
Optimal Pathfinding on Weighted Grid Maps
Mark Carlson1, Sajjad K. Moghadam2

Daniel D. Harabor1, Peter J. Stuckey1, Morteza Ebrahimi2

1Department of Data Science and Artificial Intelligence, Monash University
2University of Tehran

mark.carlson@minuskelvin.net
{daniel.harabor, peter.stuckey}@monash.edu
{sajjad.moghadam, mo.ebrahimi}@ut.ac.ir

Abstract

In many computer games up to hundreds of agents navigate in
real-time across a dynamically changing weighted grid map.
Pathfinding in these situations is challenging because the
grids are large, traversal costs are not uniform, and because
each shortest path has many symmetric permutations, all of
which must be considered by an optimal online search. In
this work we introduce Weighted Jump Point Search (JPSW),
a new type of pathfinding algorithm which breaks weighted
grid symmetries by introducing a tiebreaking policy that al-
lows us to apply effective pruning rules in symmetric regions.
We show that these pruning rules preserve at least one opti-
mal path to every grid cell and that their application can yield
large performance improvements for optimal pathfinding. We
give a complete theoretical description of the new algorithm,
including pseudo-code. We also conduct a wide-ranging ex-
perimental evaluation, including data from real games. Re-
sults indicate JPSW is up to orders of magnitude faster than
the nearest baseline, online search using A*.

Introduction
Practical approaches to 2D path finding in games or robotic
applications often represent the navigable area as grid map.
Path finding then becomes finding a sequence of grid cells
to visit to move from a start cell to a target cell.

A main challenge in grid pathfinding is symmetry, since
there are usually many paths of identical cost from a start
to target. Jump Point Search (JPS) (Harabor and Grastien
2012) is an online and optimal algorithm that prunes sym-
metric grid paths and which can be orders of magnitude
faster than standard A* search (Hart, Nilsson, and Raphael
1968). Although widely used in computer games and robot
navigation, JPS is limited to uniform cost maps with only
traversable or non-traversable tiles.

In this paper we extend JPS to grid maps with terrains of
different costs. We show that a straightforward extension of
JPS to this new domain incurs substantial overhead costs.
We then introduce a new and efficient algorithm, Weighted
Jump Point Search (JPSW), to effectively prune the search
space. We show that JPSW is optimal and online and up to
an order of magnitude faster than its nearest competitor, a
conventional and online A* search.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Model
We have a grid map of H ×W cells. For each cell we have
an associated terrain cost t ∈ R+. A move is a transition
from one grid cell to another adjacent grid cell. Each move is
represented as a vector m⃗ and has a corresponding direction
and a magnitude. We distinguish between orthogonal moves
o⃗ of length 1 and diagonal moves d⃗ of length

√
2.

Cost model: In our work the cost of moving from one
grid cell to another adjacent grid cell is equal to the mag-
nitude of the corresponding move vector multiplied by the
weighted average terrain cost, considering all the tiles inter-
sected during the move action. For example, the cost of an
orthogonal move, such as from s to o in Figure 1 (left), is
equal to the average terrain cost of cells s and o. The cost
of a diagonal move meanwhile, such as s to d in Figure 1
(left), is the weighted average of all four cells touching the
diagonal move, s, u, o and d, multiplied by

√
2 (since any

non-point agent will intersect all four cells). We use nota-
tion | ⟨s, d⟩ | to denote the (weighted) cost of move from s
to d. Other cost models are also possible and have been con-
sidered elsewhere; e.g., multiply the magnitude of the move
vector by the terrain type of the destination tile, or taking the
average of the source and destination tiles only. The ideas
presented here are applicable to these other cost models. A
special case, which we refer to as uniform cost, are grids
where every cell is either traversable with unit terrain cost
or non-traversable with infinite cost.

A path p of m moves is given by a sequence of m grid
cells ⟨n0, . . . , nm⟩ where ni is adjacent to ni+1 by move
m⃗i. The path length |p| =

∑m−1
i=1 | ⟨ni, ni+1⟩ |, the sum of

the costs of each move along the path. We also define paths
by a starting node and sequence of moves, e.g. n0 + km⃗ is a
path of k moves in direction m⃗ starting from cell n0.

Related Work
Pathfinding is an intensely studied topic in the research liter-
ature, with many efficient algorithms having been suggested.
In this section we give a brief overview of related works in
this area. A main observation is that, despite a wealth of re-
search, none of the currently available techniques are able to
accelerate optimal weighted grid pathfinding in online set-
tings, where terrain costs are subject to change. In computer
game applications, where such setups are common and opti-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12373

mal paths are demanded, the best option remains A* search
with a simple heuristic.

WRP: Our work is related to the Weighted Region Prob-
lem (WRP), a well known and well studied topic in the area
of Computational Geometry. In WRP we are given planar
subdivision of a 2D map, with costs assigned to each of the
distinct regions. The objective is to find a path from start
point s to target point t such that the sum of its weighted
Euclidean segments is minimum, among all st paths. WRP
has eluded an exact solution method for decades and recent
results suggest one may never be found (De Carufel et al.
2014). Bounded suboptimal approximations exist but they
run in high-order polynomial time (Mitchell and Papadim-
itriou 1991). Unbounded suboptimal methods for WRP also
exist, but are often complex to implement or not practical for
performance sensitive applications such as games; see (Tran,
Dinneen, and Linz 2020) for a recent example.

Optimal Grid Search: Rasterised grids provide a simple
way to approximate a weighted planar subdivision. Among
their many advantages, grids are easy to implement, fast to
update and fast to search. Grid-optimal solutions are also
often close to Euclidean-optimal solutions, with higher res-
olution grids giving closer approximations. A variety of
conventional speedup techniques based on graph augmenta-
tion are applicable here; e.g., Contraction Hierarchies (Geis-
berger et al. 2008). Though very fast these algorithms rely
on precomputed auxiliary data, which is invalidated when
the grid changes. Unfortunately dynamic changes can be fre-
quent in computer video games, and repair or reconstruction
of auxiliary data can be too expensive to perform online.

Another type of speedup technique involves pre-
computed heuristic functions. Examples include single-
dimension estimators, such as Differential Heuris-
tics (Sturtevant et al. 2009) and FastMap (Cohen et al.
2017), as well as APSP oracles, such as Compressed Path
Databases (Bono et al. 2019) and Hub Labels (Delling et al.
2014). These approaches all assume that traversal costs can
never fall below some floor (e.g., free-flow cost in a road
network). Provided the assumption holds, dynamic changes
cannot invalidate lower-bounding data. Unfortunately
this assumption often does not hold in computer video
games, where environments are destructible (in which case
the heuristic becomes equivalent to popular but not very
accurate relaxations; e.g., octile- or Euclidean-distance).

Approximate Grid Search: A variety of works which
employ abstraction can handle weighted grids. Perhaps the
most relevant to our work is DTA (Sturtevant et al. 2019),
which can find a near-optimal path on a dynamic map with
multiple terrains, including for agents with different cost
models. Being suboptimal, the paths may require further
post-processing before they can be used for navigation.

Jump-Point Search
Jump-Point Search (JPS) (Harabor and Grastien 2012) is an
optimal and online pathfinding algorithm for uniform-cost
grids. There are two key ingredients: pruning rules, which
eliminate redundant and symmetric successors, and jump-
ing rules, which skip over irrelevant cells where the search
cannot branch. We give a brief description of this algorithm.

Pruning rules: when considering a move m⃗ from a cell x
to a potential successor cell n, JPS takes into consideration
p, the parent cell of x. The first rule prunes m⃗ if the path
⟨p, x, n⟩ is longer than another path ⟨p, y, n⟩ or sometimes
simply ⟨p, n⟩. The second rule considers symmetrical paths,
and prunes m⃗ if there is another path ⟨p, y, n⟩ in which a
diagonal move occurs earlier. The set of successors that are
not pruned when there are no non-traversable cells nearby
are called natural successors. Any successor that is not a
natural successor is called a forced successor.

Jumping rules: when a cell is expanded, instead of
adding its direct successors to OPEN, JPS recurs aiming to
find alternative successors in the same direction, that are far-
ther away. When considering an orthogonal direction o⃗, the
jumping procedure scans in the direction of the move until
one of the three stopping conditions is met:
1. The target cell is reached.
2. A cell with at least one forced successor is reached.
3. The move is no longer possible due to an obstacle.
In cases 1 and 2 the cell that was reached is added to OPEN.
In case 3 no successor is generated.

Jumping in a diagonal direction d⃗ is similar but requires
more work. Before each diagonal step JPS requires two re-
cursions, in direction o⃗1 and o⃗2 s.t. = o⃗1 + o⃗2 = d⃗. If one of
these jumps succeeds, then the cell reached by the orthogo-
nal jump is added to OPEN and the diagonal scan continues.
Notice that JPS is diagonal-first: i.e., along the path to each
generated node diagonal moves appear as early as possi-
ble. By comparison, A* search considers every possible (and
symmetric) move ordering to each generated node. Pruning
away such non-canonical successors reduces the branching
factor per node. Jumping meanwhile avoids OPEN list oper-
ations for nodes with a branching factor of zero or one. For
these reasons, compared to A* search, JPS can be an order of
magnitude faster (and more) (Harabor and Grastien 2014).

Weighted Jump-Point Search
JPS eliminates many redundant grid paths through symme-
try breaking. Symmetric paths consist of the same set of
moves in different orders. The diagonal-first strategy distin-
guishes between these paths and eliminates all but one. In
the weighted grid case we achieve a similar effect using a
tie-breaking policy called orthogonal last.

Consider the problem of finding a path π with the min-
imum tiebroken cost, a lexicographically ordered (g, |m⃗|)
tuple where g is the cost-thus-far and m⃗ is the last move
action along path π. We will prune a move to a node only if
we show that there exists another path to that node which has
strictly lower tiebroken cost. However, a minimum tiebroken
cost path could have a prefix which is not minimum tiebro-
ken cost, which if pruned would prune the path transitively.
Theorem 1 shows that every reachable node has a minimum
tiebroken cost path to it which cannot be pruned by our prun-
ing condition, and so our algorithm is optimal.

Theorem 1 For all reachable nodes n, there exists a path π
to n with minimum tiebroken cost such that all prefixes of π
have minimum tiebroken cost.

12374

u

s o

d

p

x n p x

n

Figure 1: White has cost 1, green 2, brown 10, and cyan 0.1.
(Left): The diagonal move ⟨s, d⟩ has cost 13.1/4

√
2, and the

orthogonal move ⟨s, o⟩ has cost 1.5. (Middle) and (Right):
The blue path proves that the red move is unnecessary.

Proof: We will proceed by induction on the path length, g.
Base case. The empty path to the start node has no pre-

fixes and has minimum tiebroken cost (0, 0).
Inductive case. Suppose the statement holds true for all

paths with g < gn. Let n be a reachable node distinct from
the start node with g = gn. Because n is reachable and not
the start node, there exists a minimum tiebroken cost path to
n ending with a move ⟨p, n⟩ from another reachable node p
with g < gn, but which may have prefixes that are not min-
imum tiebroken cost. However, by the inductive hypothesis,
there exists a path π to p which has minimum tiebroken cost
and for which every prefix is minimum tiebroken cost. Ex-
tending π with the move ⟨p, n⟩ produces a path to n with the
minimum tiebroken cost (gn, |n − p|), and every prefix of
this path has minimum tiebroken cost. □

We will begin by generalising the pruning and jumping
rules of JPS to weighted grid maps under this framework.

Pruning Rules We generalise the pruning rules that apply
when considering a move m⃗ from a cell x with parent p to a
potential successor cell n by analysing the 3× 3 neighbour-
hood of x. The generalised pruning rule prunes the move
m⃗ if any path inside the neighbourhood from p to n has a
lower tiebroken cost than the path ⟨p, x, n⟩. The effects of
this rule can be seen in Figure 1. We call the set of unpruned
moves the neighbourhood successors of x. This rule encap-
sulates both rules from JPS due to the definition of tiebroken
cost, however it is phrased in terms of the type of the final
move. On uniform-cost girds, the new rule turns out to be
equivalent to JPS’ diagonal-first rule. In weighted grids the
new rule is better as the paths involved may be complex, as
illustrated in the rightmost example in Figure 1.

To calculate the neighbourhood successors for a cell given
its 3 × 3 neighbourhood and parent cell, we use an (on-
line) Dijkstra’s algorithm to find minimum tiebroken cost
paths to each cell in the neighbourhood. The cells whose
shortest path ends with a move from the centre cell then
correspond to moves in the neighbourhood successor set.
Note that with this strategy the search requires an additional
tiebreaking rule to prefer paths coming from the centre cell.
This prevents the rule from excluding an orthogonal-last op-
timal path.

While each Dijkstra search is very quick, it could still be
undesirable to run the computation anew, each time we need
to identify the successors of a node. If the set of cell costs
that could appear on the weighted grid map is known in ad-
vance, we could precompute the neighbourhood successors

3.5
4.0

4.5
4.4

Figure 2: Allowing the orange scans to continue through the
terrain transition prevents the purple path from discovering
that it is dominated partway down the transition. This gen-
erates redundant scans into the high-cost green region.

for all possible 3× 3 neighbourhoods and parent directions.
However, such a database would require O(9k) space and
time for k different terrain types, so this quickly becomes
impractical, even when taking advantage of rotational and
mirror symmetry. Additionally, since weighted grid maps
are generally not random, most of the entries in the database
would never be used.

Instead, we use a cache (that takes advantage of rotational
symmetry) and only compute the neighbourhood successors
for the neighbourhoods that are actually observed during the
search. This has the additional advantage of being able to
handle sets of terrain costs that are not known in advance.

Jumping Rules Like in JPS, when a cell is expanded, we
run a jumping procedure to find alternative successors that
are farther away. However, we use more aggressive stopping
conditions. Instead of stopping at the first cell with at least
one forced successor, we stop at the first cell whose 3 ×
3 neighbourhood contains more than one terrain type. This
condition results in us always enqueueing nodes that occur
on the border of terrains.

Note that the natural generalisation of the JPS jumping
rule might be to continue until there is a successor not in
the same direction as the current jump. However, while this
may prevent the generation of some nodes, this can result
in extra unnecessary and avoidable work. While an orthog-
onal jump crossing a light-to-heavy terrain transition would
continue through the transition, there may be an alternative
path which runs parallel to the terrain transition. Without the
nodes from the orthogonal jumps, the alternative path may
not discover it is dominated and generate nodes at the terrain
transition anyways. Figure 2 illustrates this case.

Overscanning
A problem that may show up in JPS is overscan, in which
two diagonal jumps produce overlapping orthogonal scans.
This can happen when an obstacle may be navigated around
in more than one direction. While this results in quadratic
worst-case time complexity, the patterns that produce this
overscan are uncommon and do not affect very many scans
when they occur.

12375

Figure 3: Scanning pattern entering the heavy (w = 2) green
region from the top-left.

Unfortunately, the opposite is true for JPSW. Even a sim-
ple terrain transition, as shown in Example 1, is enough to
produce a catastrophic amount of overscan.

Example 1 Consider the map shown in Figure 3. Using the
pruning and jumping rules the search enqueues each node
in the first and second row. When we dequeue the second
cell of the second row, we begin a diagonal scanning ex-
ploration that explores the entire uniform terrain area down
and to the right. We add any jump points discovered into the
queue. When we later dequeue the third cell of the second
row, we begin a diagonal scanning exploration down and to
the right which overlaps with the previous scan in all but
the leftmost column. For the rightwards scans, we will need
to adjust the g-value of all jump points rediscovered, since
the path is shorter. For the downwards scans, we find that
the path is longer for all of the jump points rediscovered,
making the scans useless. The same applies for the fourth
cell in the second row, etc. Overall we repeatedly scan the
same area, and repeatedly discover the same jump points,
each time with either a smaller g-value which will be further
reduced during the next scan, or a larger g-value which does
not affect the search. □

We present two approaches to solving this problem. The
first approach uses two complimentary sets of rules, which
we call Diagonal Branch Pruning and Prospective g Pruning,
to eliminate irrelevant scans during a diagonal jump. The
second approach uses a jump cache to reduce the cost of
overscanning from quadratic time complexity to amortised
linear time. Furthermore, these approaches can be combined
to achieve even better performance.

Diagonal Branch Pruning In the example illustrated in
Figure 3 the optimal route to every cell in the heavy area
is either a completely diagonal path from the top row, or a
diagonal path followed by some downwards steps for cells
underneath the diagonal from the top left cell.

To avoid the unnecessary horizontal overscans we adopt
the following diagonal branch pruning rule: If we are ex-
panding a node n in a diagonal direction d⃗ = h⃗+ v⃗ and the
node n does not have a successor in orthogonal direction h⃗

then during the diagonal scan we do not scan in direction h⃗.

n0

p p′

n n′

Figure 4: Illustration of the proof of Theorem 2. Since p has
no orthogonal successor to p′ the blue path via p′ must be
shorter than the red path via n. Grey terrain is irrelevant.

Theorem 2 The diagonal branch pruning rule never re-
moves an orthogonal last optimal path to any cell.
Proof: Let n be a cell in uniform terrain reached from its
parent p by a diagonal move d⃗ = h⃗ + v⃗. Consider the case
where p′ = p+ h⃗, n′ = n+ h⃗, and the move ⟨p, p′⟩ has been
pruned. See Figure 4.

Because the move ⟨p, p′⟩ has been pruned, we know from
the pruning condition that there exists an alternative path to
p′ with tiebroken cost (gp′ , |m⃗|) < (gp + | ⟨p, p′⟩ |, 1). No
move action has a length less than 1, so this implies gp′ <
gp + | ⟨p, p′⟩ |. Consider the paths A = ⟨..., p′, n′⟩, which
extends the alternative path to p′, and B = ⟨..., p, n, n′⟩.
The cost of A is gp′ + | ⟨p′, n′⟩ | and the cost of B is
gp + | ⟨p, n, n′⟩ |. Because the terrain around n is uniform,
the moves ⟨n, n′⟩ and ⟨p, p′⟩ have the same cost, as well as
the moves ⟨p, n⟩ and ⟨p′, n′⟩. It is then clear that A is shorter
than B, and therefore the move ⟨n, n′⟩ is not optimal and can
be pruned. □

Prospective g Pruning While diagonal branch pruning
will avoid all of the horizontal scans shown in Figure 3,
it will not prevent the vertical overscanning shown. The
basic neighbourhood-based pruning rules are not powerful
enough to determine that the vertical moves are unnecessary.
Prospective g pruning utilises the g-values produced by the
search to prove that these moves are unnecessary, allowing
diagonal branch pruning to the eliminate the scans.

We maintain for each cell a prospective g-value (denoted
pg), separate from the search g-value, as well as a flag indi-
cating if the cell was reached through a prospective orthogo-
nal move. When the search reaches a node n with a lower g
value, we attempt to lower the prospective g-values of each
of its neighbourhood successors according to Algorithm 1.

When the search expands a node n, we prune any move
m⃗ to a cell x which has a prospective g-value less than the
length of the path to n plus the cost of the move m⃗. Addi-
tionally, m⃗ is pruned if it is a diagonal move, x is flagged as
being reached through a prospective orthogonal move, and
the cost is the same as the prospective g value.

Theorem 3 Prospective g pruning never removes an or-
thogonal last optimal path.
Proof: The proof is straightforward. Let m⃗ be a move from
node n to node s which is removed by prospective g prun-

12376

Algorithm 1 Prospective g update
Require: n is a node reached in direction m⃗.

1: for s ∈ neighbourhood successors of n do
2: pg ← n.g + | ⟨n, s⟩ |
3: if pg < s.pg then
4: s.pg ← pg
5: s.ortho← ⟨n, s⟩ is orthogonal
6: else if pg = s.pg then
7: s.ortho← s.ortho or ⟨n, s⟩ is orthogonal
8: end if
9: end for

ing. Then the move m⃗ results in a path with tiebroken cost
strictly greater than the tiebroken cost of some other path
which set the prospective g value. The move m⃗ is therefore
not minimum tiebroken cost, and can be pruned. □

Example 2 Consider the the example shown in Figure 4.
When p is reached its neighbours are marked with a prospec-
tive g value. In particular, assuming n0 is the start of the
search, cell n, the down right neighbour of p, is marked with
prospective g value 7/2

√
2, the path length of ⟨n0, p, n⟩.

Now when p′ is expanded we examine the cost to n via p′

which is 3 + 3/2
√
2. Since this is greater than the marked

prospective g value 7/2
√
2, we prune the down move suc-

cessor. This avoids the vertical overscan in the third column.
Using diagonal branch pruning, since p′ has no down suc-

cessor, we do not consider creating down successors for any
successors of p′ generated by down right moves. The combi-
nation of prospective g pruning and diagonal branch pruning
eliminates all overscanning shown in Figure 3. □

Orthogonal Jump Caching The combination of prospec-
tive g and diagonal branch pruning allows all of the over-
scan in Figure 3 to be eliminated. However, there still exist
common patterns that produce a significant amount of over-
scan that these methods are unable to prune. This overscan is
produced by distant diagonal scans generating overlapping
orthogonal scans. The stripes map Figure 5 is an example
of such a map, since scans leaving the diagonal at different
heights are more than one cell apart the prospective g prun-
ing does not prevent the overscan.

To improve performance in this case, we introduce a
caching scheme for orthogonal jumps which allows us to
skip to the end of a jump if it has already been computed as
part of a previous scan. Each cell maintains the length and
cost of a jump in each orthogonal direction. The jumping
procedure is modified to use this cache to complete scans
early and to fill in cache values afterwards. The new jump-
ing procedure is given in Algorithm 2.

Using jump caching we can guarantee that no cell is
scanned more than 4 times (one for each orthogonal direc-
tion), reducing worst-case time complexity from O(n2) to
O(n). There is a cost though, the scanning method is slower
since we need to examine each cell for a cached value during
a jump and fill in the new cache values after a jump.

Cache Maintenance Values in the jump cache are valid
while the weighted grid map does not change. This means

Algorithm 2 Caching Jump Procedure

Require: n is a node and d⃗ is an orthogonal direction.
1: cost← 0
2: distance← 0
3: steps← 0
4: repeat
5: if n(d⃗).cached exists then
6: cost← n(d⃗).cached.cost

7: distance← n(d⃗).cached.distance
8: break
9: end if

10: n← n+ d⃗
11: steps← steps+ 1
12: until cannot jump through n
13: while steps > 0 do
14: p← n− d⃗
15: cost← cost+ | ⟨p, n⟩ |
16: distance← distance+ 1
17: n(d⃗).cached.cost← cost

18: n(d⃗).cached.distance← distance
19: steps← steps− 1
20: n← p
21: end while
22: return cost, distance

that we can safely reuse the cache for separate path finding
queries until the map changes. This can substantially speed
up multiple path finding calls while the map remains static.
Of course, one of the principle advantages of jump point
search is the ability to handle dynamically changing maps
without recomputation.

A simple option to keep the cache in a valid state is to
empty the cache when the map changes at all. This is guar-
anteed correct, and still ensure that we do not scan a cell
more than 4 times in any single path planning call.

A better option is when we modify the map at locations
(xi, yi) ∈ L to remove cached values for every cell (x, y)
which is within one row or column of a cell in L, i.e.
∃i.|x − xi| ≤ 1 ∨ |y − yi| ≤ 1. Remember that orthog-
onal jumping depends also on terrain in adjacent rows or
columns. If the number of map changes between path find-
ing calls are small this can be much more efficient than sim-
ply emptying the cache. If L becomes too large, a simple
emptying of the cache is probably more efficient.

Experimental Setup
For our experiments, we implemented JPSW in C++ using
the warthog pathfinding research library. Full code is avail-
able at bitbucket.org/dharabor/pathfinding.
The experiments were run on an AMD Ryzen 9 5950X
clocked at 4.6GHz with 16GB 3200MHz DDR4 memory.
Each experiment computes the average total time to answer
a set of queries on each map in the benchmark set over five
runs. The results are displayed as the speedup of the method
with respect to using standard A* search, which is the cur-
rent state of the art approach to path planning on weighted

12377

Figure 5: Left: a sample map from the Stripes set, using an
angle of 24◦ with light region of width 128 and heavy region
of width 64. Right: a map with 1024 Guards added.

terrain grid maps without using precomputation.
We performed four sets of experiments to test the effec-

tiveness of JPSW in various scenarios:
Stripes maps: 36 synthetic two-terrain maps of size

512 × 512 that represent the worst cases for overscan. The
terrain is arranged in stripes of various combinations of
widths (64, 128, and 256) and at various angles (0◦, 5◦, 24◦,
and 45◦). We generated 1000 random queries for each map
in this set. An example map is presented in Figure 5.

Cities maps: 30 two-terrain maps of size 512 × 512 dis-
cretised from building and road maps available at Moving AI
(Sturtevant 2012). We assign various costs to the normally
impassable @ terrain for these experiments. If the cost is less
than 1 then paths try to shortcut through buildings, while if
greater than 1 they will only enter buildings to avoid longer
paths on the roads.

Multi-Terrain maps: We have two sets of maps with
multiple terrain types. The Island set from (Sturtevant et al.
2019) contains 20 synthetic island maps of size 2048×2048
with approximately 15 terrain types, each assigned a random
cost between 1 and 5. The WC3 set contains 36 maps from
WarCraft 3 scaled up to 512×512 and has five terrain types,
including impassable terrain. We consider trees to have cost
1.5, swamp cost 2, and water cost 4. Both of these sets of
maps are available at Moving AI.

Guards: This set of maps is designed to test the sensi-
tivity of JPSW to symmetry. Consider a scenario where an
agent wants to go from a start node to a target node, and the
map is filled with enemy Guards. Each Guard has a range
where they may spot the agent. We model detection risk
through terrain cost, increasing by 1 for every guard in range
of the cell. We generated six maps of increasing complexity
by adding various numbers of Guards (0, 64, 128, 256, 512,
1024) to the base map. The base map was The Frozen Sea
from StarCraft, available at Moving AI (See Figure 5).

Methods Compared
In the experiments we consider a number of variants of
weighted jump points search and their combination:
Base JPSW Using only the neighbourhood successor and

jumping rules. Common to all variants.
Pruning Adding diagonal branch pruning and prospective

g pruning.

Empty Cache Using jump caching but emptying the cache
between each path planning query.

Full Cache The caches are pre-filled and never cleaned (the
map is static).

For simplicity of comparison, all variants have the neigh-
bourhood successor cache pre-filled. The overhead of fill-
ing the cache during search is small, between 10 and 30%
depending on the map. Filling this cache when the map is
loaded takes on average 0.28µs per tile on our test system.

The Full Cache benchmarks are presented as an upper
bound on what JPSW is able to achieve. In practice, where
the neighbourhood successor and jump caches are not pre-
filled and multiple queries are run, performance will start out
the same as Empty Cache and trend towards Full Cache over
time. In dynamic environments, the frequent invalidation of
cache entries may prevent performance from reaching that
of Full Cache, although due to the invalidation strategy will
still perform better than Empty Cache.

Results
Experiment 1: Stripes This experiment illustrates why
Base JPSW is not sufficient, since we can see from Figure 6
that it actually runs slower than the baseline A* search on
these maps, since overscanning is so common. For the hor-
izontal 0◦ stripes Pruning is able to remove all overscan-
ning (analogous to Figure 3), so immediately results in a
significant speedup. Cache causes scanning to slow down,
and hence is not as effective as Pruning on these maps. Once
we move to slanted stripes Pruning is less effective, however
it continues to provide benefits when used in conjunction
with a cache. The best combination, Full Cache + Pruning
avoids most redundant scans and for later queries can reuse
the cache to avoid almost all scanning leading to massive
improvements.

Experiment 2: City Maps In the results shown in Fig-
ure 6 we see that Base JPSW is worse than A* when the
buildings are lighter terrain than the roads. Adding Prun-
ing makes JPSW always better than the baseline. In these
maps where scan distances are not so great, Empty Cache is
always beneficial for the lighter building terrain, while the
costlier scanning does not always pay off for heavier terrain.
Full Cache is always beneficial. Overall JPSW leads to a
more than five time improvement over A* regardless of ter-
rain cost. With infinite cost this is equivalent to the original
single terrain map where Pruning is simply overhead, but
Full Cache does lead to significant speedups.

Experiment 3: Multi-Terrain maps The results show
that Base JPSW causes slowdown on the DWA maps be-
cause of the many terrain types which lead to frequent over-
scan, while for WC3 it is slightly better than A*. Adding
the Pruning or Empty Cache techniques are both enough to
beat the baseline A*, and the best combination Full Cache +
Pruning leads to significant speedups of 8 and 4.5 times.

Experiment 4: Guards Results are shown in Figure 8.
The 0 guard case is simply a single terrain map, and hence
overscanning is rare and Pruning is simply overhead. As we
add more guards we reduce the symmetry available to take

12378

0◦ 5◦ 24◦ 45◦ 1/8 1/4 1/2 2 4 8 ∞ Island WC3
0

5

10

15

20

25

30

Angle of Stripes Cities: Cost of @ terrain

1

Sp
ee

du
p

Fa
ct

or
ov

er
A

*
Speedup of JPSW Variations over A*

Base JPSW Pruning Empty Cache Empty Cache + Pruning Full Cache Full Cache + Pruning

Figure 6: Speedups over A* for the Stripes, City Maps and Multi-terrain Maps for the various configurations

20 40 60 80 100
0

20

40

60

Average Distance of Orthogonal Successor

Sp
ee

du
p

Fa
ct

or
ov

er
A

* Speedup vs Potential

Stripes WC3 Island Guards

Figure 7: Speedup factor of Pruning + Full Cache over A*
versus a measure of the potential speedup of the method on
the map.

advantage of and all of the JPSW methods become increas-
ingly similar to A*, however none end up slower over all.
Pruning is the most important improvement, while Cache
methods are less effective because the jump distances be-
come increasingly short as we add more guards.

Variance in speedup In Figure 7 we measure the relation-
ship between speedup and the average jump distance to each
orthogonal successor, across all our tested maps. The strong
correlation indicates JPSW primarily achieves its speedup
by skipping nodes in locally uniform regions, most impor-
tantly during orthogonal scans,where we can use the jump
cache to skip directly to the end of the jump.

0 64 128 256 512 1024
0

5

10

15

1

Number of Guards

Sp
ee

du
p

Fa
ct

or
ov

er
A

* Speedup of JPSW Variations over A*

Figure 8: Speedups over A* for the various configurations
on the Guards scenarios.

Conclusion
We introduce Weighted Jump Point Search (JPSW), a fast
and optimal equivalence-breaking approach for path plan-
ning on weighted grid maps, of the kind that often appear
in computer games. We show that breaking equivalences is
much harder in this domain than in the well known uniform-
cost case. Our new pruning techniques can nevertheless ef-
fectively reduce the size of the search space, and the number
of operations on the OPEN list, all while guaranteeing so-
lutions remain grid-optimal. In a range of experimental set-
tings, drawn from or inspired by computer games, we report
speedups of up to one order of magnitude, on average, vs
the most competitive baseline in the area, online A* search.
Future work includes more sophisticated jump stopping con-
ditions, and stronger pruning rules to reduce overscan.

12379

Acknowledgements
This work was partially supported by Australian Research
Council Grant DP200100025.

References
Bono, M.; Gerevini, A. E.; Harabor, D. D.; and Stuckey, P. J.
2019. Path Planning with CPD Heuristics. In Proceedings of
the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, 1199–1205. International Joint
Conferences on Artificial Intelligence Organization.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. 2017. The FastMap algorithm for shortest
path computations. arXiv preprint arXiv:1706.02792.
De Carufel, J.-L.; Grimm, C.; Maheshwari, A.; Owen, M.;
and Smid, M. 2014. A note on the unsolvability of the
weighted region shortest path problem. Computational Ge-
ometry, 47(7): 724–727.
Delling, D.; Goldberg, A. V.; Savchenko, R.; and Werneck,
R. F. 2014. Hub labels: Theory and practice. In Inter-
national Symposium on Experimental Algorithms, 259–270.
Springer.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction hierarchies: Faster and simpler hierarchi-
cal routing in road networks. In International Workshop on
Experimental and Efficient Algorithms, 319–333. Springer.
Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128–135.
Harabor, D. D.; and Grastien, A. 2012. The JPS Pathfinding
System. In SOCS.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
Mitchell, J. S.; and Papadimitriou, C. H. 1991. The weighted
region problem: finding shortest paths through a weighted
planar subdivision. Journal of the ACM (JACM), 38(1): 18–
73.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In Twenty-First International Joint Conference on
Artificial Intelligence.
Sturtevant, N. R.; Sigurdson, D.; Taylor, B.; and Gibson,
T. 2019. Pathfinding and abstraction with dynamic terrain
costs. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 15, 80–86.
Tran, N.; Dinneen, M. J.; and Linz, S. 2020. Computing
Close to Optimal Weighted Shortest Paths in Practice. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 291–299.

12380

