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Abstract

Safe Interval Path Planning (SIPP) is a powerful algorithm for
solving a single-agent pathfinding problem where the agent
is confined to a graph and certain vertices/edges of this graph
are blocked at certain time intervals due to dynamic obstacles
that populate the environment. The original SIPP algorithm
relies on the assumption that the agent is able to stop in-
stantaneously. However, this assumption often does not hold
in practice, e.g. a mobile robot moving at a cruising speed
cannot stop immediately but rather requires gradual deceler-
ation to a full stop that takes time. In other words, the robot
is subject to kinodynamic constraints. Unfortunately, as we
show in this work, in such a case, the original SIPP is incom-
plete. To this end, we introduce a novel variant of SIPP that
is provably complete and optimal for planning with acceler-
ation/deceleration. In the experimental evaluation, we show
that the key property of the original SIPP still holds for the
modified version: it performs much fewer expansions com-
pared to A* and, as a result, is notably faster.

Introduction
Planning a path in the presence of both static and moving
obstacles is a challenging problem with topical applications
in robotics, video games, and other domains. When the en-
vironment is fully observable and the trajectories of the dy-
namic obstacles are known (e.g., are predicted by the robot’s
perception system or by a global observer), it is reasonable
to account for them while planning. A prominent method
that is tailored for such a setting is Safe Interval Path Plan-
ning (SIPP) (Phillips and Likhachev 2011). This is a search-
based algorithm that operates on a graph where vertices cor-
respond to the configurations of the agent (e.g., position,
heading, velocity, etc.) and edges correspond to the transi-
tions between them. Due to the dynamic obstacles, certain
vertices/edges of this graph are blocked at certain time inter-
vals. SIPP accounts for that and constructs plans in which an
agent can wait at the vertices to avoid collisions. An explicit
assumption of SIPP is that the agent can start/stop mov-
ing instantaneously. Under this assumption, the algorithm is
provably complete and optimal (w.r.t. the given spatial and
temporal discretization).
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Figure 1: An example of the challenging path planning in-
stance with dynamic obstacles.

In our work, we adopt an assumption (more realistic from
the practical perspective) that decelerating to a full stop and,
similarly, accelerating from the full stop takes time. In other
words, the agent is subject to kinodynamic constraints. This
makes SIPP inapplicable as shown in Fig. 1. In this ex-
ample, the environment is discretized to the 3 × 10 grid,
where the distance between the centers of the grid cells is
1m, and the agent has to go from the leftmost cell B0 to
the rightmost one B9. Moreover, two dynamic obstacles are
present in the environment that block cells B5 and B7 dur-
ing the intervals shown in black in the bottom part of the
figure. Assume that the agent’s cruising speed is 1m s−1. At
this speed, it takes 1 s to move between the cells. Further-
more, the maximum acceleration/deceleration of the agent
is 0.5m s−2, which means that accelerating to the cruising
speed from the full stop takes 2 s and 1m. Therefore, when
starting to move from the full stop, the agent will arrive at
the neighboring cell not in 1 s, but rather in 2 s. If the al-
gorithm ignores that, like the original SIPP, which assumes
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instantaneous acceleration, then the constructed plan, shown
in red, will actually lead to the collision (if it is applied with
real kinodynamic constraints) as shown by the dashed red
line. A straightforward modification of SIPP that takes ac-
celerating/decelerating actions into account is to apply only
dynamically valid transitions, i.e., to prevent the wait in the
states where the velocity is not zero. However, this variant
will report failure to find the solution while producing a par-
tial plan shown in blue. In this plan, the agent successfully
stops before the first obstacle and waits for 2 s, but then is
unable to pass the second obstacle as it is running late to
arrive at B7. There is, however, a collision-free plan. It is
shown in green. The reason why SIPP fails to find it is that,
intuitively, SIPP postpones the wait actions and cannot rea-
son about the consequences of waiting in different states of
the search tree. This does not violate the theoretical guar-
antees when waiting is available in any state. On the other
hand, when waiting is not always readily available, i.e., the
agent needs time to stop, the algorithm becomes evidently
incomplete. We will elaborate on this and provide technical
details in the following sections of the paper.

To the best of our knowledge, no works on SIPP exist
that directly address this issue. As a result, all known SIPP-
based algorithms are incomplete in the setting where kino-
dynamic constraints of the agent have to be taken into ac-
count when planning. Our work fills this gap and presents
an algorithm that is provably complete and optimal under
such constraints: Safe Interval Path Planning with Interval
Projection (SIPP-IP). To empirically evaluate it, we have
conducted a wide range of experiments in which we com-
pare SIPP-IP to several baselines that include other (non-
complete) variants of SIPP one may think of and A*. Empir-
ical results clearly show that SIPP-IP outperforms them all,
as it is able to solve instances that are unsolvable by other
planners and its runtime is two orders of magnitude lower
than the one of A*.

Related Work
Search-based planning with predictably moving obstacles
can be straightforwardly implemented as A* (Hart, Nilsson,
and Raphael 1968) with discretized time. Taking the time di-
mension into account, however, leads to significant growth
of the search space, especially when fine-grained time dis-
cretization is needed. To this end, (Phillips and Likhachev
2011) introduced SIPP, based on the idea of compressing
sequences of timesteps into the time intervals and search-
ing over these intervals. SIPP is provably complete and op-
timal under several assumptions, including that the agent
can start/stop moving instantaneously. Later, numerous vari-
ants of SIPP emerged, enhancing the original algorithm, e.g.,
any-angle SIPP (Yakovlev and Andreychuk 2021), anytime
SIPP (Narayanan, Phillips, and Likhachev 2012), different
variants of bounded-suboptimal SIPP (Yakovlev, Andrey-
chuk, and Stern 2020). Moreover, SIPP and its modifications
are widely used as building blocks of some of the state-of-
the-art multi-agent pathfinding solvers (Cohen et al. 2019;
Li et al. 2022). None of these variants consider kinodynamic
constraints.

Next, we mention only the works that to some extent

deal with taking the agent’s kinematic and/or kinodynamic
constraints into account. (Ma et al. 2019) introduced SIP-
PwRT that allowed for the planning with different veloci-
ties. Still, acceleration actions and effects were not consid-
ered in this work. Similarly, (Yakovlev, Andreychuk, and
Vorobyev 2019) described any-angle variant of SIPP that
supported non-uniform velocities. Interestingly, the authors
evaluate their planner on real robots. To plan safe trajecto-
ries for them, they suggested inflating the sizes of the mov-
ing obstacles, which alternatively can be seen as extending
the blocked time intervals of certain graph vertices/edges.
This ad-hoc technique was shown to perform reasonably
well in practice, but in general, it raises the question of how
to choose the offset. For example, if one enlarges the blocked
intervals in the setting described in the Introduction (recall
Fig. 1) by 1 s, SIPP will not find a solution. In (Ali and
Yakovlev 2021), accelerating actions were straightforwardly
integrated into SIPP, which, again, makes the algorithm in-
complete (as we show in this work). (Cohen et al. 2019)
suggested a variant of SIPP for the problem setting that as-
sumes arbitrary motion patterns. However, this was not the
main focus of the paper. Consequently, no techniques were
proposed to take special care of the accelerating motions,
and the empirical evaluation considered only the motions
that start and end with zero velocity. Overall, to the best of
our knowledge, no SIPP variant existed prior to this work
that would be provably complete and optimal when the as-
sumption of the original SIPP that “the robot can start/stop
instantaneously” does not hold.

Problem Statement
We assume a discretized timeline T = 0, 1, .... The agent
is associated with a graph G = (V,E), with the start and
goal vertices: start, goal ∈ V . A vertex of the graph corre-
sponds to the state of the agent, alternatively known as the
configuration, in which the agent can reside without collid-
ing with the static obstacles. Each configuration explicitly
encompasses the velocity, vel, of the agent. For example, it
may be comprised of the agent’s coordinates and orientation
as well as of its velocity: v = (x, y, θ, vel). Configurations
with the same position/orientation but different velocities,
indeed, correspond to different vertices of V . Configurations
with vel = 0 are of special interest, as the agent may stay
put (wait) only in them.

An edge e = (v, u) ∈ E represents a motion primitive
(Pivtoraiko and Kelly 2011), a small kinodynamically fea-
sible fragment of the agent’s motion that transfers the agent
from v to (distinct) u. We assume that for any v ∈ V , a fi-
nite set of such motions is available and each motion takes
an integer number of timesteps. Practicality-wise, this as-
sumption is mild, as any real-valued duration may be ap-
proximated with a certain precision and represented as an
integer. The duration of the motion defines the weight of the
edge, w(e) ∈ N.

Based on the source/target velocity, each motion (edge)
can be classified as either accelerating, decelerating, or uni-
form. In the latter case, the agent’s velocity at the target
configuration is the same as in the source one, while in the
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first two cases, it changes (increases and decreases, respec-
tively). The presence of accelerating/decelerating motions
makes our problem distinguishable from the works that as-
sumed instantaneous acceleration1.

Besides the agent and the static obstacles, the environ-
ment is populated by a fixed number of moving obstacles.
We assume that their trajectories are known and converted
(by an auxiliary procedure) to the collision and safe intervals
associated with the graph vertices and edges; i.e., for each
vertex, a finite sequence of non-overlapping time intervals
SI(v) is given, which is the sequence of the safe intervals
at which the agent can be configured at v without collid-
ing with any moving obstacle. Similarly, safe intervals are
defined for each edge, SI(e). If the agent executes a move
e at any timestep outside SI(e), a collision with a moving
obstacle occurs.

A (timed) path for the agent, or a trajectory, is a sequence
π = (e1, t1), (e2, t2), ...(eL, tL), where ti ∈ T is the time
moment the motion defined by the edge ei is started. The
cost of the trajectory is the timestep when the agent reaches
the final vertex, cost(π) = eL + w(eL). A trajectory is fea-
sible if the target vertex of ei matches the source vertex of
ei+1 and ti+1 ≥ ti + w(ei) (with t0 = 0). Moreover if
ti+1 > ti + w(ei), then the velocity at the source of ei+1

must be zero.
A feasible trajectory can also be seen as a plan composed

of the move and wait actions, where the move actions are
defined by the graph edges and the wait actions might occur
at the vertices where the agent’s velocity is zero. The dura-
tion of the wait action occurring after the i-th move action is
computed as δ = ti+1 − (ti +w(ei)). As w(ei) is integer, δ
is integer as well.

A collision between the trajectory π and the dynamic ob-
stacles occurs iff either of the conditions occur: i) the agent
starts executing some motion primitive e at the timestep
which is outside of SI(e); ii) according to π, the agent waits
at a vertex v outside of SI(v).

The problem now is to find a feasible collision-free trajec-
tory π that transfers the agent from start to goal on a given
G (with the annotated safe intervals of vertices/edges). In
this work, we are interested in solving this problem opti-
mally, i.e., in reaching the goal as early as possible.

Method
As our method relies on SIPP, which in turn relies on A*
with timesteps, we first discuss the background and then
delve into the details of the suggested approach. We assume
that a reader is familiar with vanilla A* for static graphs.

Background
A* with time steps The straightforward way to solve the
considered problem is to use A* for searching the state
space whose nodes are the tuples n = (v, t), where v is

1Please note that our problem formulation, as well as the sug-
gested method, is agnostic to how the state variables, e.g. velocity,
change while the agent is executing a motion primitive. We are in-
terested in the values of the state variables only at the endpoints of
a motion primitive.

the graph vertex and t is the time step by which it is reached.
When expanding a node, the successors are generated as fol-
lows. First, for each e = (v, u), if e is feasible, the node
nmove = (u, t + w(e)) is added to the successors. Indeed,
if the application of a motion e at time step t results in a
collision, the resulting node is discarded. Second, if v al-
lows for the wait, then the node corresponding to the wait
action of the minimal possible duration of one time step
nwait = (v, t + 1) is also added to successors. Again, if
the safe intervals of v do not cover the time step t + 1, this
node is discarded.

Other parts of the search algorithm are exactly the same
as in A*. Notably, the g-values of the nodes equal the time
components of their identifiers. I.e., the g-value of the node
n = (v, t) equals t, as this is the minimal known estimate of
the cost (w.r.t to the current iteration of the algorithm) form
start to v.

SIPP In many scenarios, A* with time steps generates nu-
merous nodes of the form (v, t), (v, t + 1), (v, t + 2), etc.,
which are created via the use of the atomic wait actions. This
leads to the growth of the search tree and slows down the
search. To this end, SIPP relies on the idea of compressing
the sequential wait actions to reduce the number of the con-
sidered search nodes.

The search nodes of SIPP are identified as n =
(v, [lbj , ubj ]), where [lbj , ubj ] is the j-th safe interval of
v. For each node, SIPP stores the earliest arrival time:
t ∈ [lbj , ubj ]. Whenever a lower-cost path to n is found,
t(n) is updated, and this value serves as the g-value of the
node similarly to A* with time steps.

When expanding a node, SIPP does not generate any sep-
arate successor corresponding to the wait action. Instead, it
generates only the successors that correspond to the “wait
and move” actions that land into the neighboring configura-
tions within their safe intervals. This means that to generate
a successor, SIPP waits the minimal amount of time possible
so that when the move to the new configuration is used, we
arrive at the new safe interval as early as possible. For exam-
ple, if SIPP performs a move from a node n = (v, [5, 10]) to
a node n′ = (v′, [15, 18]) and the duration of that move is 5
and t(n) = 7, then t(n′) is 15, meaning that after reaching n
at t = 7, the agent waits there for 3 time steps, starts moving
at t = 10, and arrives to n′ at t = 15. This move cannot
be performed earlier than t = 10, as in this case, it will end
outside the safe interval of n′.

SIPP is much faster than A* and is provably complete and
optimal under the following assumptions: inertial effects are
neglected, the agent can start/stop moving instantaneously,
and, consequently, the wait actions are available at all con-
figurations.

What if the wait actions are not always available The
intrinsic SIPP assumption that the agent can wait at any con-
figuration often does not hold in practice, as many mobile
agents cannot start/stop instantaneously. To reflect this, the
accelerating/decelerating motions should be introduced, and
the velocity variable should be added to the agent’s config-
uration (as done in our problem statement). In this setting,
SIPP is incomplete.

12332



2

2

((A, =0),[0,5]) 
=0 

1

A B C D

Time

1
2

3

5

6

7

Position

((B, =1),[0, )) 
=2

2

((B, =1),[2,7]) 
=2

2
((C, =0),[5, )) 

=5

2

((D, =0),[7, )) 
=7

((D, =1),[7, )) 
=7

((D, =1),[6,9]) 
=6

4

1
((C, =1),[5,8]) 

=5

Figure 2: An example where the standard SIPP fails to find
a solution, while SIPP-IP succeeds. The search tree of SIPP
is shown in green. The search tree of SIPP-IP is indicated in
purple.

Statement 1. SIPP is incomplete when the agent is subject
to kinodynamic constraints and wait actions are not avail-
able at any configuration.

Proof. We prove by presenting an example for which SIPP
is not able to find a solution whilst it exists. Consider a prob-
lem depicted in Fig. 2. The agent needs to reach cell D from
cell A. The motion primitives are defined as follows:

• (accelerating motion) The agent starts moving from a cell
with vel = 0 and ends with vel = 1 in the neighboring
cell. The cost (duration) is 2 time steps.

• (uniform motion) The agent starts moving from a cell
with vel = 1 and ends with vel = 1 in the neighbor-
ing cell. The cost (duration) is 1 time step.

• (decelerating motion) The agent starts moving from a cell
with vel = 1 and ends with vel = 0 in the neighboring
cell. The cost (duration) is 2 time steps.

Indeed, the agent can wait when vel = 0. The duration
of the wait action is 1 time step. For the sake of brevity, we
ignore the agent’s orientation and motions that change it.

SIPP starts with expanding the initial search node
((A, vel = 0), [0, 5]) in which only the accelerating motion
is applicable. This results in generating the node ((B, vel =
1), [0,∞)) with the arrival time t = 2, shown in green in
Fig. 2. The agent cannot wait in this configuration. Thus,
it can only continue moving, arriving at C either at t = 3
using the uniform motion action or at t = 4 using the decel-
erated motion. Both moves are invalid, as they do not reach
C within its safe interval which starts at 5. Thus, no succes-
sors are generated and no search nodes that can be expanded
are left in the SIPP’s search tree. The algorithm terminates,
failing to report a solution. The latter, however, does exist:
the agent needs to wait for 2 time steps at A and then con-
tinue moving towards D. In this way, it will arrive at C at
t = 5 satisfying the safe interval constraint.

Time

Figure 3: Projection of the time interval in SIPP-IP.

Next, we present a modification of SIPP that is complete
and optimal under the considered assumptions.

SIPP-IP: Safe Interval Path Planning with (Wait)
Interval Projection
Idea The main reason why standard SIPP fails to solve
planning instances like the one presented above is because
the information about possible wait actions is not propagated
from predecessors to successors. In the considered exam-
ple, when achieving the search node ((B, vel = 1), [0,∞)),
SIPP “forgets” that the agent can wait in the predecessor and
perform the move action at any time step until the end of the
predecessor’s safe interval. This is not a problem when the
agent can wait at any configuration, but leads to incomplete-
ness in the case we are considering.

To this end, we substitute the safe interval as the search
node’s identifier with another time interval which we refer
to as the wait interval. For any search node, this interval be-
longs to the safe interval of the graph vertex. Indeed, nodes
with the same vertex but different wait intervals should be
distinguished. The wait interval of a search node incorpo-
rates information about all possible wait-and-move actions
that can be performed in its predecessor. When a node is ex-
panded, the waiting interval is projected forward to all of
its successors; thus, the information about the possible wait-
and-move actions is propagated from the root of the search
tree (start node) along all of its branches. We call the modi-
fication of SIPP that implements this principle Safe Interval
Path Planning With (Wait) Interval Projection, or SIPP-IP.
Henceforth, we will refer to the wait interval of a SIPP-IP
node as time interval (or, simply, interval). When talking
about the safe intervals of the graph vertices, we will never
omit “safe” to avoid confusion.

Projecting intervals The role of the projection operation
is to propagate the information on all of the available wait-
and-move actions from the predecessor to the successor. For-
mally, the input for the projection procedure is a SIPP-IP
search node, n = (v, [tl, tu]), where [tl, tu] resides inside
one of the safe intervals of v, and a graph edge e = (v, v′)
along which the interval should be propagated. The output
is the set of time intervals TI = {ti = [t′, t′′]}, s.t.:

• each resultant interval belongs to one of the safe intervals
of the target vertex: ∀tik ∈ TI ∃si ∈ SI(v′) : tik ⊆ si

• resultant intervals do not overlap: tik ∩ til = ∅, ∀k ̸= l
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• for any transition, specified by e, that starts at any time
step of the source interval, the time step corresponding
to the end of this transition belongs to one of the resul-
tant intervals if the transition is valid (no collisions occur
when performing it): ∀t ∈ [tl, tu] s.t. (e, t) is a collision-
free transition ∃t̂ ∈ TI s.t. t̂ = t+ w(e)

A general example of how projecting interval operation
works is depicted in Fig. 3. The source graph vertex is de-
noted by the blue oval, and the target vertex (where the out-
going edge lands) is shown in green. Black cylinders cor-
respond to the blocked intervals of the vertices. The time
interval to be projected is marked in yellow. The resultant
time intervals are shown in cyan, green, and orange. Observe
that due to the existence of the intermediate unsafe interval
in the target vertex, the projected time interval is, first, split
into the two ones (pink transitions landing in unsafe inter-
vals are ruled out). Second, the transitions that land in the
safe intervals of the destination vertex but that lead to a col-
lision in the course of the transition (gray arrows) are also
pruned. Thus, the lower time interval is trimmed, while the
upper is split into two ones.

A straightforward technical implementation of the pro-
jecting operation may involve the sequential application of e
to the time steps forming the input interval with further filter-
ing out the invalid transitions and grouping the resultant time
steps into the intervals. This resembles A* with time steps,
but the resultant atomic search states of A* are compressed
into the interval states of SIPP-IP. Thus, the search tree of
SIPP-IP is more compact. Indeed, more computationally ef-
ficient implementations of the projection operation may be
suggested, depending on how the collision detection mech-
anism is specified2.

To demonstrate how projecting helps in solving instances
that were unsolvable for standard SIPP, recall the example
depicted in Fig. 2. When expanding the start node SIPP-
IP projects, the time interval of A, which is [0, 5] (coin-
cides with the safe interval for the start node), to the suc-
cessor. This results in [2, 7] interval. When expanding the
node ((B, vel = 1), [2, 7]), we can now apply both uniform
motion action and decelerating action by trying to commit
them at any time step that belongs to the time interval of
(B, vel = 1) (via the projection operation, again). In such a
way, the uniform motion action from B to C will be commit-
ted at t = 4, following the SIPP’s principle of reaching the
successor as early as possible, i.e. at t = 5. The projection of
the interval of B will give us [5, 8]. Finally, when expanding
((C, vel = 1), [5, 8]) the node ((D, vel = 0), [7,∞)) will
be generated. When this node will be chosen for expansion,
the search will report finding the solution.

SIPP-IP description SIPP-IP starts with forming the start
node from the graph vertex. Initially, the start interval con-
tains only the first time step, tstart, provided as input. If the
start vertex allows for waiting, i.e., the velocity of the initial
configuration is zero, the upper bound of the node’s interval
is extended to the upper bound of the safe interval (of the
start vertex), in which tstart resides.

2See more in the pre-print available on arXiv.

Algorithm 1: SIPP-IP
Function
findPath(vstart, tstart, vgoal, G(V,E), SI):

1 OPEN← ϕ, CLOSED← ϕ
2 ti = [tstart, tstart]
3 if vstart.vel = 0 then
4 ti.tu ← upper bound of SI(vstart, ti)
5 nstart ← (vstart, ti)
6 f(nstart)← tstart + h(vstart)
7 Add nstart to OPEN
8 while OPEN ̸= ϕ do
9 n← state from OPEN with minimal f -value

10 remove n from OPEN, insert n to CLOSED
11 if n.v = vgoal then
12 return π← ReconstructPath(n, nstart)
13 succ← getSuccessors(n,G(V,E), SI)
14 for each n′ in succ do
15 if n′ in CLOSED or in OPEN then
16 continue
17 f(n′)← n′.tl + h(n′.v)
18 Add n′ to OPEN

19 return ϕ

Function getSuccessors(n,G(V,E), SI):
20 SUCC = ϕ
21 for each e = (n.v, v′) in available motions do
22 intrvls = projectIntervals(n, e, SI)
23 if v′.vel = 0 then
24 for each ti in intrvls do
25 ti.tu ← upper bound of SI(v′, ti)

26 for ti in intrvls do
27 insert (v′, ti) to SUCC

28 return SUCC

Then SIPP-IP follows the general outline of SIPP/A*. At
each iteration, it, first, selects the best node from OPEN ,
i.e., the one with the minimal f -value. The f -value of a
SIPP-IP node n = (v, [tl, tu]) is defined as f(n) = g(n) +
h(n) = tl +h(v). Similarly to SIPP, the g-value of the node
is the earliest time step the agent can arrive at n, that is tl.
The h-value is independent of the time interval and is de-
fined for graph vertices. It estimates the travel time from the
vertex to the goal (e.g., it equals the straight-line distance
between the vertices divided by the maximum speed of the
agent). As in SIPP, we assume the heuristic to be consistent.

After selecting a node, its successors are generated. For
each outgoing edge, we apply the projecting operation as
described above. As a result, for each edge, we obtain a set
of projected time intervals. If the target configuration allows
for waiting (the velocity is zero), then we extend the upper
bounds of the projected intervals to the upper bounds of the
corresponding safe intervals of the target vertex. As a result,
each of the generated successors implicitly encompasses the
information both about all possible transitions from the pre-
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decessor and all possible wait actions in the current node.
Finally, each generated successor is inserted into OPEN

in case it is not already present in the search tree. The al-
gorithm stops when a node corresponding to the goal vertex
is extracted from OPEN . At this stage, the path can be re-
constructed. To do so, we go backward from the goal node
and, at each iteration, do the following. Let n be the cur-
rent node (initially set to the goal node, ngoal), t – the time
variable (initially equal to ngoal.tl), nparent – parent of n,
and e the transition between them. If the agent can wait at
n, then we add the tuple (e, n.tl − cost(e)) to π and change
n = nparent and t = n.tl−cost(e). If the agent cannot wait
at n, we add (e, t − cost(e)) to π and change n = nparent

and t = t− cost(e). This is repeated until we reach the start
node. If the final value t does not match tstart, then the agent
has to wait at the start (for t− tstart time steps).

The pseudo-code of SIPP-IP is presented in Algorithm 1.

Theoretical Properties of SIPP-IP
According to the definition of the SIPP-IP state, we
can view each SIPP-IP state as a sequence of A*-with-
Time-Steps (A*-TS) states. That is nSIPP−IP (v, [tl, tu]) =
{sA∗−TS(v, t) : t ∈ [tl, tu]}. We will use this relation along
in the next proofs.
Theorem 1. SIPP-IP is complete.

Proof. In the presented function getSuccessors, we try to use
all available edges on the input vertex. Then, for each edge
using the function projectIntervals, we get the intervals that
contain all possible valid timesteps at which we can get at
the target node of the edge starting from a timestep in the
time interval of the input state (by definition of projectInter-
vals). This is equivalent to generating all A*-TS states from
the A*-TS states included in the input state using an edge.
By using all the edges, we generate all A*-TS that can be
generated by the move action. Directly after that, we check
if the wait action is available at the target vertex, and then,
we extend the resulting time intervals to the upper bound
of the safe interval at the target vertex, where the interval
is located. This is equivalent to the application of the wait
actions on all A*-TS states at the target vertex. As a re-
sult, in getSuccessors, all valid A*-TS successors are gen-
erated (and capsulated by SIPP-IP states). So, SIPP-IP can
be viewed as a modified version of A*-TS which, at every it-
eration, expands several states at the same time, generates all
the successors of these states, and inserts them into OPEN
(by definition, all generated A*-TS states are reformed into
SIPP-IP states without any loss). As a result, SIPP-IP will
always generate and expand all A*-TS states, and as A*-TS
is complete, so is SIPP-IP.

Lemma 1. The A*-TS state with the minimum f -value
in a SIPP-IP state nSIPP−IP (v, [tl, tu]) is the state
nA∗−TS(v, tl).

Proof. Recall that f -value of a A*-TS state is equal to
n.t + h(n.v). As v of all A*-TS states in one SIPP-IP state
are identical, the h-values of them are equal. As a result, the
state with the minimal time i.e., tl is the state with the mini-
mal f -value.

Theorem 2. SIPP-IP is optimal.

Proof. As SIPP-IP is a complete algorithm and the cost
(time) is included as an identifier in the state, it is guar-
anteed that the optimal state will be expanded. Therefore,
it is sufficient to prove that the first expanded state with
the goal vertex is the optimal one i.e., contains the A*-
TS state with optimal (minimal) time. Let us again view
the SIPP-IP states as a sequence of extracted A*-TS states.
Let the first expanded SIPP-IP state with the goal ver-
tex be nSIPP−IP (vgoal, [tl, tu]) that contains the A*-TS
state nA∗−TS(vgoal, tl). Let us suppose that nA∗−TS is
not the optimal A*-TS state, but there exists another state
n′
A∗−TS with the minimal f -value in OPEN f(n′) that is

less than f(n). According to Lemma 1, n′
A∗−TS is located

at the bottom of a SIPP-IP state n′
SIPP−IP in OPEN, i.e.,

n′
A∗−TS .t = n′

SIPP−IP .tl. As in SIPP-IP, the states are or-
dered by the values f(nSIPP−IP ) = n.tl + h(n.v) that is
equal to the f -value of the bottom A*-TS state f(nA∗−TS),
the state n′

SIPP−IP should have been expanded before the
state nSIPP−IP because f(n′

A∗−TS) < f(nA∗−TS), which
results in a contradiction. Therefore, there is no A*-TS state
with f -value less than f(nA∗−TS), and hence nSIPP−IP is
the optimal state.

Empirical Evaluation
We have used five different maps from the MovingAI bench-
mark (Sturtevant 2012) for the experiments: empty (sized
64x64), room (64x64), warehouse (84x170), random
(128x128) and Sydney (256x256). Each map was popu-
lated with an increasing number of moving obstacles (MOs),
and for each number, 200 different instances were generated
that differ in trajectories of MOs. These trajectories were
generated by randomly assigning start and goal locations for
each MO and letting it go from start to goal using random
speeds. Moreover, MO may wait at any cell for a random
number of time steps. For each map, we generated instances
with the densities of MOs varying from 1/25 to 1/3, where
the density is the ratio of the number of MOs to the number
of free cells. The start and goal locations of the agent were
fixed to the top-left and bottom-right corners of the map.
Note that some instances in our dataset (especially with high
densities of MO) are not generally solvable.

The agent was modeled as a disk whose diameter equals
the length of the grid cell. The configuration is defined as
(x, y, θ, vel) where x, y are the coordinates of the cell, θ ∈
{0◦, 90◦, 180◦, 270◦} is the orientation, and vel ∈ {0, 2} is
the velocity of the agent.

The following motion primitives were defined: accelerat-
ing, decelerating, and uniform. Accelerating (decelerating)
primitive: move with the fixed acceleration of 0.5 cell/s2

(−0.5 cell/s2) from a configuration with zero (2 cell/s) ve-
locity until reaching maximum (zero) velocity. The agent
traverses four cells this way without changing its orienta-
tion. Uniform motion primitive: go with the maximum ve-
locity (2 cell/s) one cell forward (the orientation does not
change). Additionally, if the velocity is zero, the agent can
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Figure 4: Success Rates of the evaluated algorithms.
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rotate 90◦ clockwise or counterclockwise in 2 s or wait for
one time step. The time step is chosen to be 0.1 s.

Collision checking is conservative. We prohibit the agent
and any MO from touching the same cell at the same time.
Therefore, the blocked intervals of any cell were reserved for
the MO when it touched this cell even partially. The agent is
allowed to use a motion primitive only if it does not result in
touching a cell in a blocked interval. Moreover, if the time
limits of touching some cell for an agent are not integers,
they are extended to the closest integers in a safer manner.

We compared SIPP-IP to A* with time steps and two
straightforward extensions of SIPP: SIPP1 and SIPP2.
SIPP1 is a modification that generates only kinodynamically
feasible successors for the configurations where the veloc-
ity is not zero. SIPP2 further allows to re-expand the search
nodes (which corresponds to allowing to reach configura-
tions with non-zero velocities at different time steps in the
same safe interval). When implementing SIPP1/SIPP2, we
used the techniques from SIPPwRT (Ma et al. 2019); thus,
the latter can be considered to be included in the compari-
son. The C++ source code of all planners is publicly avail-
able https://github.com/PathPlanning/SIPP-IP.

The experiments were conducted on a PC with Intel Core
i7-10700F CPU @ 2.90GHz × 16 and 32Gb of RAM. We
imposed a limit of 100, 000, 000 of generated nodes for all
algorithms. For each instance, we tracked whether the al-
gorithm produced a solution and recorded the algorithm’s
runtime and the solution cost.

Fig. 4 presents the Success Rate (SR) plots, where SR is
the ratio of the successfully solved instances to all of the in-
stances. Indeed, all SIPP-IP competitors have lower SR (ex-
cept the empty map, where A* and SIPP-IP have the same
SR). For SIPP1 and SIPP2, this is explained by their incom-
pleteness. For A* this is explained by numerous violations
of the imposed limit (of 100, 000, 000) on the number of the
generated nodes.

room empty warehouse random Sydney Factor
SIPP1 93% 82% 69% 89% 97%

>SIPP2 90% 79% 66% 85% 92%
SIPP1 77% 46% 16% 55% 30%

> 5%SIPP2 60% 39% 11% 44% 20%
SIPP1 42% 7% 1% 7% 4%

> 50%SIPP2 22% 3% 0% 1% 3%

Table 1: Percentage of SIPP1/SIPP2 solutions that have
higher costs compared to SIPP-IP.

For each map, we also analyzed the cost of the instances
that were successfully solved by SIPP-IP, SIPP1, and SIPP2.
The results are presented in Table 1. Each cell in the ta-
ble tells in how many instances (in percent) the cost of the
SIPP1/SIPP2 solution exceeded the cost of the optimal so-
lution found by SIPP-IP by a fixed factor. Evidently, in most
instances, the costs of competitors are larger than of SIPP-
IP’s costs, and for certain maps (e.g. room), the percentage
of the instances where their cost notably exceeds (by more
than 50%) SIPP-IP’s cost is significant (up to 42%).

Finally, the algorithms’ runtime analysis is presented in
Fig. 5. Indeed, all versions of SIPP, including the complete
one, SIPP-IP, are significantly faster than A* and reduce
computation time by two orders of magnitude. Moreover,
SIPP-IP is faster than SIPP2. Still, it is outperformed by
SIPP1. This is expected, as SIPP1 exploits a straightforward
expansion strategy missing numerous successors SIPP-IP
would generate. Absolute (averaged) values of the runtime
of SIPP-IP (less than 0.1 s on all maps, except the largest
one) suggest that the proposed planner can be utilized in
real robotic systems, where taking into account kinodynamic
constraints may be of vital importance.

Conclusion
In this work, we have presented a provably complete and
optimal variant of the prominent Safe Interval Path Plan-
ning algorithm capable to handle kinodynamic constraints.
We have shown that straightforward ways to extend SIPP
fail in the considered setup, and therefore a more involved
algorithm is needed. The latter has been presented and ana-
lyzed theoretically and empirically. The directions for future
research include embedding the suggested algorithm within
the multi-agent path planning solver and conducting experi-
ments on real robots.
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