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Abstract

Agents that plan and act in the real world must deal with the
fact that time passes as they are planning. When timing is
tight, there may be insufficient time to complete the search
for a plan before it is time to act. By commencing execution
before search concludes, one gains time to search by mak-
ing planning and execution concurrent. However, this incurs
the risk of making incorrect action choices, especially if ac-
tions are irreversible. This tradeoff between opportunity and
risk is the problem addressed in this paper. Our main contri-
bution is to formally define this setting as an abstract metar-
easoning problem. We find that the abstract problem is in-
tractable. However, we identify special cases that are solv-
able in polynomial time, develop greedy solution algorithms,
and, through tests on instances derived from search problems,
find several methods that achieve promising practical perfor-
mance. This work lays the foundation for a principled time-
aware executive that concurrently plans and executes.

1 Introduction
In the real world, time passes as agents plan. For example, an
agent that needs to get to the airport may have two options:
take a taxi or ride a commuter train. Each of these options
can be thought of as a partial plan to be elaborated into a
complete plan before execution can start. Clearly, the agent’s
planner should only elaborate the partial plan that involves
the train if that can be done before the train leaves. Note,
however, that in general this may require delicate schedul-
ing of search effort across multiple competing partial plans.
Elaborating the example, suppose the planner has two partial
plans that are each estimated to require five minutes of com-
putation to elaborate into complete plans. If only six minutes
remain until they both expire, then we would want the plan-
ner to allocate almost all of its remaining planning effort to
one of them, rather than to fail on both. Issues like these
have been the focus of previous work on situated temporal
planning (Cashmore et al. 2018; Shperberg et al. 2019).

In this paper, we consider the design of a bolder agent
that can begin the execution of actions before a complete
plan to a goal has been found. Consider a further exten-
sion of the example in which the estimated time to com-
plete each plan is seven minutes. The only apparent way to
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achieve the agent’s goal thus involves starting to act before
planning is complete. However, when an action is executed,
plans that are not consistent with this action may become in-
valid, thus incurring the risk of never reaching the goal. This
risk is most significant when actions are irreversible. How-
ever, even when an action can be reversed, the time spent
executing a reversible action (and potentially its inverse ac-
tion) might still cause the invalidation of plans. For example,
taking the commuter train invalidates the partial plan of tak-
ing a taxi, as there will not be enough time to take the train
in the opposite direction to still catch the taxi and reach the
airport before the deadline. Thus, if the planner fails to elab-
orate the partial plan of riding the train into a complete plan
that reaches the airport on time, the agent will miss its flight.
This paper proposes a disciplined method for making execu-
tion decisions while handling such tradeoffs when allocating
search effort in situated planning.

The idea of starting to perform actions in the real world
(also known as base-level actions) before completing the
search goes back at least as far as Korf’s (1990) real-time
A*. The difference from the real-time search setting is that
our scenario is more flexible: the agent does not have a pre-
defined time at which the next action must be executed.
Rather, it can choose when base-level actions should be ex-
ecuted in order to maximize the probability of successful
and timely execution. Note that we assume that the world
is deterministic. The only uncertainty we model concerns
how long planning will take and the time it will take the
as-yet-unknown resulting plan to reach a goal state, i.e., we
only consider uncertainty at the meta-level. Our setting is
also different from the interleaving of planning and execu-
tion in order to account for stochastic actions or partial ob-
servability, which has been a part of practical applications
of planning since the early days of Shakey the robot (Fikes,
Hart, and Nilsson 1972) and later (e.g., Ambros-Ingerson,
Steel et al. (1988); Haigh and Veloso (1998); Lemai and In-
grand (2004); Nourbakhsh (1997)). Our main contribution is
defining the above issues as a formal problem of decision-
making under uncertainty, in the sense defined by Russell
and Wefald (1991). Attempting this formalization for a fully
realistic search algorithm appears daunting, even under our
assumption of a deterministic world. We thus begin from
the formal (AE)2 model (for Allocating Effort when Actions
Expire) of Shperberg et al. (2019), which formalizes situated

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12427



planning as an abstract metareasoning problem of allocating
processing time among n search processes (e.g., subtrees).
The objective is to find a policy that maximizes the proba-
bility of finding a solution plan that is still feasible to execute
when it is found. We extend the model to allow the execu-
tion of actions in the real world in parallel with the search
processes. We call this model Concurrent Planning and Ex-
ecution (CoPE for short).

CoPE is a generalization of (AE)2, so finding an optimal
CoPE policy is also intractable, even under the assumption
of known deadlines and remainders. Still, we cast CoPE as
an MDP, so that we can define and analyze optimal policies,
and even solve CoPE optimally for very small instances us-
ing standard MDP techniques like value iteration. We then
describe several efficient suboptimal ways of solving CoPE
and evaluate them empirically. We find that our algorithms
span a useful range of speed/effectiveness trade-offs.

This paper examines the static version of the metareason-
ing problem, i.e. solving the CoPE instance as observed at a
snapshot of the planning process. Using our results in a tem-
poral planner would likely involve gathering the requisite
statistics and solving CoPE repeatedly, possibly after each
node expansion. These integration issues are important fu-
ture work that is beyond the scope of the current paper.

2 Background
In situated temporal planning (Cashmore et al. 2018), each
possible action a (i.e., an action in the search tree that the
agent can choose whether to execute or not) has a latest start
time ta and a plan must be fully generated before its first ac-
tion can begin executing. This induces a planning deadline
that might be unknown, since the actions in the plan are not
known until the search terminates. For a partial plan avail-
able at a search node i in the planner, the unknown deadline
by which any potential plan expanded from node i must start
executing can be modeled by a random variable. Thus, the
planner faces the metareasoning problem of deciding which
nodes on the open list to expand in order to maximize the
chance of finding a plan before its deadline.

Shperberg et al. (2019) propose the (AE)2 model, which
abstracts away from the search details and merely posits n
independent ‘processes.’ Each process is attempting to solve
the same problem under time constraints. In the context of
situated temporal planning using heuristic search, each pro-
cess may represent a promising partial plan for the goal, im-
plemented as a node on the open list, where the allocation of
CPU time to that process is equivalent to the exploration of
the subtree under the corresponding node. But the abstract
problem may also be applicable to other settings, such as
algorithm portfolios or scheduling candidates for job inter-
views. The metareasoning problem is to determine how to
schedule the n processes.

When process i terminates, it delivers a solution with
probability Pi or, otherwise, indicates its failure to find one.
As mentioned above, each process has an uncertain dead-
line, defined over absolute wall-clock time, by which its
computation must be completed in order for any solution it
finds to be valid. For process i, Di(t) denotes the CDF over
wall clock times of the random variable denoting the latest

start time (deadline). This value is only discovered with cer-
tainty when the process completes. This models the fact that
a plan’s dependence on an external timed event, such as a
train departure, might not become clear until the final action
in a plan is added. If a process terminates with a solution
before its deadline, it is called timely. Given Di(t), one can
assume w.l.o.g. that Pi is 1, otherwise adjust Di(t) to make
the probability of a deadline that is in the past (thus forcing
the plan to fail) equal to 1− Pi.

The processes have known search time distributions, i.e.
performance profiles (Zilberstein and Russell 1996) de-
scribed by CDFs Mi(t), the probability that process i needs
total computation time t or less to terminate. As is typical in
metareasoning, (AE)2 assumes that all the random variables
are independent. Given the Di(t) and Mi(t) distributions,
the objective of (AE)2 is to schedule processing time be-
tween the n processes such that the probability of at least
one process finding a timely solution is maximized.

A simplified discrete-time version of the problem, called
S(AE)2, was cast as a Markov decision process. The MDP’s
actions are to assign (schedule) the next time unit to process
i, denoted by ci with i ∈ [1, n]. Computational action ci is
allowed only if process i has not already failed. A process is
considered to have failed if it has terminated and discovered
that its deadline has already passed, or if the current time is
later than the last possible deadline for the process. Transi-
tions are determined by the probabilistic performance pro-
file Mi and the deadline distributions (see Shperberg et al.
(2019) for details). A process terminating with a timely so-
lution results in success and a reward of 1.
Example 1. We need to get to terminal C at the airport 30
minutes from now. Two partial plans are being considered:
riding a commuter train or taking a taxi. The train leaves in
six minutes and takes 22 minutes to reach the airport. The
planner has not yet determined how to get to terminal C: it
may require an additional ten minutes using a bus (with a
probability 0.2), or the terminals may be adjacent, requir-
ing no transit time. The taxi plan entails calling a taxi (2
minutes), then a ride taking 20 minutes to get to airport ter-
minal C, and finally a payment step, the type and length of
which the planner has not yet determined (say one or ten
minutes, each with a probability 0.5). Suppose the remain-
ing planning time for the train plan is known to be eight
minutes with certainty, and for the taxi plan it is distributed:
[0.5 : 4; 0.5 : 8].

This scenario is modeled in S(AE)2 as follows. We have
two processes: process 1 for the plan with the commuter
train with m1 = [1 : 8] and process 2 for the taxi plan
with m2 = [0.5 : 4; 0.5 : 8], where we show the PMF
mi rather than the CDF Mi for clarity. The deadline dis-
tribution PMFs are: d1 = [0.2 : −1, 0.8 : 6]: fail with
probability 0.2 (the train plus bus plan arrives at termi-
nal C at time 38, which does not meet our goal of 30) and
six minutes with probability 0.8 (the train only plan) and
d2 = [0.5 : −1, 0.5 : 7].

Allocating planning time equally fails with certainty: nei-
ther process terminates in time to act. The optimal S(AE)2
policy realizes that process 1 cannot deliver a timely solu-
tion (d1 is less than m1 with probability 1) and allocates all
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processing time to process 2, hoping it will terminate in 4
minutes and find a payment plan that takes only one minute,
resulting in success with probability 0.5× 0.5 = 0.25.

2.1 Greedy Schemes
As solving the metareasoning problem is NP-hard, Shper-
berg et al. (2019) and Shperberg et al. (2021) used in-
sights from a diminishing returns result to develop greedy
schemes. Their analysis is restricted to linear contiguous al-
location policies: schedules where the action taken at time t
does not depend on the results of the previous actions, and
where each process receives its allocated time contiguously.

Following their notation, we denote the probability that
process i finds a timely plan when allocated ti consecutive
time units beginning at time tbi as:

si(ti, tbi) =

ti∑
t′=0

(Mi(t
′)−Mi(t

′−1))(1−Di(t
′+tbi)) (1)

For linear contiguous policies, we need to allocate ti, tbi
pairs to all processes (with no allocation overlap). Overall, a
timely plan is found if at least one process succeeds, that is,
overall failure occurs only if all processes fail. Therefore, in
order to maximize the probability of overall success (over all
possible linear contiguous allocations), we need to allocate
ti, tbi pairs so as to maximize the probability:

Ps = 1−
∏
i

(1− si(ti, tbi)) (2)

Using LPFi(·) (‘logarithm of probability of failure’) as
shorthand for log(1 − si(·)), we note that Ps is maxi-
mized if the sum of the LPFi(ti, tbi) is minimized and that
−LPFi(ti, tbi) behaves like a utility that we need to max-
imize. For known deadlines, we can assume that no policy
will allocate processing time after the respective deadline.
We will use LPFi(t) as shorthand for LPFi(t, 0).

To bypass the problem of non-diminishing returns, the no-
tion of most effective computation time for process i under
the assumption that it begins at time tb and runs for t time
units was defined as:

ei(tb) = argmin
t

LPFi(t, tb)

t
(3)

We use ei to denote ei(0) below.
Since not all processes can start at time 0, the intuition

from the diminishing returns optimization is to prefer pro-
cess i that has the best utility per time unit, i.e. such that
−LPFi(ei)/ei is greatest. But allocating time to process i
delays other processes, so it is also important to allocate the
time now to processes that have an early deadline. Shperberg
et al. (2019) therefore suggested the following greedy algo-
rithm (denoted as basic greedy scheme, or bgs for short):
Iteratively allocate tu units of computation time to process i
that maximizes:

Q(i) =
α

E[Di]
− LPFi(ei)

ei
(4)

where α and tu are positive empirically determined parame-
ters, and E[Di] is the expectation of the random variable that

has the CDF Di (a slight abuse of notation). The α param-
eter trades off between preferring earlier expected deadlines
(large α) and better performance slopes (small α).

The first part of Equation 4 is a somewhat ad-hoc measure
of urgency that performs poorly if the deadline distribution
has a high variance. A more precise notion of urgency was
defined by Shperberg et al. (2021) as the damage caused to a
process if its computation is delayed by some time tu. This
is based on the available utility gain after the delay of tu.
An empirically determined constant multiplier γ was used to
balance between exploiting the current process reward from
allocating time to process i now and the loss in reward due to
delay. Thus, the delay-damage aware (DDA) greedy scheme
was to assign, at each processing allocation round, tu time
to the process i that maximizes:

Q′(i) =
γ · LPFi(ei(tu), tu)

ei(tu)
− LPFi(ei, 0)

ei
(5)

The DDA scheme was then adapted and integrated into the
OPTIC temporal planner (Benton, Coles, and Coles 2012),
providing state-of-the-art results on situated problems where
external deadlines play a significant role (Shperberg et al.
2021).

2.2 DP Solution for Known Deadlines
For S(AE)2 problems with known deadlines (denoted
KDS(AE)2), it suffices to examine linear contiguous poli-
cies sorted by an increasing order of deadlines (Shperberg
et al. 2019), formally:
Theorem 1. Given a KDS(AE)2 problem, there exists a lin-
ear contiguous schedule with processes sorted by a non-
decreasing order of deadlines that is optimal.

Theorem 1 was used by Shperberg et al. (2021) to obtain a
dynamic programming (DP) scheme:
Theorem 2. For known deadlines, DP according to

OPT (t, l) = max
0≤j≤dl−t

(OPT (t+j, l+1)−LPFl(j)) (6)

finds the optimal schedule in time polynomial in n, dn.

For explicit Mi representations, evaluating Equation 6 in de-
scending order of deadlines runs in polynomial time.

3 Concurrent Planning and Execution
Our new CoPE model extends the abstract S(AE)2 model to
account for possible execution of actions during search. We
associate each process with a sequence of actions, represent-
ing the prefix of a possible complete plan below the node the
process represents. For each process, there is a plan remain-
der that is still unknown. In the context of temporal planning,
these assumptions are reasonable if we equate each process
with a node in the open list of a forward-search algorithm
that searches from the initial state to the goal and adds an
action when a node is expanded. Here, the prefix is simply
the list of operators leading to the current node. The rest of
the action sequence is the remaining solution that may be
developed in the future from each such node. However, here
too we will abstract away from the actual search and model
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future search results by distributions. Thus, in addition to
the Mi distributions over completion times, for each process
i we have a unique plan prefix Hi (H for head), containing a
sequence of actions from a set of available base-level actions
B. Each action b ∈ B also has a deadline D(b). Upon ter-
mination, a process i delivers the rest of the action sequence
βi of the solution. As βi is unknown prior to termination, we
model dur(βi), the duration of βi, by a random variableRi

whose value becomes known upon termination.
Unlike in previous work on situated temporal planning,

which requires a complete plan before any action is exe-
cuted, here actions from any action sequence Hi may be
executed (in sequence) even before having a complete plan.
Execution changes the state of the system and we adjust the
set of processes to reflect this: any process i where the al-
ready executed action sequence is not a prefix of Hi be-
comes invalid. An execution of any prefix of actions from
any Hi is legal if and only if: i) the first action starts no ear-
lier than time 0 (representing the current time), ii) the next
action in the sequence begins at or after the previous action
terminates, and iii) every action is executed before its dead-
line. Each suffix βi is assumed to be composed of actions
that cannot be executed before process i terminates. Thus
start(βi), the time at which βi may begin execution, must
be no earlier than the time at which process i terminates. We
also assume that base-level actions are non-preemptible and
cannot be run in parallel. However, computation may pro-
ceed freely while executing a base-level action.

As in S(AE)2, we have a deadline for each process, but
with a different semantics: In S(AE)2, a complete plan must
be found in order to start execution. As a result, the deadline
distribution in S(AE)2 is defined over the latest possible
time to start executing the entire plan. However, here the
requirement is that the execution terminates before the (pos-
sibly unknown) deadline; we call a sequence of actions fully
executed before its deadline a timely execution. Thus, the
deadline distribution for CoPE is defined differently. We be-
gin by assuming that there is a known distribution (of a ran-
dom variable Xi) over deadlinei, the deadline for process
i, and again that its true value becomes known only once
the search in process i terminates. An execution of a solu-
tion delivered by process i is timely just when the start(βi)
occurs in time to conclude before the process i deadline;
i.e. start(βi) ≤ Xi − Ri. We call this value constraining
start(βi) the induced deadline for process i, and denote it
byDi. Note thatDi = Xi−Ri is well defined even ifRi and
Xi are dependent. Thus, we will henceforth simply assume
that the induced deadline Di has a known distribution given
by its CDF Di and we can ignore Xi and Ri. So finally,
for a process i to be timely, it must meet two conditions: 1)
complete its computation, and 2) complete execution of its
entire action prefix Hi before the induced deadline Di. In
summary, we have:
Definition 1. A Concurrent Planning and Execution prob-
lem (CoPE) is, given a set of base-level actions B where
each action b ∈ B has duration dur(b) > 0, n processes,
each with a (possibly empty) sequence Hi of actions from B,
a performance profile Mi, and the induced deadline distri-
bution of eachDi, to find a policy for allocating computation

time to the n processes and legally executing base-level ac-
tions from some Hi, such that the probability of executing a
timely solution is maximal.

Example 2. Representing the scenario of example 1 (get-
ting to terminal C in 30 minutes) in CoPE, we again have 2
processes with the same performance profiles as in S(AE)2:
m1 = [1 : 8], m2 = [0.5 : 4; 0.5 : 8]. We also have H1 =
[ride train] and H2 = [phone, take taxi], with dur(phone) =
2, dur(ride train) = 22, dur(take taxi) = 20, and the
train leaves in six minutes. The remainder durations are dis-
tributed as follows. For β1 we haveR1 ∼ [0.8 : 0 ; 0.2 : 10],
and for β2 we haveR2 ∼ [0.5 : 1 ; 0.5 : 10]. The deadlines
are certain in this case, X1 = X2 = 30, and the induced
deadlines are thus distributed: D1 ∼ [0.8 : 30 ; 0.2 : 20]
and D2 ∼ [0.5 : 29 ; 0.5 : 20].

The optimal CoPE policy here is to run process 2 for four
minutes. If it terminates and reveals that D2 = 29 then call
for a taxi and proceed (successfully) with the taxi plan. Oth-
erwise (process 2 does not terminate, or terminates and re-
veals thatD2 = 20), start executing the action from H1: take
the train and run process 1, hoping to find thatD1 = 30 (the
train stops at terminal C). This policy works with probability
of success PS = 0.25 + 0.75 ∗ 0.8 = 0.85, as opposed to
a success probability of 0.25 for the optimal solution under
S(AE)2. Furthermore, had the terminal C arrival deadline
been 25 minutes, all S(AE)2 solutions would have had zero
probability of success, while in the CoPE model it is possi-
ble to commit to taking the taxi even before planning is done,
resulting in a probability of success PS = 0.5 (due to the yet
unknown payment method).

We have seen how the added complexity of CoPE can pay
off by enabling execution concurrently with planning. How-
ever, the problem setting remains well-defined and amenable
to analysis. To analyze CoPE, we make four simplifying
assumptions: 1) Time is discrete 2) The action durations
dur(b) are known for all b ∈ B. 3) The variables with distri-
butions Di, Mi are all mutually independent. 4) The individ-
ual action deadlines D(b) are irrelevant (not used, or equiv-
alently set to be infinite), as the processes’ overall induced
deadline distributions Di are given. Although assumption 4
is easy to relax (our implementation allows for individual
action deadlines), doing so complicates the analysis.

3.1 Formulating CoPE as an MDP
We can state the CoPE optimization problem as the solu-
tion to an MDP similar to the one defined for S(AE)2. The
actions in the CoPE MDP are of two types: the actions ci
that allocate the next time unit of computation to process i
as in S(AE)2, to which CoPE adds the possibility to exe-
cute a base-level action from B. We assume that ci can only
be done if process i has not already terminated and has not
become invalid (and thus fails) by execution of incompati-
ble base-level actions. An action b from B can only be done
when no other base-level action is currently executing and
b is the next action in some Hi (after the common prefix of
base-level actions that all remaining processes share). The
states of the MDP are defined as the cross product of the
following state variables: (i) wall-clock (real) time T ; (ii) the
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time Ti already used by process i, for all 1 ≤ i ≤ n; (iii) for
each process i, an indicator of whether it has failed; (iv) the
time left W until the current base-level action completes ex-
ecution; and (v) the number L of base-level actions already
initiated or completed. We also have special terminal states
SUCCESS (denoting having found and an executable timely
plan) and FAIL (no longer possible to execute a timely plan).
The identity of the base-level actions already executed is not
explicit in the state, but can be recovered as the first L ac-
tions in any prefix Hi, for a process i not already failed.
The initial state S0 has elapsed wall-clock time T = 0, no
computation time used for any process, so Ti = 0 for all
1 ≤ i ≤ n, and no base-level actions executed or started so
W = 0 and L = 0. The reward function is 0 for all states,
except SUCCESS, which has a reward of 1.

The transition distribution is straightforward (see the
arXiv version of the paper (Elboher et al. 2023)): determin-
istic except for computation actions ci, which advance the
wall-clock time, and additionally process i terminates with
probability PC,i = mi(Ti[S]+1)

1−Mi(Ti[S]) where Ti[S] is the time al-
ready allocated to process i before the current state S. Ter-
mination results in SUCCESS if the resulting plan execution
can terminate before the (now known) deadline, otherwise
the process is called failed. A process for which there is no
chance for success is called tardy. We allow a computation
action ci only for processes i that have not failed and are
not tardy at S. If all processes are either tardy or failed, we
transition to the global FAIL state.

4 Known Induced Deadline CoPE
Any instance of S(AE)2 can be made a CoPE instance
by setting all Hi to null. Thus finding the optimal solu-
tion to CoPE is also NP-hard, even under assumptions 1-
4 and known induced deadlines di. We denote this known-
induced-deadline restriction of CoPE by KID-CoPE and an-
alyze this case, trying to get a pseudo-polynomial time algo-
rithm for computing the optimal policy. We can represent a
policy as an and-tree rooted at the initial state S0, with each
of the agent’s actions as an edge from each state node, lead-
ing to a chance node with next possible states as children.
A policy tree in which every chance node has at most one
non-terminal child with non-zero probability is called linear,
because it is equivalent to a simple sequence of meta-level
and base-level actions.

Lemma 3. In KID-CoPE all policies are linear.

The Proof of Lemma 3 can be found in the arXiv version of
the paper (Elboher et al. 2023).

In KID-CoPE it thus suffices to find the best linear policy,
represented henceforth as a sequence σ of the actions (both
computational and base-level) to be done starting from the
initial state and ending in a terminal state.

Denote by CA(σ) the sub-sequence of σ that contains
just the computation actions. Likewise, BA(σ) denotes the
base-level actions. We call a linear policy contiguous if the
computation actions for every process are all in contiguous
blocks:

Definition 2. Linear policy σ is contiguous iff CA(σ)[k1] =

CA(σ)[k2] = ci implies CA(σ)[m] = ci for all k1 < m <
k2 and all computation actions ci.

Theorem 4. In KID-CoPE, there exists an optimal policy
that is linear and contiguous.

The proof of Theorem 4 can be found in the arXiv version
of the paper (Elboher et al. 2023).

We still need to schedule the base-level actions. We show
that schedules we call lazy are non-dominated. Intuitively, a
lazy policy is one where execution of base-level actions is
delayed as long as possible without making the policy tardy
or illegal (e.g., base-level actions overlapping). Denote by
σi↔j the sequence resulting from exchanging the ith and
jth actions in σ.
Definition 3. A linear policy σ is lazy if σi↔i+1 is tardy or
illegal for all i where σ[i] ∈ B.

Theorem 5. In KID-CoPE, there exists an optimal policy
that is linear, contiguous, and lazy.

The proof of Theorem 5 can be found in the arXiv version
of the paper (Elboher et al. 2023).

5 Pseudo-Polynomial Time Algorithms
For KDS(AE)2, there exists an optimal linear contiguous
policy that assigns computations in order of deadline. Unfor-
tunately, things are not so simple for CoPE because the tim-
ing of the base-level actions affects the order in which com-
putation actions become tardy. However, if we fix the base-
level execution start times we can then reduce the resulting
KID-CoPE instance into a KDS(AE)2 instance, which can
be solved in pseudo-polynomial time using DP, as follows.

First, observe that the sequences of actions we need to
consider are only the Hi, as any policy containing an action
not in such a sequence would invalidate all the processes and
thus is dominated. We call the mapping from Hi to the action
execution start times an initiation function for Hi, denoted
by Ii. Note that a policy σ with BA(σ) = Hi may have
computations from other processes j, up until such time as j
is invalidated by σ. Under a given initiation function Ii, we
can define an effective deadline deff

j (Ii) for each process j,
beyond which there is no point in allowing process j to run.
Note that the effective deadline is distinct from the known
induced process deadline di.

To define the effective deadline, let k ∈ Hi be the first
index at which prefix Hj becomes incompatible with Hi.
Then process j becomes invalid at time Ii(k). Also, con-
sider any index m < k at which the prefixes are still com-
patible. The last time at which action Hi[m] may be exe-
cuted to achieve the known induced deadline dj is ti,m =
dj − dur(Hj [m..|Hj |]). That is, process j becomes tardy at
ti,m unless base-level action Hi[m] is executed before then.
The effective deadline deff

j for process j is thus:

deff
j (Ii) = min

m<k
(Ii(k), {ti,m : ti,m < Ii(Hi[m])}) (7)

Theorem 6. Among the set of linear contiguous policies for
a specific Hi and initiation function Ii, there exists an op-
timal policy where the processes are allocated in order of
non-decreasing effective deadlines.
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The proof of Theorem 6 can be found in the arXiv version
of the paper (Elboher et al. 2023).

Given specific Hi and Ii, the proof of Theorem 6 con-
structs an equivalent KDS(AE)2 instance. This instance can
be solved using DP to find the optimal computations policy
and its success probability. Now simply iterating over the n
possible Hi and all possible Ii, and taking the best (highest
probability of success) KDS(AE)2 solution, we get the opti-
mal KID-CoPE policy. The catch is that in general, the num-
ber of initiation functions to consider is exponential. But in
some cases, we can show that the number of such initiation
functions we need to consider is small.

Bounded Length Prefixes: If the length of all the Hi is
bounded by a constant K, we get a pseudo-polynomial time
algorithm, because the number of initiation functions is at
most |dom(T )||Hi|.

To implement this technique, we iterate over all possible
initiation functions Ii up to length K. If Hi is longer than
K, we complete Ii using some default scheme, thereby giv-
ing up on optimality. This is what we do in the K-bounded
scheme in the next section.

The equal slack case: The difference sli = di−dur(Hi),
the slack of process i, is the maximum time we can delay
the actions in Hi without making process i tardy. The spe-
cial case of KID-CoPE where the slack of all processes is
equal affords the following pseudo-polynomial time algo-
rithm. Let the slack of all processes equal sl. Consider any
non-tardy linear contiguous policy σ that has BA(σ) = Hi.
Then σ is lazy only if Iσi (Hi[1]) = sl. In this case the ac-
tions in Hi must be executed contiguously starting at sl, as
otherwise σ would be tardy. The resulting unique lazy Ii is
thus independent of σ (as long as BA(σ) = Hi) and due to
Theorem 5 is the only one we need to consider for each Hi.

To summarize this case, for each Hi set the deff
j (Ii) for

all processes assuming the unique lazy Ii using Equation 7,
solve the resulting KDS(AE)2 instance, and pick the best of
these n solutions.

Note that having a known deadline entails a known in-
duced deadline in problems with constant length solutions,
such as CSPs. But in general (e.g., the 15-puzzle instances
from our empirical evaluation) dur(βi) is unknown before
the solution is found, thus the induced deadline is also un-
known. It is possible for process i to find a solution, only to
discover that it cannot be executed on time, even for known
deadlines.

6 Algorithms for the General Case

While optimal, the pseudo-polynomial time algorithms in
Section 5 only apply to known deadlines plus additional as-
sumptions. We thus propose two categories of suboptimal
schemes for the general case: a) focusing primarily on exe-
cution or b) focusing primarily on computation.

Execution-focused schemes choose some base-level ac-
tion initiations. Effective deadlines are computed for each
initiation, giving S(AE)2 problem instances. Computations
are allocated with any S(AE)2 algorithm A. Specifically:

Algorithm 1: Max-LETA

Input: CoPE instance I = M,H,D and S(AE)2
algorithm SAE2Alg

Output: policy σ
σ ← ()
p← 0
for i ∈ [1, n] do

di ← min(SUPP[Di])
Ii ← schedule actions(di, Hi)
S ← reduce cope to sae2(M,H, i, Ii)
pi, σi ← SAE2 Alg(S)
if pi > p then

p ← pi
σ ← combine actions(Hi, Ii, σi)

return σ

1) The Max-LETA (Algorithm 1) schema considers the
minimal value in the support of Di for each i. (Other meth-
ods of fixing the deadline can be used, e.g. taking the expec-
tation). Then, for every process i, Max-LETA fixes the base-
level actions to their Latest Execution-Time at which ev-
ery action in the head must be executed (with respect to the
known deadline). By fixing the base-level actions to those
induced by process i, the CoPE problem instance is reduced
to an S(AE)2 instance. Then algorithm A is executed on the
S(AE)2 instance and returns a linear policy πi and its suc-
cess probability. Looking over each process’ πi, Max-LETA

chooses the one with the highest success probability.

2) K-BoundedA (Algorithm 2) is similar to Max-LETA with
one difference. Instead of fixing base-level actions only to
the latest start-time of every process i, K-BoundedA consid-
ers all possible placements for the first K actions. The rest
(if any) of the time-allocations are determined using latest
start-time.

Schemes focusing on computations treat a CoPE in-
stance as if it were an S(AE)2 instance, ignoring the base-
level actions when allocating computation action(s). These
schemes can use any S(AE)2 algorithm to schedule compu-
tations. For example, Demand-ExecutionA (Algorithm 5)
first decides which computation ci should be done in the next
time unit using S(AE)2 algorithm A, under the assumption
that no base-level actions are executed before computation
terminates. Then it checks whether a base-level action b is
required for ci to be non-tardy. If so, the base-level action b
is returned, otherwise ci is returned.

Hybrid approaches are also possible. We tried Monte-
Carlo tree search (MCTS), which is applicable to any
MDP (Browne et al. 2012). The MCTS version we used
utilizes UCT (Kocsis and Szepesvári 2006), which applies
the UCB1 formula (Auer, Cesa-Bianchi, and Fischer 2002)
for selecting nodes, and a random rollout policy that uses
−LPF as a value function for sampled time allocations.
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Algorithm 2: K-BoundedA

Input: CoPE instance I = M,H,D, Number of
Actions K, and S(AE)2 algorithm SAE2Alg

Output: policy σ
σ ← ()
p← 0
for i ∈ [1, n] do

di ← min(SUPP[Di])
Ii ← schedule actions(di, Hi)
for h1 < h2 < · · · < hk ≤ Ii[K] do

Ii[1], . . . , Ii[K]← h1, . . . , hK

S←reduce cope to sae2(M,H, i, Ii)
pi, σi ← SAE2 Alg(S)
if pi > p then

p ← pi
σ ← combine actions(Hi, Ii, σi)

return σ

Algorithm 3: reduce cope to sae2

Input: Performance Profiles M , Plan Heads H , Plan
index i, Initiation Function Ii

Output: S(AE)2 problem instance I ′

for j ∈ [1, n] do
k ← 0
while k ≤ |Hj | do

if Hj [k] ̸= Hi[k] then
break

d[j]← deff
j (Ii) // Eq. 7

return I ′ = ⟨M,d⟩

7 Empirical Evaluation
Our experimental1 setting is inspired by movies such as Indi-
ana Jones or Die Hard in which the hero is required to solve
a puzzle before a deadline or suffer extreme consequences.
As the water jugs problem from Die Hard is too easy, we use
the 15-puzzle with the Manhattan distance heuristic instead.
We collected data by solving 10,000 15-puzzle instances,
recording the number of expansions required by A∗ to find
an optimal solution from each initial state, as well as the
actual solution length. Then, two CDF histograms were cre-
ated for each initial h-value: the required number of expan-
sions, and the optimal solution lengths. CoPE problem in-
stances of N processes were generated by drawing a random
15-puzzle instance, running A∗ until the open-list contained
at least N search nodes, with N ∈ {2, 5, 10, 20, 50}, and
then choosing the first N . Each open-list node i became a
CoPE process, with Mi being the node-expansion CDF his-

1The implementation can be found in the following repository:
https://github.com/amihayelboher/CoPE

Algorithm 4: schedule actions

Input: Induced deadline d, Plan Head H
Output: Initiation Function H sched
action deadine← d
for j ∈ [|H|, 1] do

action deadine← action deadine−H[j]
H sched[j] = action deadine

return H sched

Algorithm 5: Demand-ExecutionSAE2 Alg

Data: state S of CoPE instance, S(AE)2 algorithm
SAE2 Alg

Result: base-level action or meta-level action
a ∈ {ci}ni=1 ∪B

, σ ← SAE2 Alg(S)
i← σ[0]
di ← min(SUPP[Di])
Ii ← schedule actions(di, Hi)
index ← W [S]
if Ii[index] = T [S] then

b ← Hi[index]
return b

else
return ci

togram corresponding to h(i); Ri taken from the solution-
cost histogram (to represent the remaining duration of the
plan); and Hi the list of actions that leads to i from the start
node. In this setting, all base-level actions require the same
amount of time units to be completed, denoted as dur(b);
in our experiments, we considered dur(b) ∈ {1, 2, 3} (i.e.
each 15-puzzle instance became three CoPE instances, dif-
fering only in the duration of the base-level action). Finally,
to make the deadlines challenging, we used as the deadline
for reaching the goal Xi = 4 × h(i). Although the value of
Xi is known, Di is unknown due toRi being unknown.

The empirical evaluation included 10 CoPE instances in
each setting. In order to evaluate the success of the algo-
rithms on each instance, we simulate an outcome by sam-
pling values from the Mi and Di distribution of each process
i. We ran each algorithm 100 times.

From S(AE)2, we implemented the basic greedy scheme
(BGS), delay-damage aware (DDA), dynamic programming
(DP), round robin (RR, allocate computation time units to
all processes cyclically), and most promising plan (MPP, al-
locate consecutive time to the process with the highest prob-
ability to meet the deadline; if the process fails to find a solu-
tion, recompute the probabilities with respect to the remain-
ing time). We implemented a demand-execution version of
all the S(AE)2 algorithms (except DP, which is not directly
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Figure 1: Results for 20 processes: top) average success
probability, bottom) success vs runtime for dur(b) = 3.

suited to demand-execution), Max-LETDP, Max-LETBGS,
Max-LETDDA, 2-boundedBGS (K-boundedBGS with K = 2),
and MCTS with an exploration constant c =

√
2 and bud-

gets of 10, 100 and 500 rollouts before selecting each time
allocation.

Figure 1 shows results for 20 processes. The top panel
shows the average success probability for base-level dur(b)
being 1, 2, and 3. The results suggest that most of the al-
gorithms have a high probability of success for duration=1,
corresponding to a lot of slack. The performance of the
S(AE)2 algorithms in their raw versions (that do not support
concurrent execution) gets worse as the time pressure gets
higher. The CoPE-specific algorithms demand-execution,
Max-LET and 2-Bounded overcome this problem because
they can choose to execute base-level actions while plan-
ning, which increases the computation time that can be al-
located to processes. These patterns are repeated for other
numbers of processes (see the arXiv version of the paper (El-
boher et al. 2023)). Thus, in the following, we focus on se-
vere time pressure, dur(b) = 3.

The bottom panel assesses the trade-off between solu-
tion quality (probability of success) and runtime. As tem-
poral planners such as OPTIC typically expand hundreds

of nodes per second, we prefer CoPE algorithms that take
less than one second of runtime so that, when eventually in-
tegrated into a planner, they could be run every few hun-
dred expansions without too much overhead. In the plot, el-
lipse centers are averages over instances, the shaded area
just covers the results for all 10 instances. Max-LETDP ,
Max-LETBGS , and 2-BoundedBGS have the best probabil-
ity of success on average. However, among these schemes
only Max-LETBGS has an acceptable runtime. The demand-
execution schemes exhibit a slightly lower probability of
success but are orders of magnitude faster. The more we take
the execution into account, the better the results: Demand-
execution does not plan the execution in advance and has the
lowest success ratio (among the BGS adaptations to CoPE),
Max-LET has a better success ratio as it considers execu-
tion first; 2-Bound considers more options than Max-LET,
thus has the best success rate among them. However, the ad-
ditional checks require more computational resources. The
same trends are observed for increasing the number of pro-
cesses further (see the arXiv version of the paper (Elboher
et al. 2023)). Using value iteration to directly solve the MDP
delivers the best success probability, but becomes infeasible
when the number of processes is > 2.

8 Conclusion
Planning is, in general, intractable, so it is unrealistic to as-
sume that time stops during planning. Starting execution of
a partially developed plan while continuing to search may
gain crucial time to deliberate at some risk of performing
actions that do not lead to a solution. We extended the ab-
stract metareasoning model for situated temporal planning
of Shperberg et al. (2019) to allow for concurrent action
execution and deliberation. Our CoPE problem is NP-hard,
but pseudo-polynomial time algorithms are possible for the
cases of bounded-length plan prefixes and of equal slack.
We developed several suboptimal algorithms for the case of
unknown deadlines and suffix durations. Experiments based
on the popular 15-puzzle benchmark showed that the new al-
gorithms span a useful range of trade-offs between runtime
and the probability of a timely solution.

Now that a formal framework and principled algorithms
have been introduced, the obvious next step is to adapt and
integrate these schemes into a situated online planner. Do-
ing so requires online estimation of the necessary statistics
and careful engineering to keep the metareasoning overhead
manageable. Extending the model to parallel durative ac-
tions is another promising direction.
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