression
When the machine learning model is ridge regression, the
model error ℓ(w,xi, yi) w.r.t. a specific parameter vector
w can be represented by (yi − xT

i w)2 + λ · ∥w∥22, which
has incorporated the regularization term in model training.
Let Xc = V \ X denote the complement of X in V . Let
yXc denote the subvector of y = [y1, . . . , yn]

T indexed by
Xc, and XXc denote the submatrix formed by the columns
of X = [x1, . . . ,xn] indexed by Xc. The model error on
Xc, i.e.,

∑
(xi,yi)∈Xc((yi − xT

i w)2 + λ · ∥w∥22), can be
minimized by setting the parameter vector to (λ|Xc|I +
XXcXT

Xc)−1XXcyXc , where I is an identity matrix. Thus,
the total error (i.e., the sum of human and model errors) of a
subset X ⊆ V in Definition 1 can be represented by

error(X) =
∑

(xi,yi)∈X
c(xi, yi) + yT

XcyXc

− yT
XcXT

Xc · (λ|Xc|I+XXcXT
Xc)−1XXcyXc .

By equivalently maximizing − log(error(X)), human as-
sisted ridge regression can be defined as follows.
Definition 2 (Human Assisted Ridge Regression (De et al.
2020)). Given a training data set V , a human error function
c, and a budget k, to select a subset X ⊆ V such that

argmaxX⊆V − log(error(X)) s.t. |X| ≤ k. (1)

Human Assisted Support Vector Machine
When the machine learning model is SVM with parameters
w and b, the model error ℓ(w, b,xi, yi) can be represented
by [1−yi(wTΦ(xi)+b)]++λ∥w∥22, where Φ(·) denotes a
given feature transformation, [·]+ = max{0, ·} denotes the
hinge loss function, and λ is a given regularization parame-
ter. Given a subset X , the optimal parameters (denoted as
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w∗(Xc) and b∗(Xc)) for minimizing the model error on
Xc, i.e.,

∑
(xi,yi)∈Xc

(
[1−yi(wTΦ(xi) + b)]++λ∥w∥22

)
,

can be found in polynomial time due to the convexity.
Assume that the human error on the i-th instance (xi, yi)

can be represented by [1−yih(xi)]+, where h(·) ∈ [−H,H]
is the (normalized) score provided by human, and H > 0 is
a constant. Given a subset X ⊆ V , by applying the optimal
parameters w∗(Xc) and b∗(Xc), the total error in Defini-
tion 1 can be represented by

error(X) =
∑

(xi,yi)∈X

[1−yih(xi)]+ + λ∥w∗(Xc)∥22 · |Xc|

+
∑

(xi,yi)∈Xc
[1− yi(w

∗(Xc)TΦ(xi) + b∗(Xc))]+.

Let c(X) =
∑

(xi,yi)∈X [1− yih(xi)]+ and

g(X) = c(X)− error(X) + λ∥w∗(V )∥22 · |V |

+
∑

(xi,yi)∈V
[1− yi(w

∗(V )TΦ(xi) + b∗(V ))]+,

where w∗(V ) and b∗(V ) correspond to the optimal param-
eters when Xc = V , i.e., all instances in V are used for
model training. As λ∥w∗(V )∥22 · |V | +

∑
(xi,yi)∈V [1 −

yi(w
∗(V )TΦ(xi) + b∗(V ))]+ is a constant w.r.t. X , mini-

mizing error(X) is equivalently maximizing g(X)− c(X).
Human assisted SVM then can be defined as follows.
Definition 3 (Human Assisted SVM (De et al. 2021)).
Given a training data set V , a human score function h, and
a budget k, to select a subset X ⊆ V such that

argmaxX⊆V g(X)− c(X) s.t. |X| ≤ k. (2)

Approximate Submodularity
We have shown that HAL can be formulated as optimizing a
set function (e.g., − log(error(X)) or g(X)− c(X)) under
the size constraint |X| ≤ k. Here we introduce some prop-
erties of set functions, which will be used in our analysis.

Let R denote the set of reals. Given a ground set V =
{v1, v2, . . . , vn}, a set function f : 2V → R maps any sub-
set of V to a real value. A set function f is monotone if
∀X ⊆ Y : f(X) ≤ f(Y ), and is submodular (Nemhauser,
Wolsey, and Fisher 1978) if ∀X ⊆ Y, v /∈ Y ,

f(X ∪ {v})− f(X) ≥ f(Y ∪ {v})− f(Y ); (3)

or equivalently ∀X ⊆ Y ⊆ V ,

f(Y )− f(X) ≤
∑

v∈Y \X

(
f(X ∪ {v})− f(X)

)
. (4)

Eq. (3) intuitively represents the diminishing returns prop-
erty, i.e., the benefit of adding an item to a set will not in-
crease as the set extends. A set function f is modular if
Eq. (3) or Eq. (4) holds with equality. For a modular function
f , it holds that ∀X ⊆ V : f(X) =

∑
v∈X f({v}).

For a general set function f : 2V → R, several notions of
approximate submodularity have been introduced to mea-
sure to what extent f has the submodular property. The α
and γ-approximate submodularity in Definitions 4 and 5 are
actually defined based on Eqs. (3) and (4), respectively. For
a monotone set function f , we have α, γ ∈ [0, 1], and f is
submodular if α = 0 or γ = 1.

Definition 4 (α-Approximately Submodular (Zhang and
Vorobeychik 2016; Qian et al. 2017a)). A set function f is α-
approximately submodular if for all X⊆Y ⊆V and v ∈ V ,
f(X ∪ {v})− f(X) ≥ (1− α) · (f(Y ∪ {v})− f(Y )).
Definition 5 (γ-Approximately Submodular (Das and
Kempe 2011)). A set function f is γ-approximately submod-
ular if for all X,Y ⊆ V ,

∑
v∈Y \X

(
f(X ∪{v})−f(X)

)
≥

γ · (f(X ∪ Y )− f(X)).

Previous Algorithms
For human assisted ridge regression in Definition 2, De
et al. (2020) proved that the objective − log(error(X)) is
monotone and α-approximately submodular, and applied
the greedy algorithm, which can achieve an (1 + 1

1−α )
−1-

approximation ratio (Gatmiry and Gomez-Rodriguez 2018).
The greedy algorithm starts from the empty set, and itera-
tively selects one instance with the largest marginal gain on
the objective function until k instances have been selected.

For human assisted SVM in Definition 3, De et al. (2021)
proved that the function g(X) is monotone and γ-
approximately submodular, and c(X) is modular. They ap-
plied the distorted greedy algorithm, which can achieve
an approximation guarantee of (1 − e−γ) · g(Xopt) −
c(Xopt) (Harshaw et al. 2019), where Xopt denotes an opti-
mal solution. Let Xi denote the subset generated after i iter-
ations. In the (i+1)-th iteration, rather than maximizing the
marginal gain on the original objective function g − c, i.e.,
(g(Xi∪{v})−g(Xi))−c({v}), it maximizes a distorted one,
(1− γ/k)

k−(i+1)
(g(Xi ∪ {v}) − g(Xi)) − c({v}), which

gradually increases the importance of g.

HAL-EMO Framework
Inspired by the excellent performance of MOEAs for solv-
ing general subset selection problems (Friedrich and Neu-
mann 2015; Qian, Yu, and Zhou 2015; Qian et al. 2017b,
2019; Roostapour et al. 2022), we propose a new HAL
framework based on Evolutionary Multi-objective Opti-
mization, called HAL-EMO. A subset X of V can be nat-
urally represented by a Boolean vector x ∈ {0, 1}n, where
the i-th bit xi = 1 iff the i-th instance in V is contained by
X . We will not distinguish x ∈ {0, 1}n and its correspond-
ing subset {vi ∈ V | xi = 1} for notational convenience.

As presented in Algorithm 1, HAL-EMO first reformu-
lates the original HAL problem in Definition 1 as a bi-
objective maximization problem

argmaxx∈{0,1}n(f1(x), f2(x)), (5)

where f1(x) is related to the original objective function (re-
flecting the human and model error given x), and f2(x) =
−|x| = −

∑n
i=1 xi is the opposite of the subset size. That is,

HAL-EMO tries to optimize an error-related objective and
minimize the subset size simultaneously. The setting of f1
depends on the concrete HAL problem. For human assisted
ridge regression in Definition 2, we will use

f1(x) = − log(error(x)). (6)
For human assisted SVM in Definition 3, we will use

f1(x)=(1−γ/k)k−|x|
g(x)− c(x) + (|x|/k) · c(1), (7)
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Algorithm 1: HAL-EMO Framework
Input: HAL problem with training set V and budget k
Output: a subset of V with size at most k
Process:

1: Construct two objective functions f1(x) and f2(x) to
be maximized, where f1(x) is related to the objective
function of the given HAL problem, and f2(x)=−|x|;

2: Apply an MOEA to solve the bi-objective problem;
3: return the best feasible solution in the final population

generated by the MOEA

where γ is the approximately submodular degree of g, and
1 denotes the all-1s vector, i.e., the whole set V . As the two
objectives may be conflicting, the domination relationship in
Definition 6 is often used for comparing two solutions.
Definition 6 (Domination). For two solutions x and x′,
1. x weakly dominates x′ (i.e., x is better than x′, denoted
by x ⪰ x′) if ∀i : fi(x) ≥ fi(x

′);
2. x dominates x′ (i.e., x is strictly better than x′, denoted
by x ≻ x′) if x ⪰ x′ ∧ ∃i : fi(x) > fi(x

′);
3. x and x′ are incomparable if neither x ⪰ x′ nor x′ ⪰ x.

After constructing the bi-objective problem in Eq. (5),
HAL-EMO employs an MOEA to solve it, as shown in line 2
of Algorithm 1. EAs, inspired by Darwin’s theory of evolu-
tion, are general-purpose randomized heuristic optimization
algorithms (Bäck 1996), mimicking variational reproduction
and natural selection. Starting from an initial population of
solutions, EAs iteratively reproduce offspring solutions by
crossover and mutation, and select better ones from the par-
ent and offspring solutions to form the next population. The
population-based search of EAs matches the requirement of
multi-objective optimization, i.e., EAs can generate a set of
Pareto optimal solutions by running only once. Thus, EAs
have become the most popular tool for multi-objective opti-
mization (Coello et al. 2007; Hong, Yang, and Tang 2021),
and the corresponding algorithms are also called MOEAs.

During the evolutionary process of the employed MOEA,
the infeasible solutions with size larger than k are excluded.
After running a number of iterations, the best solution w.r.t.
the original HAL problem will be selected from the fi-
nal population as the output, as shown in line 3 of Al-
gorithm 1. For human assisted ridge regression in Defi-
nition 2, it will return argmaxx∈P,|x|≤k − log(error(x)).
For human assisted SVM in Definition 3, it will return
argmaxx∈P,|x|≤k g(x)− c(x).

After getting the subset X for human decision by HAL-
EMO, the training phase of HAL is finished. But before
testing, we need to train an additional binary classification
model to decide whether a test instance is assigned to the hu-
man or machine model. The corresponding training data is
constructed by assigning a label di to each training instance
xi in V , where di = 1 if xi∈X , and di = −1 otherwise.

Note that HAL-EMO can be equipped with any MOEA.
In this paper, we will use NSGA-II (Deb et al. 2002) and
GSEMO (Giel 2003; Laumanns, Thiele, and Zitzler 2004;
Neumann and Wegener 2006). NSGA-II may be the most
popular MOEA in practice, which employs binary tour-

Algorithm 2: HAL-BSEMO Algorithm
Input: HAL problem with training set V and budget k
Output: a subset of V with size at most k
Process:

1: Construct two objective functions f1(x) and f2(x) to
be maximized, where f1(x) is related to the objective
function of the given HAL problem, and f2(x)=−|x|;

2: Let P ← {0};
3: repeat
4: Choose x from P with prob. |x|+1∑

z∈P (|z|+1) ;
5: if |x| = k then
6: Create x′ by choosing a 1-bit and a 0-bit of x

uniformly at random and swapping them
7: else
8: Create x′ by flipping each bit of x with prob. 1/n
9: if ∄z ∈ P such that z ≻ x′ then

10: P ← (P \ {z ∈ P | x′ ⪰ z}) ∪ {x′}
11: until some criterion is met
12: return the best feasible solution in P

nament selection, crossover and mutation to generate off-
spring solutions, and updates the population based on non-
dominated sorting and crowding distance. GSEMO is rel-
atively simple, but has shown good theoretical properties in
solving many problems (Neumann and Witt 2010; Zhou, Yu,
and Qian 2019; Doerr and Neumann 2020). It uses uniform
selection and bit-wise mutation to generate an offspring so-
lution in each iteration and keeps the non-dominated so-
lutions generated-so-far in the population. Our experimen-
tal results will show the advantage of HAL-EMO using
NSGA-II or GSEMO (briefly called HAL-NSGA-II and
HAL-GSEMO, respectively) over previous algorithms.

We also design a specific MOEA for HAL-EMO, which is
modified from GSEMO by employing Biased selection and
incorporating Balanced mutation, briefly called BSEMO.
HAL-EMO using BSEMO is called HAL-BSEMO, as pre-
sented in Algorithm 2. It starts from the all-0s vector 0 (i.e.,
the empty set) in line 2, and iteratively improves the qual-
ity of solutions in the population P (lines 3–11). In each
iteration, it first selects a parent solution x from the cur-
rent population P with probability |x|+1∑

z∈P (|z|+1) in line 4,
which increases with the size of x. Thus, the selection is bi-
ased instead of uniform, preferring the solutions with larger
sizes. As a solution with a larger size will probably have a
better objective value, this biased selection strategy may ac-
celerate the optimization. The bit-wise mutation operator in
line 8 flips each bit of x with probability 1/n to generate
an offspring solution x′. But when the selected parent solu-
tion x reaches size k, it will probably generate an infeasible
offspring solution with size larger than k. To improve the ef-
ficiency, we employ a balanced mutation operator in line 6
when |x| = k, which chooses a 1-bit and a 0-bit of x uni-
formly at random and swaps them, preserving the size k of
the generated offspring solution x′. Then, x′ is used to up-
date the population P (lines 9–10). If x′ is not dominated
by any solution in P (line 9), it will be added into P , and
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meanwhile those solutions weakly dominated by x′ will be
deleted (line 10). This updating procedure makes the popula-
tion P always contain incomparable solutions. We will show
that HAL-BSEMO can achieve good theoretical guarantees
in the next section, and perform better than HAL-NSGA-II
and HAL-GSEMO in the experiments.

Theoretical Analysis
We prove that for human assisted ridge regression and SVM,
HAL-BSEMO can achieve better and same theoretical guar-
antees than previous greedy algorithms, respectively.

Human Assisted Ridge Regression
For human assisted ridge regression in Definition 2, the
objective function − log(error(x)) has been proved to
be monotone and α-approximately submodular (De et al.
2020). By maximizing f1(x) = − log(error(x)) in Eq. (6)
and f2(x) = −|x| simultaneously, HAL-BSEMO can
achieve an approximation ratio of 1− e−(1−α) after running
O(nk3) expected number of iterations, as shown in Theo-
rem 1. This is better (i.e., larger)* than that of the greedy
algorithm, which is (1 + 1

1−α )
−1 (De et al. 2020). Note that

OPT denotes the optimal function value of Eq. (1).
Theorem 1. For human assisted ridge regression in Defini-
tion 2, the expected number of iterations of HAL-BSEMO,
until finding a subset X ⊆ V with |X| ≤ k and
− log(error(X)) ≥ (1− e−(1−α)) ·OPT, is O(nk3).

The proof relies on Lemma 1, which shows that when
f is monotone and α-approximately submodular, adding a
specific item into a subset X can bring an improvement on
f(X) proportional to the current distance to the optimum.
Lemma 1. Let f be a monotone and α-approximately sub-
modular function. For any X ⊆ V with |X| < k, there
exists one item v /∈ X such that f(X ∪ {v}) − f(X) ≥
((1− α)/k) · (OPT− f(X)).

Proof. Let O = {o1, . . . , o|O|} denote an optimal solution.
∀X ⊆ V , f(X∪O)−f(X) =

∑|O|
i=1(f(X∪{o1, . . . , oi})−

f(X∪{o1, . . . , oi−1})) ≤
∑|O|

i=1(f(X∪{oi})−f(X))/(1−
α), where the inequality holds by the α-submodularity of
f in Definition 4 and X ⊆ X ∪ {o1, . . . , oi−1}. Let
v∗ ∈ argmaxv∈O f(X ∪ {v}). Because |O| ≤ k and
f(X∪{v∗}) ≥ f(X) due to the monotonicity of f , we have
f(X ∪{v∗})− f(X) ≥ ((1−α)/k) · (f(X ∪O)− f(X)).
As f(X ∪O) ≥ f(O) = OPT, the lemma holds.

Proof of Theorem 1. We define a quantity Jmax as

Jmax =max{j ∈ {0, 1, . . . , k} | ∃x ∈ P : |x| ≤ j

∧ f1(x) ≥
(
1− (1− (1− α)/k)j

)
·OPT}.

It can be seen that Jmax = k implies that there exists one
subset x in P satisfying that |x| ≤ k and f1(x) ≥ (1 −
(1− (1− α)/k)

k
) ·OPT ≥ (1− e−(1−α)) ·OPT, i.e., the

desired approximation guarantee is reached.

*1 − e−(1−α) ≥ 1 − 1/(1 + 1 − α) = (1 + 1/(1 − α))−1,
where the inequality holds by ex ≥ 1 + x.

Next, we only need to analyze the expected number of
iterations until Jmax = k. The inital value of Jmax is 0.
Assume that currently Jmax = i < k. Let x be a cor-
responding solution with the value i, i.e., |x| ≤ i and
f1(x) ≥ (1 − (1 − (1 − α)/k)i) · OPT. First, Jmax will
not decrease. If x is deleted from P in line 10 of Algo-
rithm 2, the newly included solution x′ must weakly dom-
inate x, implying that |x′| ≤ |x| and f1(x

′) ≥ f1(x).
Because f1(x) = − log(error(x)) is monotone and α-
approximately submodular, we know from Lemma 1 that
flipping one specific 0 bit of x (i.e., adding a specific item
into x) can generate a new solution x′, satisfying f1(x

′)−
f1(x) ≥ 1−α

k (OPT−f1(x)). Then, we have

f1(x
′) ≥

(
1− (1− (1− α)/k)i+1

)
·OPT.

Since |x′| = |x| + 1 ≤ i + 1, x′ will be included into P .
Otherwise, by line 9 of Algorithm 2, x′ must be dominated
by one solution in P , implying Jmax > i and thus leading to
a contradiction. After including x′, Jmax ≥ i+ 1.

Now we analyze the expected number of iterations re-
quired to increase Jmax. We consider such an event in one
iteration of Algorithm 2: x is selected in line 4, and only
one specific 0-bit corresponding to the item v in Lemma 1 is
flipped in line 8 to generate x′. This event occurs with prob.

|x|+1∑
z∈P (|z|+1) ·(1/n)(1−1/n)n−1, where |x|+1∑

z∈P (|z|+1) is the

prob. of selecting x in line 4, and (1/n)(1− 1/n)n−1 is the
prob. of flipping a specific bit of x while keeping the other
bits unchanged in line 8. Note that |x| ≤ i < k, and thus bit-
wise mutation in line 8 instead of biased mutation in line 6 is
performed. As the solutions in the population P are incom-
parable and f2(x) = −|x|, P contains at most one solution
for each subset size 0, 1, . . . , k. Note that the infeasible solu-
tions with size larger than k, are excluded during the evolu-
tionary process. Thus, the successful event occurs with prob.
at least 1∑k

i=0(i+1)
·(1/n)(1−1/n)n−1 ≥ 2

en(k+1)(k+2) , im-

plying at most en(k+1)(k+2)/2 iterations in expectation to
increase Jmax. After at most k ·en(k+1)(k+2)/2 expected
number of iterations, Jmax must have reached k. Hence, the
required number of iterations is O(nk3) in expectation. □

Human Assisted Support Vector Machine
For human assisted SVM in Definition 3, the functions
g(X) and c(X) have been proved to be monotone γ-
approximately submodular and modular, respectively (De
et al. 2021). By maximizing f1(x) in Eq. (7) and f2(x) =
−|x| simultaneously, HAL-BSEMO achieves an approxi-
mation guarantee of (1 − e−γ) · g(Xopt) − c(Xopt) after
running O(nk3) iterations in expectation, as shown in The-
orem 2. This is as good as that of the distorted greedy algo-
rithm (De et al. 2021). Note that Xopt denotes an optimal
solution of Eq. (2). Theorem 2 can be proved by follow-
ing the proof of Theorem 1 in (Qian 2021), which analyzes
GSEMO. The differences are only that HAL-BSEMO starts
from the empty set 0 directly instead of a random solution;
and the probability of selecting a specific solution for muta-
tion by HAL-BSEMO is at least 2/((k + 1)(k + 2)) due to
biased selection (as shown in the proof of Theorem 1), while
is 1/|P | ≥ 1/(n+ 1) by GSEMO due to uniform selection.
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Theorem 2. For human assisted SVM in Definition 3, the
expected number of iterations of HAL-BSEMO, until finding
a subset X ⊆ V with |X| ≤ k and g(X) − c(X) ≥ (1 −
e−γ) · g(Xopt)− c(Xopt), is O(nk3).

Empirical Study
In this section, we empirically examine the performance
of HAL-EMO, by comparing its three variants (i.e., HAL-
NSGA-II†, HAL-GSEMO‡ and HAL-BSEMO) with com-
petitive baselines on human assisted ridge regression and
SVM. As HAL-EMO is an anytime algorithm, we set the
number of objective evaluations to 40kn, to make a trade-
off between the performance and runtime. Also it is ran-
domized, and thus we run it ten times independently and
report the average objective value on the training set as well
as the average metrics on the test set, corresponding to the
optimization and generalization performance, respectively.
After getting the subset for human decision in the training
phase, we use logistic regression to build the model decid-
ing whether a test instance is delivered to human.

The experiments are mainly to answer two questions:
Whether any variant of HAL-EMO is better than previous
algorithms? Among the implemented three variants of HAL-
EMO, whether HAL-BSEMO performs the best?

Human Assisted Ridge Regression
We use two competitive baselines, i.e., the iterative heuristic
algorithm DS (Iyer and Bilmes 2012) and the greedy algo-
rithm (De et al. 2021), and consider the tasks of medical
diagnosis and content moderation. The three real-world data
sets Messidor (Decencière et al. 2014), Stare-H and Stare-
D (Hoover, Kouznetsova, and Goldbaum 2000) are used for
medical diagnosis, all containing about 400 eye images. The
response variable y of each instance (i.e., image) is the score
given by an expert, measuring the severity of edema, retinal
hemorrhage or Drusen disease. The data Hatespeech (David-
son et al. 2017) for content moderation contains about 25000
tweets, and y is the average score of several experts mea-
suring the severity of hate speech. All instances are pre-
processed as (De et al. 2020). The human prediction s is
sampled from a categorical distribution Cat(px,y), where
px,y ∼ Dirichlet(qx,y) are the probabilities of each poten-
tial score s for an instance (x, y), and qx,y is a parameter
vector ensuring that the probability of s = y is the largest.
c(x, y) = E[(y − s)2] is used to measure the human error.
The regularization parameter λ is set to 1 for Messidor and
Stare-D, 0.5 for Stare-H and 0.01 for Hatespeech. We use
80% of the instances for training and the rest for testing.

The results by varying the budget k from 0 to 0.2 · |V |
are shown in Figure 1. We can see from the upper subfig-
ures that HAL-NSGA-II, HAL-GSEMO and HAL-BSEMO
all surpass the DS and greedy algorithms, showing the supe-
riority of the HAL-EMO framework. This may be because

†The population size is set to 100; the initial population consists
of the all-0s vector 0 and 99 randomly generated solutions; one-
point crossover is performed in each iteration with probability 0.9.

‡The initial solution is set to 0.

HAL-EMO naturally maintains a population of diverse so-
lutions due to the bi-objective transformation, and the em-
ployed bit-wise mutation operator has a good global search
ability. These characteristics can lead to a better ability of es-
caping from local optima. Among the three variants of HAL-
EMO, HAL-BSEMO always achieves the largest objective
value on the training set. Note that on Messidor and Hate-
speech, the curves of these three variants are overlapped.
The lower subfigures show the mean squared error (MSE)
on the test set. HAL-NSGA-II, HAL-GSEMO and HAL-
BSEMO achieve lower values than the baselines in most
cases, and HAL-BSEMO achieves the lowest value except
for k/|V |= 0.05 on Stare-H and 0.1 on Stare-D. The MSE
results also imply that the best optimization does not al-
ways lead to the best generalization, which is expected due
to overfitting. As k/|V | increases, the objective value gets
larger while the MSE gets smaller, which is because deliver-
ing more tricky instances to human will bring improvement.

Compared with GSEMO using uniform selection and bit-
wise mutation, BSEMO employs biased selection and bal-
anced mutation. To examine the utility of these two intro-
duced components more clearly, we run two variants HAL-
BSEMO-bs and HAL-BSEMO-bm, which use only biased
selection and balanced mutation, respectively. We plot the
curve of objective value over runtime on the data set Stare-H
with k/|V | = 0.1, as shown in Figure 2(a). The greedy al-
gorithm is a fixed-time (nearly kn) algorithm, while others
are anytime algorithms, and can get better performance by
using more time (less than 5kn). We can observe that HAL-
BSEMO-bs and HAL-BSEMO-bm are better than HAL-
GSEMO, and HAL-BSEMO (i.e., using both biased selec-
tion and balanced mutation) performs the best. These results
show the effectiveness of biased selection and balanced mu-
tation, and the superiority of HAL-BSEMO-bs over HAL-
BSEMO-bm also discloses the more important role of bi-
ased selection. For HAL-NSGA-II, the relatively bad per-
formance may be because the population will contain some
redundant dominated solutions due to the fixed population
size 100, and the crossover operator is not very helpful here.

Human Assisted Support Vector Machine
We use four competitive baselines, i.e., triage based on al-
gorithmic uncertainty (Alg Triage) and predicted error (Es-
timated Triage) (Raghu et al. 2019), distorted greedy (DG)
and its stochastic version, SDG (De et al. 2021)§. Besides
Messidor, another data set Aptos containing 705 retinal im-
ages is used; each image is given a score by an expert, mea-
suring the severity of diabetic retinopathy. To allow for clas-
sification, for each instance, y=−1 if its severity score is the
lowest grade of the associated disease and y = 1 otherwise.

The human score h(x) is sampled from a categorical dis-
tribution Cat(px,y). After scaling, h(·)∈[−1, 1], and we use
c(x, y) =E[[1−yh(x)]+] to measure the human error. The
regularization parameter λ is set to 0.03 for Messidor and
0.6 for Aptos. We use a common value 0.8 for γ in Eq. (7),
and 60% of the instances for training and the rest for testing.

§We run SDG ten times independently due to its stochasticity.
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Figure 1: On each data set, the upper and lower subfigures show the objective value (the larger, the better) on the training set
and the mean squared error (MSE, the smaller, the better) on the test set, respectively.
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Figure 2: (a) The objective value vs. runtime (i.e., #objective
evaluations) on Stare-H, where k/|V | = 0.1. (b) The scatter
plot of HAL-BSEMO on Aptos, where k/|V | = 0.2.

The first row of Figure 3 shows that HAL-NSGA-II,
HAL-GSEMO and HAL-BSEMO achieve better objective
values than the baselines on the training set, and HAL-
BSEMO performs the best, except for k/|V | = 0.05 on
Messidor. For the classification error rate and F1 score on
the test set, the three variants of HAL-EMO also perform
better in most cases. Figure 2(b) gives the scatter plot of
HAL-BSEMO on the data Aptos, where the green and red
colors represent the instances with labels 1 and −1, respec-
tively, and ◦/• denote the instances assigned to the machine
and human, respectively. We can see that the instances (i.e.,
•) assigned to the human are exactly those tricky instances.

Conclusion
This paper proposes the HAL-EMO framework, employ-
ing any MOEA to solve the bi-objective reformulated HAL
problem. We use NSGA-II and GSEMO, and also propose
the specific MOEA, BSEMO with biased selection and bal-
anced mutation, achieving better and same theoretical guar-
antees than previous algorithms, respectively, for human as-
sisted ridge regression and SVM. Empirical results on med-
ical diagnosis and content moderation show that HAL-EMO
using any of the three MOEAs can achieve good perfor-
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Figure 3: On each data set, the three subfigures show the ob-
jective value of each algorithm minus the objective value of
DG (the larger, the better) on the training set, the classifica-
tion error rate (the smaller, the better), and the F1 score (the
larger, the better) on the test set, respectively.

mance on both optimization and generalization, and using
BSEMO often leads to the best performance. An interesting
future work is to design better MOEAs (e.g., using balanced
crossover (Friedrich et al. 2022) or surrogate models (Hao
et al. 2022; Zhang, He, and Ishibuchi 2022)) for HAL-EMO.
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