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Abstract

Due to the more complicated population dynamics of the
NSGA-II, none of the existing runtime guarantees for this
algorithm is accompanied by a non-trivial lower bound. Via
a first mathematical understanding of the population dy-
namics of the NSGA-II, that is, by estimating the expected
number of individuals having a certain objective value, we
prove that the NSGA-II with suitable population size needs
Ω(Nn log n) function evaluations to find the Pareto front
of the ONEMINMAX problem and Ω(Nnk) evaluations on
the ONEJUMPZEROJUMP problem with jump size k. These
bounds are asymptotically tight (that is, they match previ-
ously shown upper bounds) and show that the NSGA-II here
does not even in terms of the parallel runtime (number of iter-
ations) profit from larger population sizes. For the ONEJUMP-
ZEROJUMP problem and when the same sorting is used for
the computation of the crowding distance contributions of the
two objectives, we even obtain a runtime estimate that is tight
including the leading constant.

Introduction
Many real-world problems have several, often conflicting
objectives. For such multi-objective optimization problems,
it is hard to compute a single solution. Instead, one usu-
ally computes a set of incomparable, interesting solutions
from which a decision maker can select the most preferable
one. Due to their population-based nature, evolutionary al-
gorithms (EAs) are well suited for such problems, and in
fact, are intensively used in multi-objective optimization.

The most accepted multi-objective evolutionary algorithm
(MOEA) in practice (Zhou et al. 2011) is the non-dominated
sorting genetic algorithm II (NSGA-II) proposed by Deb
et al. (2002). It uses a fixed population size N , generates N
new solutions per iteration, and selects the next population
according to the non-dominated sorting of the combined par-
ent and offspring population and the crowding distance. Due
to this complex structure, no mathematical runtime analyses
existed for this algorithm until the work (Zheng, Liu, and
Doerr 2022), which was soon followed by (Zheng and Doerr
2022; Bian and Qian 2022; Doerr and Qu 2022a).

Interestingly, and different from the previous runtime
analyses of other MOEAs, none of these works proved a
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non-trivial lower bound on the runtime. Such bounds are
important since only by comparing upper and lower bounds
for different algorithms can one declare one algorithm su-
perior to another. Such bounds are also necessary to have
tight runtime estimates, from which information about opti-
mal parameter values can be obtained.

The lack of lower bounds for the NSGA-II, naturally, is
caused by the more complicated population dynamics of this
algorithm. While for algorithms like the SEMO or global
SEMO predominantly analyzed in MOEA theory, it follows
right from the definition of the algorithm that there can be
at most one individual per objective value, such structural
information does not exist for the NSGA-II.

In this work, we gain a first deeper understanding of the
population dynamics of the NSGA-II (more precisely, the
mutation-based version regarded in almost all previous run-
time results for the NSGA-II). For the optimization of the
ONEMINMAX and the ONEJUMPZEROJUMP benchmark,
we prove that also for relatively large population sizes, only
a constant number of individuals exists on the outer posi-
tions of the Pareto front. This information allows us to prove
upper bounds on the speed with which the Pareto front is ex-
plored, and finally yields lower bounds on the runtime of the
NSGA-II on these two benchmarks.

More specifically, we prove the following lower bound
for the ONEJUMPZEROJUMP benchmark (we do not discuss
here in detail the result for ONEMINMAX and refer instead
to Theorem 16). Let N denote the population size of the
NSGA-II, n the problem size (length of the bit-string encod-
ing), and k the gap parameter of the ONEJUMPZEROJUMP
problem. If N is at least 4 times the size n − 2k + 3 of
the Pareto front and N = o(n2/k2), then the time to com-
pute the Pareto front of the ONEJUMPZEROJUMP problem
is at least ( 3(e−1)

8 − o(1))Nnk fitness evaluations or, equiv-
alently, ( 3(e−1)

8 − o(1))nk iterations. This result shows that
the upper bound of O(Nnk) fitness evaluations or O(nk) it-
erations proven by Doerr and Qu (2022a) is asymptotically
tight for broad ranges of the parameters. In particular, this
shows that there is no advantage in using a population size
larger than the smallest admissible one, not even when tak-
ing the number of iterations as the performance measure.
This is very different from the single-objective world, where,
for example, the runtime of the (1 + λ) EA on the single-
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objective JUMP problem with jump size k is easily seen to
be Ω(nk/λ) and O(nk/λ + n log n) iterations, hence for
λ = o(nk−1/ log n) the number of iterations reduces with
growing value of λ and the number of fitness evaluations
does not change (when ignoring lower-order terms). This
comparison suggests that the choice of the population size
is more critical for the NSGA-II than for single-objective
EAs.

For the variant of the NSGA-II which uses the same sort-
ing to compute the crowding distance contribution of both
objectives (which is a natural choice for two objectives), we
can even determine the runtime precise apart from lower
order terms. To this aim, we also exploit our new under-
standing of the population dynamics to prove a tighter up-
per bound on the runtime. We shall not exploit this fur-
ther in this work, but we note that such tight analyses are
the prerequisite for optimizing parameters, here for exam-
ple the mutation rate. To the best of our knowledge, this
is only the second runtime analysis of a MOEA that deter-
mines the leading constant of the runtime (the other one be-
ing the analysis of the synthetic GSEMO algorithm on the
ONEJUMPZEROJUMP benchmark).

Overall, this work constitutes a first step toward under-
standing the population dynamics of the NSGA-II. We ex-
ploit this to prove the first asymptotically tight lower bounds.
In a non-trivial special case, we even determine a runtime
precise apart from lower-order terms. These results already
give some information on the optimal parameter values, and
we are optimistic that our methods can lead to more insights
about the right parameter choices of the NSGA-II.

Previous Works
For a general introduction to multi-objective optimization
via evolutionary algorithms, including the most prominent
algorithm NSGA-II (47000 citations on Google scholar), we
refer to Zhou et al. (2011). This work is concerned with the
mathematical runtime analysis of a MOEA, which is a sub-
area of the broader research area of runtime analyses for ran-
domized search heuristics (Neumann and Witt 2010; Auger
and Doerr 2011; Jansen 2013; Doerr and Neumann 2020).

The first runtime analyses of MOEAs date back to the
early 2000s (Laumanns et al. 2002; Giel 2003; Thierens
2003) and regarded the artificial SEMO and GSEMO al-
gorithms, which are still the most regarded algorithms in
MOEA theory (see, e.g., Bian, Qian, and Tang (2018); Qian
et al. (2019); Qian, Liu, and Zhou (2022) for some recent
works). Some time later, the first analyses of the more re-
alistic SIBEA (Brockhoff, Friedrich, and Neumann 2008;
Nguyen, Sutton, and Neumann 2015; Doerr, Gao, and Neu-
mann 2016) and the MOEA/D (Li et al. 2016; Huang et al.
2019; Huang and Zhou 2020; Huang et al. 2021) followed.
Very recently, the first runtime analysis of the NSGA-II ap-
peared (Zheng, Liu, and Doerr 2022), which was quickly
followed up by further runtime analyses of this algorithm.

Zheng, Liu, and Doerr (2022) proved that the NSGA-II
with population size N can efficiently optimize the classic
ONEMINMAX and LOTZ benchmarks if N is at least four
times the size of the Pareto front. A population size equal
to the size of the Pareto front does not suffice. In this case,

the NSGA-II loses desired solutions often enough so that
only a constant fraction of the Pareto front is covered for
at least exponential time. However, with smaller population
sizes the NSGA-II can still compute good approximations to
the Pareto front, as proven by Zheng and Doerr (2022) again
for the ONEMINMAX benchmark. The first runtime analysis
on a benchmark with multimodal objectives (Doerr and Qu
2022a) showed that the NSGA-II, again with population size
N at least four times the size of the Pareto front, com-
putes the Pareto front of the ONEJUMPZEROJUMP bench-
mark with jump parameter k ∈ [2..n/4] in expected time
at most O(Nnk). These three works regard a version of the
NSGA-II without crossover. Bian and Qian (2022) regarded
the original NSGA-II with crossover, but did not show better
runtime guarantees than what was previously shown without
crossover. Via a different selection method, however, they
obtained significant speed-ups.

For none of the runtime guarantees proven in these works,
a matching (or at least non-trivial) lower bound was shown.
The apparent reason, spelled out explicitly in the conclusion
of (Doerr and Qu 2022a), is the lack of understanding of the
population dynamics for this algorithm. We note that this
problem exists even for the simpler SEMO/GSEMO algo-
rithm despite its much more restricted population dynam-
ics (in particular, the strict selection mechanism of these
algorithms ensures that for each objective value there is at
most one individual in the population). For the SEMO algo-
rithm, which uses one-bit mutation, a lower bound matching
the O(n2 log n) upper bound on ONEMINMAX of Giel and
Lehre (2010) was shown ten years later by Covantes Os-
una et al. (2020). For the GSEMO, using bit-wise mutation
instead, no lower bound is known for the ONEMINMAX
benchmark. Similarly, for the LOTZ benchmark a tight
Θ(n3) runtime of the SEMO was proven by Laumanns et al.
(2002) already. The same upper bound was proven for the
GSEMO by Giel (2003), but the only lower bound (Doerr,
Kodric, and Voigt 2013) for this problem is valid only for an
unrealistically small mutation rate. Only for the ONEJUMP-
ZEROJUMP benchmark, a tight bound of Θ(nk) was proven
also for the GSEMO (Doerr and Zheng 2021), clearly profit-
ing from the fact that the population can contain at most one
individual on the local optimum of the objectives.

Preliminaries
The NSGA-II Algorithm
In the interest of brevity, we only give a brief overview of
the algorithm here and refer to Deb et al. (2002) for a more
detailed description of the general algorithm and to Zheng,
Liu, and Doerr (2022) for more details on the particular ver-
sion of the NSGA-II we regard.

The NSGA-II uses two metrics, rank and crowding dis-
tance, to completely order any population. The ranks are de-
fined recursively based on the dominance relation. All non-
dominated individuals have rank 1. Then, given that the indi-
viduals of ranks 1, . . . , k are defined, the individuals of rank
k + 1 are those not dominated except by individuals of rank
k or smaller. This defines a partition of the population into
sets F1, F2,. . . such that Fi contains all individuals with rank
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i. Clearly, individuals with lower ranks are preferred. The
crowding distance, denoted by cDis(x) for an individual x,
is used to compare individuals of the same rank. To compute
the crowding distances of individuals of rank i with respect
to a given objective function fj , we first sort the individu-
als in ascending order according to their fj objective values.
The first and last individuals in the sorted list have infinite
crowding distance. For the other individuals, their crowd-
ing distance is the difference between the objective values
of their left and right neighbors in the sorted list, normal-
ized by the difference between the minimum and maximum
values. The final crowding distance of an individual is the
sum of its crowding distances with respect to each objective
function. Among individuals of the same rank, the ones with
higher crowding distances are preferred.

The algorithm starts with a random initialization of a par-
ent population of size N . In each iteration, N children are
generated from the parent population via a variation opera-
tor, and N best individuals among the combined parent and
children population survive to the next generation based on
their ranks and, as a tie-breaker, the crowding distance. At
each iteration, the critical rank i∗ is the rank such that if we
take all individuals of ranks smaller than i∗, the total num-
ber of individuals will be less than or equal to N , but if we
also take all individuals of rank i∗, the total number of in-
dividuals will be more than N . Thus, all individuals of rank
smaller than i∗ survive to the next generation, and for indi-
viduals of rank i∗, we take the individuals with the highest
crowding distance, breaking ties randomly, so that in total
exactly N individuals are kept. In practice, the algorithm is
run until some stopping criterion is met. In our mathematical
analysis, we are interested in how long it takes until the full
Pareto front is covered by the population if the algorithm
is not stopped earlier. For that reason, we do not specify a
termination criterion.

In our analysis, for simplicity we assume that in each iter-
ation every parent produces one child through bit-wise mu-
tation, i.e., mutating each bit independently with probabil-
ity 1

n . Our analysis also holds for uniform selection, where
N times a parent is selected independently at random, since
also here each individual is selected as a parent once in ex-
pectation, and our proofs only rely on the expected number
of times a parent is selected. When selecting parents via bi-
nary tournaments the expected number of times a parent is
selected is at most two (which is the expected number of
times it participates in a tournament). This estimate would
change the population dynamics by constant factors. For that
reason, we are optimistic that our methods apply also to this
type of selection, but we do not discuss this question in more
detail.

For any generation t of a run of the algorithm, we use Pt to
denote the parent population and Rt to denote the combined
parent and offspring population.

The ONEJUMPZEROJUMP Benchmark

Let n ∈ N and k = [2..n/4]. The function
ONEJUMPZEROJUMPn,k = (f1, f2) : {0, 1}n → R2, pro-

posed by Doerr and Zheng (2021), is defined by

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else;

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else,

where |x|1 denotes the number of bits of x that are 1 and
|x|0 denotes the number of bits of x that are 0. The aim is to
maximize both f1 and f2, two multimodal objectives. The
first objective is the classical JUMPn,k function. It has a val-
ley of low fitness around its optimum, which can be crossed
only by flipping the k correct bits if no solutions of lower
fitness are accepted. The second objective is isomorphic to
the first, with the roles of zeroes and ones exchanged.

According to Theorem 2 of Doerr and Zheng (2021), the
Pareto set of this benchmark is S∗ = {x ∈ {0, 1}n | |x|1 =
[k..n − k] ∪ {0, n}}, and the Pareto front F ∗ = f(S∗) is
{(a, 2k + n − a) | a ∈ [2k..n] ∪ {k, n + k}}, making the
size of the front n− 2k + 3. We define the inner part of the
Pareto set by S∗

I = {x | |x|1 ∈ [k..n−k]}, and the inner part
of the Pareto front by F ∗

I = f(S∗
I ) = {(a, 2k+n−a) | a ∈

[2k..n]}. Doerr and Qu (2022a) showed that when using a
population of size N ≥ 4(n−2k+3) to optimize this bench-
mark, the NSGA-II algorithm never loses a Pareto-optimal
solution once found. Moreover, O(nk) iterations are needed
in expectation.

The ONEMINMAX Benchmark
Let n ∈ N. The function ONEMINMAX = (f1, f2) :
{0, 1}n → R, proposed by Giel and Lehre (2010), is defined
by

f(x) = (f1(x), f2(x)) =

(
n−

n∑
i=1

xi,

n∑
i=1

xi

)
.

The aim is to maximize both objectives.
For this benchmark, any solution is Pareto-optimal and

the Pareto front F ∗ = {(0, n), (1, n−1), . . . , (n, 0)}. Hence
|F ∗| = n + 1. Zheng, Liu, and Doerr (2022) showed that
when using a population of size N ≥ 4(n + 1) to opti-
mize the benchmark, the NSGA-II algorithm never loses a
Pareto-optimal solution once found. Moreover, in expecta-
tion O(n log n) iterations are needed.

Lower Bound on the Runtime of the NSGA-II
on ONEJUMPZEROJUMP

In this section, we prove a lower bound on the runtime of
the NSGA-II algorithm on the ONEJUMPZEROJUMP bench-
mark.1 We use Xi

Pt
to denote the number of individuals with

n− k − i 1-bits in Pt and Xi
Rt

to denote that in Rt.
We first show that with probability arbitrarily close to 1,

we have that Pt ⊆ S∗ for any t so that the analyses that
follow do not need to consider gap individuals (those with
between 1 and k − 1 zeroes or ones) as parents.

1For reasons of space, some proofs had to be omitted in this
extended abstract. They can be found in the preprint (Doerr and Qu
2022b).
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Lemma 1. Consider the NSGA-II algorithm optimizing the
ONEJUMPZEROJUMPn,k benchmark for 2 ≤ k ≤ n

4 with
population size N = c(n − 2k + 3) for c = o(n). The
probability that P0 ⊆ S∗

I is 1− o(1). Moreover, if P0 ⊆ S∗
I ,

then for any generation t, we have Pt ⊆ S∗.

Now we give an upper bound on the probability for any
individual to obtain more 1-bits through bit-wise mutation.

Lemma 2. Let n, u, v ∈ N with n ≥ 2, u, v ≥ 1, and
u + v ≤ n. Suppose x ∈ {0, 1}n and |x|1 ≤ v. Denote the
result of applying bit-wise mutation to x by x′. Then

Pr[|x′|1 = u+ v] ≤
(
n− v

n

)u

.

Corollary 3. Let n ∈ N with n ≥ 2 and let v ∈ [1..n].
Suppose x ∈ {0, 1}n and |x|1 ≤ v. Denote the result of
applying bit-wise mutation to x by x′. Then Pr[|x′|1 = v ∧
x′ ̸= x] ≤ n−v+1

n .

Since we already know from Doerr and Qu (2022a) that,
for any objective value on the Pareto front, there are at most
4 individuals with that objective value and positive crowding
distance, and they all survive to the generation that follows,
to further understand the population dynamics on the front,
it is crucial to analyze what happens to the individuals with
zero crowding distance. In the following lemma, we show
that their survival probability is less than 1

2 + o(1).

Lemma 4. Consider the NSGA-II algorithm optimizing
the ONEJUMPZEROJUMPn,k benchmark with the popula-
tion size N = c(n − 2k + 3) for some c ≥ 4 such that
ck2 = o(n). Consider a generation t of a run of the al-
gorithm where P0 ⊆ S∗

I . Suppose E[X0
Pt
] = O(ck) and

E[Xn−2k
Pt

] = O(ck). For a rank-1 individual x ∈ Rt that
has zero crowding distance, the probability that x ∈ Pt+1 is
less than 1

2 + o(1).

Proof. Let F>1 denote the individuals in Rt with ranks
greater than 1. Since P0 ⊆ S∗

I , by Lemma 1, Pt ⊆ S∗. Then
all the individuals in F>1 are created through mutation of
individuals in Pt. By Lemma 2, for an individual with less
than n − k bits of 1 to create an individual with more than
n − k bits of 1, the probability is at most (k+1

n )2, and for
an individual with n − k bits of 1 to create an individual
with more than n− k bits of 1, the probability is at most k

n .
Symmetrically, for an individual with less than n − k bits
of 0 to create an individual with more than n − k bits of 0,
the probability is at most (k+1

n )2, and for an individual with
n− k bits of 0 to create an individual with more than n− k
bits of 0, the probability is at most k

n . Therefore E[|F>1|] ≤
(k+1

n )2c(n− 2k+3)+ k
nE[X

0
Pt
] + k

nE[X
n−2k
Pt

] = o(1) for
ck2 = o(n), E[X0

Pt
] = O(ck) and E[Xn−2k

Pt
] = O(ck). By

Markov’s inequality, Pr(|F>1| ≥ 1) ≤ E[|F>1|]
1 = o(1).

Let F ∗
1 the rank-1 individuals in Rt with positive crowd-

ing distances. So |Rt| = 2N and there are 2N−|F ∗
1 |−|F>1|

individuals in Rt with rank 1 and zero crowding distance.
Since N = c(n− 2k + 3), for some c ≥ 4, by Lemma 1 of
Doerr and Qu (2022a), all individuals in F ∗

1 will survive. So
among the rank-1 individuals with zero crowding distance,

N −|F ∗
1 | survive to the next generation if |F ∗

1 | ≤ N . Hence
the probability that a rank-1 individual x with zero crowding
distance survives is

N − |F ∗
1 |

2N − |F ∗
1 |

Pr[|F>1| = 0]

+ Pr[x survives | |F>1| ≥ 1] Pr[|F>1| ≥ 1].

Since Pr[|F>1| = 0] ≤ 1 and Pr[x survives | |F>1| ≥ 1] ≤
1, we have that the probability that x survives is at most
1
2 + o(1).

Corollary 5. Consider the NSGA-II algorithm optimizing
the ONEJUMPZEROJUMPn,k benchmark with the popula-
tion size N = c(n − 2k + 3) for some c ≥ 4 such that
ck2 = o(n). Consider a generation t of a run of the al-
gorithm where P0 ⊆ S∗

I . Suppose E[X0
Pt
] = O(ck) and

E[Xn−2k
Pt

] = O(ck). Then for any i ∈ [0..n − 2k], we have
E[Xi

Pt+1
] ≤ ( 12 + o(1))E[Xi

Rt
] + 2.

Now, we can start to estimate E[Xi
Pt
] for i ∈ [0..n− 2k].

Lemma 6. Consider the NSGA-II algorithm optimizing
the ONEJUMPZEROJUMPn,k benchmark with the popula-
tion size N = c(n − 2k + 3) for some c ≥ 4 such that
ck2 = o(n). Suppose P0 ⊆ S∗

I and i ∈ [0..n − 2k]. Then
if 1n /∈ Pt, we have E[Xi

Pt
] ≤ ci for ci = e

e−1 (c(k + i +

1) +
∑i−1

j=0 cj + 4) + o(ck). Similarly, if 0n /∈ Pt, we have
E[Xn−2k−i

Pt
] ≤ cn−2k−i for cn−2k−i =

e
e−1 (c(k+ i+1)+∑i−1

j=0 cn−2k−j + 4) + o(ck).

Proof. We prove the result for the case where the all-ones
string has not been found since the other case is symmetrical.

Let Y i denote the number of individuals with n − k − i
1-bits in Pt for which no bits are flipped during mutation,
and let Zi denote the number of individuals in Pt for which
a positive number of bits are flipped and the resulting chil-
dren have n − k − i 1-bits. We first prove by induction that
E[X0

Pt
] ≤ c0 for c0 = e

e−1 (c(k+1)+ 4)+ o(ck) = O(ck).
For the base case, consider the random initialization of

P0. The probability that exactly k among n bits are 0 is less
than the probability that at most k < n

4 bits are 0, which
is at most e−

n
8 . Hence, E[X0

P0
] < c(n − 2k + 3)e−

n
8 <

cne−
n
8 < 3c < c0.

For the induction, assume by the induction hypothesis
that E[X0

Pt
] ≤ c0 and we will show that E[X0

Pt+1
] ≤ c0.

Clearly, E[X0
Rt
] = E[X0

Pt
] + E[Y 0] + E[Z0]. By the in-

duction hypothesis E[X0
Pt
] ≤ c0. By definition, E[Y 0] =

E[(1 − 1
n )

nX0
Pt
] ≤ 1

eE[X
0
Pt
] = c0

e . Since 1n /∈ Pt and
P0 ⊆ S∗

I , by Lemma 1, there is no individual with more
than n − k 1-bits. Then by Corollary 3, for any individ-
ual to have a positive number of bits flipped and produce
an individual with n − k 1-bits, the probability is at most
k+1
n . So E[Z0] ≤ c(n − 2k + 3)k+1

n ≤ c(k + 1). To-
gether, E[X0

Rt
] ≤ (1 + 1

e )c0 + c(k + 1). Then by Corol-
lary 5, E[X0

Pt+1
] ≤ ( 12 + o(1))((1+ 1

e )c0+ c(k+1))+2 =
e

e−1 (c(k + 1) + 4) + o(ck) = c0.
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The same arguments can be applied to estimate the ex-
pected number of individuals with n−k−1 1-bits. We have
E[X1

Rt
] = E[X1

Pt
] + E[Y 1] + E[Z1]. We assume by the in-

duction hypothesis E[X1
Pt
] ≤ c1 for c1 = e

e−1 (c(k + 2) +

c0+4)+o(ck). Similarly as before, E[Y 1] ≤ c1
e . Moreover,

there are no individuals with more than n − k bits of 1 by
Lemma 1. So to bound E[Z1], consider separately the cases
where i) the parent has at most n − k − 1 1-bits and ii) the
parent has n−k 1-bits. By Corollary 3, for case i), the prob-
ability that the child has n− k− 1 1-bits is at most k+2

n . We
trivially bound the probability for case ii) by 1. Therefore,
E[Z1] ≤ c(n − 2k + 3)k+2

n + c0 ≤ c(k + 2) + c0. Then
E[X1

Rt
] ≤ (1+ 1

e )c1+c(k+2)+c0. Hence, by Corollary 5,

E[X1
Pt+1

] ≤ ( 12 + o(1))((1 + 1
e )c1 + c(k + 2) + c0) + 2

= e
e−1 (c(k + 2) + c0 + 4) + o(ck) = c1.

Continuing this way and letting ci denote the upper bound
on the expected number of individuals with n−k−i number
of 1-bits for 0 ≤ i ≤ n− 2k, we have

ci =
e

e− 1

(
c(k + i+ 1) +

i−1∑
j=0

cj + 4

)
+ o(ck).

With the bound on E[X1
Pt
] found in Lemma 6, we can

now prove a sharper bound on E[X0
Pt
].

Corollary 7. Consider a generation t of the NSGA-II algo-
rithm optimizing the ONEJUMPZEROJUMPn,k benchmark
with the population size N = c(n− 2k+ 3) for some c ≥ 4
such that ck2 = o(n). Suppose P0 ⊆ S∗

I . If 1n /∈ Pt,
then E[X0

t ] ≤ 4e
e−1 + o(1). Similarly, if 0n /∈ Pt, then

E[Xn−2k
t ] ≤ 4e

e−1 + o(1).

Now with the upper bounds on E[X0
Pt
], E[X1

Pt
],

E[Xn−2k
Pt

], and E[Xn−2k−1
Pt

], we can prove a lower bound
on the runtime.
Theorem 8. Consider the NSGA-II algorithm optimizing
the ONEJUMPZEROJUMPn,k benchmark with the popula-
tion size N = c(n − 2k + 3), for some c ≥ 4 such that
ck2 = o(n). Then the number of fitness evaluations needed
in expectation is at least 3

2 (
4

e−1 + o(1))−1Nnk.

Precise Runtime of the NSGA-II with Fixed
Sorting on ONEJUMPZEROJUMP

In the version of the NSGA-II considered in Doerr and Qu
(2022a) and the previous section, when the crowding dis-
tance is being calculated with respect to each objective, we
sort the individuals such that the ones with the same objec-
tive value are positioned randomly. A variant of the algo-
rithm, considered in Bian and Qian (2022), is to fix the rel-
ative positions of the individuals that have the same objec-
tive value. We call this variant of the algorithm the NSGA-II
with fixed sorting, and show a precise bound on the runtime
of this variant optimizing the ONEJUMPZEROJUMP bench-
mark.

First we observe in the following lemma that for this vari-
ant of the algorithm, after O(n log n) iterations, for each ob-
jective value on F ∗

I there are exactly two individuals with
positive crowding distances.

Lemma 9. Consider the NSGA-II algorithm with fixed
sorting optimizing the ONEJUMPZEROJUMPn,k benchmark
with population size N = c(n − 2k + 3) for some c ≥ 2.
After O(n log n) iterations, for any generation t, for every
objective value v ∈ F ∗

I , there are exactly two individuals
x, y ∈ Rt such that f(x) = f(y) = v, cDis(x) > 0 and
cDis(y) > 0.

We call the phase where, for every objective value v ∈
F ∗
I , there are exactly two individuals x, y in the combined

population such that f(x) = f(y) = v, cDis(x) > 0
and cDis(y) > 0, the tightening phase. In the following
analyses, we define s∗ = O(n log n) to be the generation
where the algorithm first enters the tightening phase. Then
by Lemma 9, for any generation t ≥ s∗, the algorithm stays
in the tightening phase. In the following Lemma, we esti-
mate similarly to Lemma 4 the probability that a rank-1 in-
dividual with zero crowding distance survives. What is dif-
ferent now is that for the tightening phase, we can calculate
the probability precisely (apart from lower-order terms).

Lemma 10. Consider a generation t ≥ s∗ of the
NSGA-II algorithm with fixed sorting optimizing the
ONEJUMPZEROJUMPn,k benchmark with population size
N = c(n − 2k + 3) for some c ≥ 2 such that ck2 = o(n).
Suppose P0 ⊆ S∗

I , E[X0
Pt
] = O(ck), and E[Xn−2k

Pt
] =

O(ck). For a rank-1 individual x ∈ Rt that has zero crowd-
ing distance, the probability that x ∈ Pt+1 is c−2

2c−2 ± o(1).

Corollary 11. Consider a generation t ≥ s∗ of the
NSGA-II algorithm with fixed sorting optimizing the
ONEJUMPZEROJUMPn,k benchmark with population size
N = c(n − 2k + 3) for some c ≥ 2 such that ck2 = o(n).
Suppose P0 ⊆ S∗

I , E[X0
Pt
] = O(ck), and E[Xn−2k

Pt
] =

O(ck). Then for any i ∈ [0..n − 2k], we have E[Xi
Pt+1

] =

( c−2
2c−2 + o(1))E[Xi

Rt
] + c

c−1 − o(1).

Consequently, we can calculate E[X0
Pt
] and E[Xn−2k

Pt
]

precisely apart from lower order terms.

Lemma 12. Consider the NSGA-II algorithm with fixed
sorting optimizing the ONEJUMPZEROJUMPn,k benchmark
with the population size N = c(n− 2k+ 3) for some c ≥ 2
such that ck2 = o(n). Suppose P0 ⊆ S∗

I . We have for any
t ≥ s∗ + log n, if 1n /∈ Pt, then E[X0

Pt
] = 2ec

ec−c+2 ± o(1).
Similarly, if 0n /∈ Pt, then E[Xn−2k

Pt
] = 2ec

ec−c+2 ± o(1).

Theorem 13. Consider the NSGA-II algorithm with fixed
sorting optimizing the ONEJUMPZEROJUMPn,k benchmark,
for k ≥ 3, with the population size N = c(n − 2k + 3),
for some c ≥ 2 such that ck2 = o(n). Then the number of
fitness evaluations needed in expectation is 3

2N( 2c
ec−c+2 ±

o(1))−1nk.

Lower Bound on the Runtime of the NSGA-II
on ONEMINMAX

Zheng, Liu, and Doerr (2022) gave an O(Nn log n) up-
per bound on the runtime of the NSGA-II optimizing the
ONEMINMAX benchmark. In this section, we prove a
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matching lower bound using the techniques we have devel-
oped so far.

In this section, for any i ∈ [0..n] and any generation t, we
let Xi

Pt
denote the number of individuals with i 0-bits in Pt

and let Xi
Rt

denote that in Rt.
Suppose in an iteration t the individual with the least num-

ber of 0-bits in Pt has it 0-bits. Then we can think of the
algorithm making progress as it tries to decrease it till it be-
comes 0, at which point the algorithm has found 1n. In the
following lemma, we give upper bounds on E[Xit

Pt
] when it

is close to 0, which will help us estimate the waiting time
needed for the algorithm to make progress there.
Lemma 14. Consider the NSGA-II algorithm optimizing the
ONEMINMAX benchmark for n > 16, with N = c(n + 1)
for c ≥ 4, where for all x ∈ P0, |x|0 ≥ n

4 . Suppose v ∈
[0..n] such that cv2 = o(n) and for a generation t there is no
individual x ∈ Pt such that |x|0 < v. Then E[Xv

Pt
] ≤ c0 =

4e
e−1 + o(1) and E[Xv+1

Pt
] ≤ e−1

e (c(v+2)+ c0 +4)+ o(c).

Then, we show that only with very small probability,
o(n− 4

3 ), the algorithm can make a progress of a size larger
than 1 in an iteration.
Lemma 15. Consider the NSGA-II algorithm optimizing the
ONEMINMAX benchmark for n > 16, with N = c(n + 1)
for c ≥ 4, where for all x ∈ P0, |x|0 ≥ n

4 . Suppose v ∈
[0..n] such that cv3 = o(n) and for a generation t, there
is no individual x ∈ Pt such that |x|0 < v. Suppose in
Rt the individual with the least number of 0-bits is y. Then
Pr[|y|0 ≤ v − 2] = o(n− 4

3 ).
Finally, we combine everything to obtain a lower bound

on the runtime.
Theorem 16. Consider the NSGA-II algorithm optimizing
the ONEMINMAX benchmark for n > 16, with N =
c(n + 1) for c ≥ 4 and c = o(nµ) for µ < 1. Then the
number of fitness evaluations needed is at least N(n( 4e

e−1 +

o(1))−1 1−µ
3 lnn).

Experiments
To complement our theoretical results, we also experimen-
tally evaluate some runs of the NSGA-II on the ONEJUMP-
ZEROJUMP benchmark, both with respect to the runtime and
the population dynamics. We note that Doerr and Qu (2022a)
already presented some results on the runtime (for k = 3,
N/(2n − k + 3) = 2, 4, 8, and n = 20, 30). We there-
fore mostly concentrate on the population dynamics, i.e.,
the number of individuals in the population for each objec-
tive value on the Pareto front, which our theoretical analyses
have shown to be crucial for determining the lower bound
and the leading coefficient of the runtime.

Settings
We implemented the algorithm as described in the Prelimi-
naries section in Python, and tested the following settings.
• Problem size n: 50 and 100.
• Jump size k: 2. This small number was necessary to ad-

mit the problem sizes above. Problem sizes of a certain

n = 50 n = 100
N = 2(n− 2k + 3) 390,506 3,068,980
N = 4(n− 2k + 3) 617,606 4,514,578
N = 8(n− 2k + 3) 919,142 5,572,427

Table 1: Average runtime of the NSGA-II with bit-wise mu-
tation on the ONEJUMPZEROJUMP benchmark with k = 2.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

N=2(n-2k+3)

N=4(n-2k+3)

N=8(n-2k+3)

Figure 1: Average number of individuals with i ∈ [k..n− k]
1-bits for n = 50 and k = 2.

magnitude are needed to see a behavior not dominated by
lower-order effects.

• Population size N : 2(n − 2k + 3), 4(n − 2k + 3), and
8(n − 2k + 3). Doerr and Qu (2022a) suggested that,
even though their mathematical analysis applies only for
N ≥ 4(n− 2k + 3), already for N = 2(n− 2k + 3) the
algorithm still succeeds empirically. Therefore, we have
also experimented with N = 2(n−2k+3) to confirm that
our arguments for the population dynamics still apply to
the smaller population size.

• Selection for variation: fair selection.
• Mutation method: bit-wise mutation with rate 1

n .
• Number of independent repetitions per setting: 30.

Results on the Runtime
Table 1 contains the average runtime (number of fitness eval-
uations done until the full Pareto front is covered) of the al-
gorithm. For all of the settings, we have observed a standard
deviation that is between 50% to 80% of the mean, which
supports our reasoning that the runtime is dominated by the
waiting time needed to find the two extremal points of the
front, which is the maximum of two geometric random vari-
ables. An obvious observation from the data is that increas-
ing N does not help with the runtime, supporting our theo-
retical results that the lower bound on the runtime increases
when N increases. Moreover, for all the settings that we
have experimented with, the average runtime is well above
our theoretically proven lower bound made tighter by dis-
carding the lower order terms, namely 3

2 (
4

e−1 )
−1Nnk.

Results on the Population Dynamics
For all of the experiments conducted, we have also recorded
the population dynamics throughout the executions of the
algorithm. Specifically, for each run, for every nk/50 itera-
tions, we record for each i ∈ [k..n−k] how many individuals
there are in the parent population with i bits of 1. Since as
shown in our theoretical analyses and Doerr and Qu (2022a),
the greatest contributor to the runtime is the waiting time to
find the all-ones and the all-zeroes strings after the inner part
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N=2(n-2k+3)
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Figure 2: Average number of individuals with i ∈ [k..n− k]
1-bits for n = 100 and k = 2.

of the Pareto front has been discovered, we are mostly inter-
ested in how the population dynamics develop in that phase.
To this end, we discard data points recorded when the in-
ner part of the Pareto front has not been fully covered, and
those recorded after one of the extremal points has already
been discovered. The final number reported for a run is the
average of the data points kept. In the end we report the av-
erage of the means across 30 repetitions. In all of the runs,
we have never observed an initial population not contained
in the inner part of the Pareto front, supporting our theoreti-
cal arguments and also making the experiments fall into the
scenario that we have studied theoretically.

Figure 1 contains the average number of individuals
throughout a run of the algorithm for each point on the inner
part of the Pareto front for n = 50, averaged by the 10 repe-
titions, and Figure 2 contains that for n = 100. An obvious
observation is that for all experiment settings, we have that
the average number of individuals with k or n − k 1-bits is
less than the proven upper bound 4e

e−1 ≈ 6.33. When dou-
bling the population size, the number of individuals with k
or n− k 1-bits grows. This does not contradict with our up-
per bound (which is independent of the population size), but
it only suggests that the precise average occupation of these
objective values contains a dependence on the population
size that is small enough for this number to be bounded by
4e
e−1 ≈ 6.33. We note that for the setting with fixed sorting
the precise occupation number 2ec

2ec−c+2 ± o(1) we proved
displayed exactly such a behavior.

Our experimental data also give the occupation numbers
for the other objective values. We did not discuss these in
much detail in our theoretical analysis since all we needed
to know was the occupation number for the outermost points
of the inner part of the Pareto front and a relatively gener-
ous upper bound for the points one step closer to the middle.
A closer look into our mathematical analysis shows that it
does give good estimates only for objective values close to
the outermost points of the Pareto front. For that reason, it is
interesting to observe that our experimental data show that
the population is, apart from few positions close to the out-
ermost positions, very evenly distributed on the Pareto front
(that is, a typical position is occupied by c individuals, where
c is such that the population size is N = c(n − 2k + 3)).
Given the mostly random selection of most of the next pop-
ulation (apart from the up to 4 individuals with positive
crowding distance per position) and the drift toward the mid-
dle in the offspring generation (e.g., a parent with 3

4n ones
is much more likely to generate an offspring with fewer than

more ones), this balanced distribution was a surprise to us.
While it has no influence on the time to find the Pareto front
of ONEJUMPZEROJUMP, we suspect that such balanced dis-
tributions are preferable for many other problems.

Conclusions and Future Works

In this work, we gave the first lower bounds matching previ-
ously proven upper bounds for the runtime of the NSGA-II.
We proved that the runtime of the NSGA-II with population
size at least four times the Pareto front size computes the
full Pareto front of the ONEMINMAX problem in expected
time (number of function evaluations) Ω(Nn log n) and the
one of the ONEJUMPZEROJUMP problem with jump size k
in expected time Ω(Nnk). These bounds match the corre-
sponding O(Nn log n) and O(Nnk) upper bounds shown
respectively by Zheng, Liu, and Doerr (2022) and by Doerr
and Qu (2022a). These asymptotically tight runtimes show
that, different from many other population-based search
heuristics, the NSGA-II does not profit from larger popu-
lation sizes, even in an implementation where the expected
numbers Θ(n log n) and Θ(nk) of iterations is the more ap-
propriate performance criterion. Together with the previous
result that a population size below a certain value leads to a
detrimental performance of the NSGA-II (Zheng, Liu, and
Doerr 2022), our results show that the right choice of the
population size of the NSGA-II is important for an opti-
mal performance, much more than for many single-objective
population-based algorithms, where larger population sizes
at least for certain parameter ranges have little influence on
the number of fitness evaluations needed.

The main obstacle we had to overcome in our analysis
was to understand sufficiently well the population dynamics
of the NSGA-II, that is, the expected number of individu-
als having a particular objective value at a particular time.
While we have not completely understood this question, our
estimates are strong enough to obtain, for the ONEJUMP-
ZEROJUMP benchmark and the NSGA-II using a fixed sort-
ing to determine the crowding distance, a runtime guarantee
that is also tight including the leading constant.

From this work, a number of possible continuations ex-
ist. For example, runtime analyses which are tight includ-
ing the leading constant allow one to distinguish constant-
factor performance differences. This can be used to opti-
mize parameters or decide between different operators. For
example, we have used the mutation rate 1

n , which is the
most accepted choice for bit-wise mutation. By conducting
our analysis for a general mutation rate α

n , one would learn
how the mutation rate influences the runtime and one would
be able to determine an optimal value for this parameter.
We note that a different mutation rate not only changes
the probability to reach the global optimum from the local
one (which is well-understood (Doerr et al. 2017)), but also
changes the population dynamics. We are nevertheless opti-
mistic that our methods can be extended in such directions.
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