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Abstract

Signed networks (networks with positive and negative edges)
commonly arise in various domains from molecular biology
to social media. The edge signs – i.e., the graph signage –
represent the interaction pattern between the vertices and can
provide insights into the underlying system formation process.
Generative models considering signage formation are essential
for testing hypotheses about the emergence of interactions and
for creating synthetic datasets for algorithm benchmarking
(especially in areas where obtaining real-world datasets is
difficult).
In this work, we pose a novel Maximum-Likelihood-based op-
timization problem for modeling signages given their topology
and showcase it in the context of gene regulation. Regulatory
interactions of genes play a key role in the process of or-
ganism development, and when broken can lead to serious
organism abnormalities and diseases. Our contributions are
threefold: First, we design a new class of signage models for
a given topology, and, based on the parameter setting, we
discuss its biological interpretations for gene regulatory net-
works (GRNs). Second, we design algorithms computing the
Maximum Likelihood – depending on the parameter setting,
our algorithms range from closed-form expressions to MCMC
sampling. Third, we evaluated the results of our algorithms
on synthetic datasets and real-world large GRNs. Our work
can lead to the prediction of unknown gene regulations, novel
biological hypotheses, and realistic benchmark datasets in the
realm of gene regulation.

Introduction
Networks with positive and negative edges (signed networks)
are ubiquitous across various domains. They work well for
situations when the objects modeled as network vertices have
positive and negative interactions. Accounting for edge types
helps substantially with many important network-related
problems, such as missing link prediction (Li, Fang, and
Zhang 2017; Li et al. 2020), node ranking (Li, Fang, and
Zhang 2019), network synchronization (Monteiro et al. 2022).
Signed networks were successfully applied to model social
interactions (trust/distrust in Epinions (Xu et al. 2019), epi-
demic spreading (Li et al. 2021), political interactions be-
tween US Congressmen (Thomas, Pang, and Lee 2006), and
gene regulation (Mason et al. 2009).
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One of the most interesting things about signed networks
is the distribution of signs on the edges - i.e., the signage.
Systems modeled by signed networks rarely exhibit random
interactions between their elements - instead, they follow
certain interaction patterns, that could provide insights into
the underlying formation process. Generative models consid-
ering signage formation are essential for testing hypotheses
about the emergence of interactions, as well as creating syn-
thetic datasets for algorithm benchmarking (especially in
areas where obtaining real-world datasets is difficult).

One of the fields affected by the scarcity of realistic signed
network datasets is gene regulation. The diversity of cells,
organs, and eventually organisms arises from regulatory in-
teractions between genes through their biochemical products
(proteins or RNAs). If a gene product increases the synthesis
of a target gene product, the corresponding directed edge is
modeled as positive; if it decreases, the edge is modeled as
negative. The set of all regulatory interactions along with a set
of genes is called a gene regulatory network (GRN). GRNs
play a key role in the process of organism development, and
when broken can lead to serious organism abnormalities and
diseases (Alon 2019). Understanding gene regulation mecha-
nisms as well as identifying drug interventions often rely on
reconstructing GRNs from the dynamics of the correspond-
ing gene transcripts (Zhang et al. 2017; Lopes-Ramos et al.
2020).

In this work, we designed a new class of signage models for
gene regulatory networks along with a maximum-likelihood-
based framework assessing their goodness-of-fit. Our signage
models work for scenarios in which the graph topology is
formed first and later refined with the edge signs. Motivated
by underlying biological processes, our models involve latent
non-overlapping groups of nodes and the edge signs are gen-
erated based on the endpoints’ groups. A real-life example is
forming social interactions in a closed community (e.g. dor-
mitories) in which one gets acquainted with the people one
lives and interacts with and later decides on their attitude to
them. Some evolutionary hypotheses suggest a similar origin
of gene regulation, with the genome structure defining the
gene interactions in the course of species divergence (Bylino,
Ibragimov, and Shidlovskii 2020; Wittkopp and Kalay 2012).
Signage models facilitate the comparison of node interac-
tions regardless of the underlying topology – this might be
useful for graphs generated with different topologies but fol-
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lowing the same signage model, allowing topology-agnostic
comparisons and testing the plausibility of node interactions
hypotheses.

We evaluated the fit of our models using maximum likeli-
hood as an objective criterion, see, for example (Bezáková,
Kalai, and Santhanam 2006). Most existing methods evalu-
ating a model’s goodness-of-fit rely on high-level network
characteristics (degree distribution, diameter, frequency of
specific subgraphs, etc.), which might be prone to overfit-
ting and subjectivity in criteria selection especially when
real-world data is scarce (as in the case of GRNs). In con-
trast, likelihood-based goodness-of-fit is a universal approach
which does not rely on an arbitrarily chosen network or sig-
nage properties. The main challenge of this approach is the
computation of the likelihood.

Contributions 1) We design a class of graph signage mod-
els with a latent node group assignment, which gets gen-
erated first, followed by the edge signage, the distribution
of which is conditional on the node group assignment. 2)
We pose a new optimization problem for modeling graph
signage for gene regulatory networks, GRASMOS 1, which
aims to select the model and its parameters that best fit the
observed data using Maximum Likelihood. Our algorithmic
framework can be used as a guide to design likelihood es-
timators for other models, facilitating direct comparison of
their goodness-of-fit. 3) We analyze the GRASMOS problem
space and identify four cases of parameter combinations that
have different intuitions and induce different computational
complexity of the likelihood computation. We give efficient
algorithms for estimating the likelihood corresponding to the
given parameters. Depending on the parameter class they
belong to, our algorithms range from closed-form expression
to MCMC sampling. 4) We obtain a 16-fold reduction in
the MCMC algorithm runtime, by identifying parts of the
datasets where MCMC can be replaced by exact computation
and by accounting for symmetry in the parameter space. 5)
We evaluate our framework on two real-world bacteria GRN
datasets - E.coli and B.subtilis (both with thousands of nodes
and edges), as well as on synthetic datasets of comparable
size.

Related work Works of (Derr, Aggarwal, and Tang 2018;
Jung, Park, and Kang 2020) designed generators of signed
networks based on the structural balance theory, that capture
the distribution of signed triangles. Such generators model a
signage jointly with a topology, while in our work, the sig-
nage is formed on the basis of the existing topology. These
generators do not appear to generate self-loops, while our
work admits topologies with self-loops, which play an es-
sential part in GRNs (Burda et al. 2011; Alon 2019). Other
works designed algorithms generating a node embedding in
signed networks and tested its performance for missing link
prediction and node classification (Li, Fang, and Zhang 2017;
Li et al. 2020). Such algorithms aim to have high predic-
tive power while in our work we aim for a model with high
explanatory power.

1https://github.com/Restel/grasmos

Preliminaries
A signed graph G± = (V,E,A) consists of a directed graph
G = (V,E) with node set V and edge set E ⊆ V × V , and
a signage function A : E → {+,−} determining a positive
or a negative sign for each edge. Let n = |V | be the number
of vertices and m = |E| = m+ +m−, where m+ and m−
is the number of positive and negative edges, respectively.

For any v ∈ V let outs(v) be the number of outgoing
edges from v of sign s ∈ {+,−}, and define ins(v) anal-
ogously for incoming edges to v. For a sign s, we define
s̄ as its complementary sign. The total number of outgoing
edges from v is out(v) = outs(v) + outs̄(v). Let selfs(v)
represent the number of s-self-loops of node v.

Graph Signage Model
We propose a graph signage model, where the signs of the
edges of a given directed graph G = (V,E) are driven by
a random latent node partition C and a parameter matrix
ξ. In particular, let S be a set of symbolic node group la-
bels, q be a distribution over S (i.e., q : S → [0, 1] where∑
s∈S q(s) = 1), and ξ be an |S| × |S| matrix of probabili-

ties ξx,y , where x, y ∈ S. The signage model first randomly
creates a latent node partition C : V → S by assigning each
node independently to one of the groups in S according to the
distribution q. Then, for each edge (u, v) ∈ E, the model as-
signs the sign + to this edge with probability ξC(u),C(v), and
the sign − otherwise, obtaining a signed graph G±. The pa-
rameters of the model are combined in the tuple Θ = (ξ, q).

We define |S| × |S| probability matrices P+ and P− de-
noting the probabilities that, based on the node assignment
of the end-points of an edge, the edge gets sign + or −: For
s1, s2 ∈ S, let P+

s1,s2 := ξs1,s2 and P−s1,s2 := 1− ξs1,s2 .

Graph Signage Model Selection, GRASMOS
In this section, we formalize our optimization problem,
GRASMOS, aimed at finding the parameters of the genera-
tive graph signage model with the best explanatory power of
the observed data, based on maximum likelihood. Recall that
the signage model only generates the signs of the edges, not
the topology; in a sense, it “augments” the edges with signs
based on the existing graph topology.

Formally, given a signed graph G± = (V,A), we are look-
ing for such combination of parameters Θ that has the highest
probability of generating edge signs A, denoted P (A|Θ).
For a fixed node group assignment, C, we can find the corre-
sponding probability of the signs as:

L(Θ|C) := P (A|Θ, C) =
∏

(u,v)∈E

PA(u,v)
C(u),C(v) (1)

Since the node group assignment is generated randomly, the
probability of interest is a sum of conditional probabilities
over all possible node assignments:

L(Θ) = P (A|Θ) =
∑
C∈C

P (A|Θ, C) · P (C) (2)

Our model and the above expression are reminiscent of the
well-known Ising model from statistical physics and its parti-
tion function (Ising 1925; Jerrum and Sinclair 1993). How-
ever, there are crucial differences between the two models:
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the Ising model is defined for undirected graphs and its Hamil-
tonian does not capture our setting.

GRASMOS aims to find model parameters ΘMLE with the
highest probability (or likelihood) of realizing the edge signs
A. As is standard for the maximum likelihood approach,
for numerical purposes we frame the optimization problem
as finding the parameters Θ with the lowest negative log-
likelihood:

ΘMLE = arg min
Θ

[− logL(Θ)] (3)

Analysis of the GRASMOS Parameter Space
GRASMOS is an optimization problem over an (|S|2 + |S|−
1)-dimensional parameter space, since ξ is of dimensions
|S| × |S| and q is determined by |S| − 1 probabilities.

While our signage model is general, in this work we focus
on modeling GRNs where S = {A,R}. Therefore, from
now on we assume S = {A,R} and, therefore, the opti-
mization is over a 5-dimensional parameter space. For each
parameter setting Θ, the likelihood computation is potentially
an exponential summation over 2n node group assignments.
However, on closer scrutiny, it turns out that points in some
areas of the problem space are easier to estimate than the rest
and it is the relationship between ξ probabilities that deter-
mines the computational difficulty of the point estimation. In
this section, we subdivide our main optimization problem (3)
into several cases (models) according to the relationship be-
tween probabilities in ξ and provide intuition for each model.
We present the models from the simplest to the most general.

Node-Oblivious model (NO) For the problem space
points with identical ξ entries, the node group partition does
not affect the likelihood of Θ, so we can estimate the likeli-
hood of such points analytically. We call this case the Node-
Oblivious model because the signs of edges are indepen-
dent of the nodes’ groups. Define ξ = ξA,A = ξA,R =
ξR,A = ξR,R. Then, P+

s1,s2 = ξ and P−s1,s2 = 1− ξ for every
s1, s2 ∈ S. This model can be viewed as a signage analog of
the well-studied Erdös-Rényi random graph model.

Source-Consistent model (SC) In parameter subspace,
where ξ matrix has pairwise identical probabilities ξA,A =
ξA,R =: ξA∗ and ξR,A = ξR,R = ξR∗. The edge sign proba-
bilities depend only on the source node’s group. In the context
of gene regulation, that means that a gene mostly performs
the regulation of the same sign: an activator gene tends to
activate, and a repressor gene represses. We call the param-
eter instances belonging to this case the Source-Consistent
model. This observation allows us to reformulate (1) as a
product of probabilities of signed outgoing edges over the set
of vertices:

P (A|Θ, C) =
∏
v∈V

ξ
out+(v)
C(v)∗ · (1− ξC(v)∗)out−(v) (4)

Target-Consistent model (TC) Similarly to the previous
model, in the Target-Consistent model, the following edge
probabilities are pairwise equal, i.e. ξA,A = ξR,A =: ξ∗A
and ξA,R = ξR,R =: ξ∗R and the calculation of P (A|Θ, C)
is analogous to the SC model, using incoming edges.

Bi-Node-Consistent model (BNC) In the Bi-Node-
Consistent model, the edge signs depend on the node group
assignment of both the source and the target nodes and the
probabilities in ξ can be arbitrary. In this parameter subspace,
we can see ξ instances inducing assortativity: e.g., whether
nodes from the same group tend to have positive edges be-
tween each other, and negative edges to the nodes from the
other group (Mussmann et al. 2015), (Newman 2002). We
reformulate (1) for the likelihood estimation of the BNC
parameters as a product of the likelihood contributions of
non-self-loop (outgoing) signed edges and self-loop signed
edges for each node given node assignment C. Let l(v, C)out

and l(v, C)self be the likelihood contribution of the outgoing
and self-loop edges of node v to the Θ likelihood given C in
(1). Thus,

l(v, C)out =
∏

u:u 6=v,(v,u)∈E

PA(v,u)
C(v),C(u) (5)

l(v, C)self = ξ
self+(v)
C(v),C(v) · (1− ξC(v),C(v))

self−(v) (6)

We rewrite (1) with respect to the contribution of each node
to the overall likelihood:

P (A|Θ, C) =
∏
v∈V

l(v, C)out · l(v, C)self (7)

Likelihood Estimation of the GRASMOS
Model Parameters

In this section, we show how to estimate the likelihood of the
GRASMOS model parameters, depending on which of the
above-stated models they belong to. The methods we design
range in their complexity depending on the computational
difficulty of the problem: we provide a closed-form expres-
sion for the Node-Oblivious model, a polynomial-time exact
algorithm for the source- and Target-Consistent models, and
an MCMC sampling algorithm for the Bi-Node-Consistent
model. We prove that the models (or, more precisely, their
natural generalizations) are self-reducible (Jerrum, Valiant,
and Vazirani 1986), which allows us to estimate the likeli-
hood for a given Θ through a product of likelihood ratios of
progressively smaller instances. For the BNC model, we use
sampling to get an approximation of each of the likelihood
ratios.

Node-Oblivious Model
For the NO model, from (1) and (2) we get P (A|Θ, C) =
P (A|Θ) = ξm+ · (1 − ξ)m− . Therefore, the optimization
problem (3) can be solved analytically: it is maximized for
ξmax := m+

m++m−
. Since q does not contribute to P (A|Θ),

ΘMLE = (ξMLE, qMLE), where ξMLE has all entries equal to
ξmax and qMLE is arbitrary.

Likelihood Estimation through the Product of
Likelihood Ratios
The total likelihood of Θ consists of the sum of 2n likeli-
hoods of Θ conditional on the node assignment (see (2)). We
express L(Θ) as the product of ratios of pairs of likelihoods
on decreasingly smaller spaces of node group assignments:
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the reduction in space is achieved by fixing the groups for
some nodes.

Let V = {v1, v2, . . . , vn}. For s1, . . . , sj ∈ S, we de-
fine C[s1,...,sj ]

j as the set of node group assignments C :

V → {A,R} such that C(vi) = si for every i ≤ j (vertices
v1, . . . , vj have their group determined by s1, . . . , sj). No-
tice that C0 is the set of all node group assignments (with no
restrictions) and that |C[s1,...,sj ]

j | = 2n−j for any s1, . . . , sj .
For our self-reducibility approach, let us fix a “master”

node assignment C̃ : V → {A,R} that gradually more and
more vertices will adhere to. Let

Zj :=
∑

Cj∈C
[C̃(v1),...,C̃(vj)]

j

P (A|Θ, Cj) · P (Cj |j), (8)

where P (Cj |j) is the probability that vertices vj+1, . . . , vn
get the node assignment given by Cj . Notice that P (Cj |j)
is a probability distribution over the node group assignment
subspace C[C̃(v1),...,C̃(vj)]

j , and, therefore, Zj is the likelihood
of Θ restricted to this subspace.

Our overall goal is to estimate L(Θ) = Z0. We do this via
the following product of likelihood ratios:

Z1

Z0
· Z2

Z1
· Z3

Z2
... · Zn

Zn−1
=
Zn
Z0
. (9)

Notice that Zn = P (A|Θ, C̃) can be easily computed via
(1). Therefore, if we estimate each of the ratios σj :=

Zj

Zj−1
,

we can compute Z0 as follows:

P (A|Θ) = Z0 =
Zn∏n
j=1 σj

(10)

For numerical stability, we will choose C̃ so that each ratio
σj is reasonably far from 0.

Theorem 1. There exists C̃ such that σj ≥ 1/2 for every
j ∈ {1, . . . , n}.

Proof. We will define C̃ inductively. First, notice that the
ratio σj does not rely on the entire C̃ but only on its
restriction to {v1, . . . , vj}. For j ∈ {1, . . . , n}, suppose
C̃(v1), . . . , C̃(vj−1) have been chosen so that σi ≥ 1/2

for every i < j. We will show how to choose C̃(vj) so that
σj ≥ 1/2 by considering the two possible cases: C̃(vj) can
be either an activator or a repressor. For s ∈ {A,R}, define
Zsj using (8) with [C̃(v1), . . . , C̃(vj−1), s]. Let σsj :=

Zs
j

Zj−1
.

Recall that P (C|j − 1) = qA(C,j)(1− q)n−j−A(C,j), where
A(C, j) := |{i | C(Vi) = A, i ≥ j}| stands for the number
of activators among vj , . . . , vn in C. Notice that

Zj−1 =
∑

C∈C
[C̃(v1),...,C̃(vj−1)]

j−1

P (A|Θ, C) · P (C|j − 1)

= ZAj q + ZRj (1− q).
Therefore, qσAj + (1 − q)σRj = 1. This equation can-
not hold if both σAj < 1/2 and σRj < 1/2. Therefore,
choosing C̃(vj) := arg maxs∈{A,R} σ

s
j ensures that σj =

max{σAj , σRj } ≥ 1/2.

The proof builds C̃ constructively but the algorithmic effi-
ciency is unclear (it involves summations over exponentially
many terms). In the following sections, we will show how to
construct C̃ and compute all the σ∗j := max{σAj , σRj } (and
thus L(Θ)) efficiently.

Source-Consistent and Target-Consistent Models
We show how to estimate the ratio of likelihoods σ∗j for the
SC models in linear time. Our algorithms rely on the fact
that, in the SC model, the group assignment of any node,
C̃(vj), only affects the probabilities of edges connected to vj .
Therefore, the calculation of σ∗j depends only on node vj and
its incident edges. The proof and the analogous computation
for the TC model are included in the full version (Brilliantova,
Miller, and Bezáková 2022).
Theorem 2. When Θ belongs to the Source-Consistent
model, for every j ∈ {1, . . . , n} and every C̃ : V →
{A,R}:

σ∗j = max{ 1

q + αj(1− q)
,

αj
q + αj(1− q)

},

where

αj := (
ξR∗
ξA∗

)out+(vj) · (1− ξR∗
1− ξA∗

)out−(vj).

Corollary 3. For the Source-Consistent model, the likelihood
of Θ, L(Θ), can be calculated in O(n+m) time.

MCMC Sampling for Likelihood Estimation of the
Bi-Node-Consistent Model
In contrast to the SC and TC models, in which an edge sign
depends only on one endpoint and the ratio of likelihoods
σ∗j can then be computed analytically, we are not aware of
any analytical approach for σ∗j in the BNC model where both
edge end-points influence the sign of the edge. The main
difficulty arises from the fact that the calculation of σ∗j under
BNC might depend on the colors of the remaining n− j − 1
nodes, which, at that point, are still unassigned in the course
of the algorithm. Instead of exact computation, we estimate
each σ∗j via a Markov Chain Monte-Carlo (MCMC) sampling
of node group assignments on the subspace corresponding to
Zj , with first j vertices assigned to groups.

Suppose C̃(v1), . . . , C̃(vj) has been already defined. Let
us define wj(Cj) := P (A|Θ, Cj) · P (Cj |j) as the weight

of the node group assignment Cj ∈ C
[C̃(v1),...,C̃(vj)]
j . To

compute the likelihood Zj =
∑
Cj∈C

[C̃(v1),...,C̃(vj)]

j

wj(Cj),

we will randomly generate Cj , with probability proportional
to its weight. Therefore, the stationary distribution of the
node group assignments should be µj(Cj) := wj(Cj)/Zj .
To obtain this stationary distribution, we use the Metropolis-
Hasting technique (Metropolis et al. 1953; Hastings 1970),
with state space Ωj := C[C̃(v1),...,C̃(vj)]

j and the Markov chain
transitions τ : Ωj × Ωj → [0, 1] defined as follows. Let Cj
be the current state.
• Choose a uniformly random z ∈ {j + 1, . . . , n}. Let C ′j

be identical Cj , except C ′j(vz) = C̄j(vz) (the assignment
of vz is opposite in Cj and C ′j).
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• With probability min{1, wj(C′j)

wj(Cj)} move to state C ′j . Oth-
erwise, stay at Cj .

Therefore, τ(Cj , C
′
j) = 1

(n−j) min{1, wj(C′j)

wj(Cj)} and

τ(C
(1)
j , C

(2)
j ) = 0 for all other C(1)

j , C
(2)
j where C(1)

j 6=
C

(2)
j , C

(1)
j 6= C ′j

(2) (the self-loops τ(Cj , Cj) correspond to
the remaining probability, so that τ is a stochastic matrix).

The underlying transition graph is analogous to the hy-
percube with n − j dimensions, and, therefore, the state
space is connected (i.e., we can get from every state to ev-
ery other state using transitions of the Markov chain). This
Markov chain is also aperiodic due to the presence of self-
loop transitions and, therefore, it has a unique stationary
distribution. The Metropolis-Hastings technique ensures that
this stationary distribution is exactly the distribution µj , i.e.,
proportional to the weights wj(Cj).

Following the earlier outline (see (9) and (10)), we will
be estimating σj =

Zj

Zj−1
. Recall that, for numerical sta-

bility, we wanted σj ≥ 1/2. We showed that C̃(vj) =
arg maxs∈{A,R} σ

s
j yields σj = max{σAj , σRj } ≥ 1/2. We

will estimate both σAj and σRj simultaneously by generating

samples from Ωj−1 = C[C̃(v1),...,C̃(vj−1)]
j . A sample Cj−1

with Cj−1(vj−1) = X will contribute to the σXj computa-
tion, for X ∈ {A,R}.

LetCj−1 be a random sample from Ωj−1, drawn according
to µj−1. Define fA : Ωj−1 → {0, 1} as the indicator function
that the corresponding node assignment assigned vj as an
activator: fA(C) = 1 if and only if C(vj) = A. Then,

Eµj−1 [fA(Cj−1)]

=
∑

C∈Ωj−1

µj−1(C)fA(C) =
∑

C∈Ωj−1:C(vj)=A

wj−1(C)

Zj−1

=
1

Zj−1

∑
C∈C

[C̃(v1),...,C̃(vj−1),A]

j

P (A|Θ, C) · P (C|j − 1)

=
qZAj
Zj−1

= qσAj .

Therefore, we can use the expectation of fA to estimate
σAj (and, similarly, we can define fR and estimate σRj since
Eµj−1

[fR(Cj−1)] = (1 − q)σRj ). The accuracy of the esti-
mate increases with the number of samples: we will draw k

independent samples C(1)
j , C

(2)
j , . . . , C

(k)
j and compute the

average fA(Cj), namely 1
k

∑k
i=1 fA(C

(i)
j ). We use the same

set of samples for the average fA and the average fR compu-
tation (each sample contributes to either fA or fR). Since the
expectation Eµj−1

[fA(Cj−1)] corresponds to the probability
of drawing a sample with vj assigned as an activator, we draw

such sample with probability
qZA

j

Zj−1
, and we draw a sample

with vj as a repressor with probability
(1−q)ZR

j

Zj−1
. Since these

two types of samples cover the state space, at least one of the
types will be drawn with probability ≥ 1/2. This means that
we will very likely have a sufficient number of samples of

Type # nodes # edges # + edges # − edges

Regulon 1922 4265 2256 2000
SubtiWiki 2563 5283 3436 1847
Synthetic 2000 3127* NA** NA**

Table 1: Network characteristics of real-world and synthetic
datasets. * The median over 40 generated topologies from
DSF ** Varied substantially based on Θ-generator

at least one of the types, which will allow us to estimate the
corresponding expected value closely. Since we do not know
which of the types is more likely, we generate k samples and
estimate both the average fA and the average fR. Then, we
choose the larger average and define the corresponding A or
R as C̃(vj). Then, divide the larger average by q or (1− q)
as appropriate, obtaining an estimate on σj .

As a side remark, this σj might potentially be different than
max{σAj , σRj } but we still have σj ≥ 1/2 since qσAj ≥ 1/2

or (1− q)σRj ≥ 1/2.
Next, we discuss the accuracy of this estimate. Suppose we

aim to be within a (1 + ε)-factor of the true L(Θ), for some
small ε. Since we have n self-reducibility steps (i.e., n ratios
σj to estimate, see (9) and (10)) and the estimated quantities
are larger than 1/2, we can follow the derivation in (Jerrum
2003)[page 26] almost verbatim to obtain the desired number
of samples per estimate. However, this number of samples is
rather high for the datasets of our size, so we (successfully)
employ convergence heuristics for the estimates.

Algorithmic Speed-Up of MCMC
We combine the MCMC approach with exact calculation to
achieve significant speed-up for real-world datasets. GRNs,
like many other real-world networks, are not dense: they
usually have a few highly connected nodes (called hubs in
network science) and many low-degree nodes. For such low-
degree nodes, the use of MCMC is unnecessary and compu-
tationally wasteful: as soon as all of their adjacent vertices
are assigned, the ratio of likelihoods for such nodes can be
calculated analytically. For such vj , this theorem shows how
to compute σ∗j exactly in time proportional to vj’s degree.
The proof is in the full version (Brilliantova, Miller, and
Bezáková 2022).
Theorem 4. Let C : V → {A,R, undefined} be a partial
node assignment. Reorder the vertices so that v1, . . . , vj−1
are assigned by C to either A or R, and all other vertices
are undefined. Suppose that all of vj’s neighbors are already
assigned by C. Then σ∗j can be calculated as:

σ∗j = max{
qβAj

qβAj + (1− q)βRj
,

(1− q)βRj
qβAj + (1− q)βRj

}, (11)

βXj (C) =
∏
i<j:(vi,vj)∈E P

A(vi,vj)

C(vi),X)

∏
i<j:(vj ,vi)∈E P

A(vj ,vi)

C(X,vi))
.

Empirical Evaluation
Data Collection and Setup
Synthetic datasets To validate that our algorithms can cor-
rectly identify the GRASMOS parameters, we created syn-
thetic datasets with known Θ, resembling real-world GRNs

12368



by their network parameters and size. The characteristics of
all synthetic and real-world datasets we used are shown in
Table 1. Our evaluation pipeline had two steps: generation
and reconstruction. During the generation part, we gener-
ated network topologies from the Directed Scale-Free (DSF)
model, known to capture the characteristics of GRNs well
(Van den Bulcke et al. 2006), then using several different Θ
parameters we sampled the node group partition and assigned
+ and − signs to the edges.

For illustrative purposes, in the Results section below we
present our validation for the Source-Consistent model: We
chose several Θ (we refer to them as Θ-generators) from this
model and generated corresponding signages for our graph.
During the reconstruction part, we tested multiple candidate
Θ (Θ-candidates) belonging to the SC, TC, and NO models
and checked the proportion of samples in which the candidate
with the best likelihood ΘMLE matched the Θ-generator. We
also calculated the L1-norm between the Θ-generator and
ΘMLE. The parameters within the Θ-candidates varied be-
tween 0.1 and 0.9, with an increment step of 0.1. We tested 4
different Θ-generators in the generation part and for each of
1458 of Θ-candidates in the reconstruction part. To account
for stochasticity we repeated the pipeline 10 times. Tests
for additional Θ-generators can be found in the full version
(Brilliantova, Miller, and Bezáková 2022).

Real-world GRNs We used two public databases: Regu-
lonDB (Santos-Zavaleta et al. 2019) and SubtiWiki (Pedreira,
Elfmann, and Stülke 2022; Flórez et al. 2009). Both databases
contain experimentally validated information about gene reg-
ulatory interactions and their type (activation/repression) for
bacteria species: Regulon for Escherichia coli and SubtiWiki
for Bacillus subtilis. We only left the entries associated with
transcriptional gene regulation. From both datasets, we fil-
tered out regulation edges of unknown types and duplicated
edges. Regulatory interactions can be context-dependent: un-
der different conditions, the same gene can either activate or
repress the target gene (Ong and Corces 2011). Our model
does not account for such scenarios, so we had to filter out
duplicated edges.

For fitting the GRASMOS parameters of real-world GRNs,
we: used a fine-grained exploration of parameters varying
in [0.1, 0.9] with an increment of 0.05 belonging to the SC,
TC, and NO models; and, for complexity reasons, we evalu-
ated the BNC model subspace using a coarse-grid with each
parameter varying in {0.25, 0.5, 0.75}. For Θs belonging to
multiple models, we compared the results from these ap-
proaches, made sure that they were consistent, and identified
a good candidate to run a “refined” BNC search with 432
additional Θ-candidates in the vicinity (searching through
Θs roughly within ±0.125 from the identified candidate).

We estimatedL(Θ) of the BNC parameters using a parallel
implementation on the RIT research computing cluster. We
used up to 432 nodes with each core estimating a likelihood
of a single Θ-candidate via MCMC sampling. Each core is
equipped with Intel®Xeon®Gold 6150 CPU @ 2.70GHz. The
RAM upper limit for our computation was 2048 MB.
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Figure 1: Left: The absolute accuracy of Θ (red) and ξ-
generators (blue) recovery. Right: The average and the
lower and the upper-quartiles of the L1-norm between the
Θ-generator and the best Θ-candidate. In both figures, Θ-
generators have the form of (ξA∗, ξR∗, q)

.

Results and Discussion
Synthetic Data
For synthetic datasets, we tested how well our framework
based on the total likelihood reconstructs the Θ values that
were used to generate an edge signage instance. We found
that, overall, it was able to reconstruct the Θ-generator well.
Figure 1(left) shows the percentage of test cases when the Θ-
generator equaled the reconstructed ΘMLE exactly, and when
the ξ-portion of Θ and ΘMLE were identical, respectively. Re-
construction of the ξ-parameters was particularly successful.
Moreover, even when Θ and ΘMLE differed, they were very
close in their L1-norm, see Figure 1(right).

Results on Real-World GRNs
Table 2 presents 5 best Θ candidates per model for the Sub-
tiWiki and Regulon datasets. For both datasets, the BNC
parameters had the best performance among all models. How-
ever, some of the top BNC parameters belonged to the SC
model for SubtiWiki. BNC’s winning score is not surprising
as it generalizes the other models. However, when another
model overtakes BNC (as in the case of the SC model and
Subtiwiki), that might lead to biological hypotheses about the
underlying processes, which is our main reason for consider-
ing the simpler models. The source-consistency hypothesis
corresponds well to the existence of operons – groups/clus-
ters of bacterial genes that are co-located on the DNA strand
and controlled by the same gene-regulator (Salgado et al.
2001). Interestingly, in the case of Regulon, none of the top-5
Θ belonged to the SC model. Moreover, all of the top parame-
ters implied that genes tend to activate the genes from groups
other than they belong to. This observation might corroborate
the existence of feed-forward transcriptional control with
interchanging edge signs suggested for certain GRNs (Sasse
and Gerber 2015) and raises the question of whether the bac-
teria species corresponding to these two datasets indeed have
different gene regulation mechanisms, or the discrepancies
should be explained by other factors.

We assessed the accuracy of the MCMC sampling for
the likelihood estimation of those Θ instances for which we
have the exact solution (i.e., Θ in the SC, TC, and NO mod-
els). We aimed to have a (1 + 1/n)-multiplicative accuracy,
i.e., at most 0.2% likelihood error for our datasets. We used
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model ξAA ξAR ξRA ξRR q L(Θ)

BNC 0.99 0.99 0.20 0.15 0.40 557.12
BNC/SC 0.99 0.99 0.15 0.15 0.40 557.71
BNC 0.99 0.99 0.20 0.15 0.50 558.71
BNC/SC 0.99 0.99 0.15 0.15 0.50 558.93
BNC 0.99 0.99 0.15 0.20 0.40 559.24

SC 0.95 0.95 0.10 0.10 0.45 581.71
SC 0.95 0.95 0.10 0.10 0.50 581.88
SC 0.95 0.95 0.10 0.10 0.40 582.42
SC 0.95 0.95 0.10 0.10 0.55 582.91
SC 0.95 0.95 0.15 0.15 0.45 583.49

NO 0.65 0.65 0.65 0.65 NA 1484.93

TC 0.65 0.70 0.65 0.70 0.95 1485.03
TC 0.70 0.65 0.70 0.65 0.05 1485.03
TC 0.60 0.65 0.60 0.65 0.05 1485.07
TC 0.65 0.60 0.65 0.60 0.95 1485.07
TC 0.65 0.70 0.65 0.70 0.90 1485.19

model ξAA ξAR ξRA ξRR q L(Θ)

BNC 0.70 0.80 0.20 0.15 0.50 1127.74
BNC 0.70 0.80 0.25 0.10 0.50 1128.75
BNC 0.70 0.80 0.20 0.10 0.50 1129.03
BNC 0.70 0.80 0.25 0.15 0.50 1129.74
BNC 0.75 0.75 0.20 0.15 0.50 1129.84

SC 0.75 0.75 0.15 0.15 0.50 1130.33
SC 0.75 0.75 0.20 0.20 0.50 1130.45
SC 0.75 0.75 0.15 0.15 0.55 1130.51
SC 0.75 0.75 0.20 0.20 0.45 1130.78
SC 0.75 0.75 0.20 0.20 0.55 1130.91

NO 0.53 0.53 0.53 0.53 NA 1277.51

TC 0.55 0.50 0.55 0.50 0.60 1412.39
TC 0.50 0.55 0.50 0.55 0.40 1412.39
TC 0.55 0.50 0.55 0.50 0.55 1412.40
TC 0.50 0.55 0.50 0.55 0.45 1412.40
TC 0.55 0.50 0.55 0.50 0.65 1412.44

Table 2: Five best Θs per model for SubtiWiki (top) and
Regulon (bottom) dataset. The lower L(Θ), the better.

this target accuracy for our computation of the number of
needed samples. In most cases, our MCMC computations
were within the target accuracy. In those cases when we were
off by more than (1 + 1/n), the corresponding Θ-candidates
had L(Θ) far from L(ΘMLE), and in the coarse search, the
Θ-candidate with the smallest L(Θ) was close to L(ΘMLE).
This meant that despite having more inaccurate L(Θ) esti-
mates for these (few) Θs than we hoped for, the coarse search
eliminated them from consideration and thus eliminated the
inaccuracies.

As for the running time, the analytical calculation of some
vertices (Section Algorithmic speed-up of MCMC) and the
reduction of the parameter space by half (discussed in the
full version of this paper) resulted in 16x actual speed-up
for BNC Θ parameters compared to the naive approach. Due
to the parallelization of the grid search, the total runtime of
fitting the BNC parameters was around 2 days for Regulon
and 4 days for the SubtiWiki.

Figure 2: SubtiWiki signed GRN, with added node colors ac-
cording to the “master” node assignment C̃ corresponding to
ΘMLE (SC model). Red diamonds - repressors, blue triangles
- activators in C̃, gray circles = vertices where the assignment
of C̃ is ambiguous, corresponding to probability exactly 1/2
of being activator or repressor in the corresponding node
assignment subspace.

Conclusion
In this work, we present a novel Maximum-Likelihood-based
graph signage model selection problem for gene regulation,
GRASMOS, developed a fitting framework for the prob-
lem and showcased its usage for two gene regulatory net-
works of B.subtilis and E.coli. Our graph signage models
and the model selection framework opened up a plethora
of directions for future research. Among them: 1) Does the
high explanatory power of the ΘMLE translate into high
predictive power? For our models to have high predictive
power, we need to be able to reconstruct the hidden node
assignment. We used the master node assignment C̃ (visually
shown for SubtiWiki dataset in Figure 2) to estimate the like-
lihood, but how is it related to the “optimal” node assignment
CMLE = arg maxC∈C L(Θ|C)? 2) Is our framework robust
when there are missing edges? What is the percentage of the
missing edges it can handle?

Additionally, we acknowledge that the signage can de-
pend on the topology. A natural next step for this work is to
compare the likelihood of models that generate the signage
jointly with the topology, and an approach that uses existing
topology generators followed by our signage model.
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Flórez, L. A.; Roppel, S. F.; Schmeisky, A. G.; Lammers,
C. R.; and Stülke, J. 2009. A Community-curated Consensual
Annotation that is Continuously Updated: the Bacillus sub-
tilis Centered Wiki, SubtiWiki. Database, 2009. [Database
version: 4, download date: 06/29/2022].
Hastings, W. K. 1970. Monte Carlo Sampling Methods using
Markov Chains and their applications. Biometrika, 57(1):
97–109.
Ising, E. 1925. Beitrag zur theorie des ferromagnetismus.
Zeit. Physik, 31.
Jerrum, M. 2003. Counting, Sampling and Integrating: Al-
gorithms and Complexity. Birkhäuser Basel. ISBN 978-3-
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