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Abstract

Recently, several methods such as private ANM, EM-PC and
Priv-PC have been proposed to perform differentially private
causal discovery in various scenarios including bivariate, mul-
tivariate Gaussian and categorical cases. However, there is lit-
tle effort on how to conduct private nonlinear causal discovery
from numerical data. This work tries to challenge this problem.
To this end, we propose a method to infer nonlinear causal rela-
tions from observed numerical data by using regression-based
conditional independence test (RCIT) that consists of kernel
ridge regression (KRR) and Hilbert-Schmidt independence
criterion (HSIC) with permutation approximation. Sensitivi-
ty analysis for RCIT is given and a private constraint-based
causal discovery framework with differential privacy guaran-
tee is developed. Extensive simulations and real-world experi-
ments for both conditional independence test and causal dis-
covery are conducted, which show that our method is effective
in handling nonlinear numerical cases and easy to implemen-
t. The source code of our method and data are available at
https://github.com/Causality-Inference/PCD.

Introduction
Causal discovery is to reason the causal relations among ob-
served variables, which is generally a challenging task if no
controlled experiments are available. From the computational
perspective, causal discovery is usually formulated as a prob-
abilistic graphical model on a set of variables such that each
directed edge between two variables represents a causal link.
In constraint-based methods (Pearl and Mackenzie 2018), the
conditional independence (CI) X y Y |Z enables us to sepa-
rate two nodes X−Y when constructing a probabilistic model
based on the joint distribution, which leads to a parsimonious
representation (Zhang et al. 2011).

Up to now, a series of independence and CI tests have been
proposed to support constraint-based causal discovery, in-
cluding conventional tests such as Spearman’s ρ (Spiegelman
2010), Kendall’s τ (Kendall 1938), G-test (McDonald 2009)
and X2 test (Rao 2002), Kernel-based tests such as Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton et al. 2005)
and KCIT (Zhang et al. 2011), and regression-based CI tests
(RCIT) (Ramsey 2014; Zhang et al. 2017). With these tests,
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constraint-based causal discovery can be effectively fulfilled
in different scenarios.

Recently, some methods are proposed to address differen-
tial private causal discovery due to increasing privacy vio-
lation concerns. (Kusner et al. 2016) studies the problem of
causal inference using the additive noise model (ANM) while
simultaneously ensuring privacy of the users, and conducts
sensitivity analysis for different dependence scores, including
Spearman’s ρ, Kendall’s τ, interquartile range (IQR) and H-
SIC. As causal direction learning with ANM can be achieved
by comparing the two scores between X → Y and Y → X,
there is no need to consider the sensitivity of independence
statistics, such a private ANM is easy to implement but works
only in bivariate cases. (Xu, Yuan, and Wu 2017) presents
the EM-PC algorithm to handle differentially private causal
discovery in multivariate cases. This algorithm is a modifica-
tion to the well-known PC algorithm (Spirtes, Glymour, and
Scheines 2000) to guarantee differential privacy by using the
exponential mechanism. Instead of perturbing each indepen-
dence test with noise, EM-PC randomly decides how many
and which edges to delete using the exponential mechanism.
In this way, EM-PC manages to achieve a relative balance
between utility and privacy. The state-of-the-art solution to
differentially private causal discovery is Priv-PC (Lun, Qi,
and Dawn 2020), which achieves better utility and efficiency
than EM-PC. Sensitivity analyses for conditional Kendall’s
τ and conditional Spearman’s ρ are also performed, show-
ing that conditional Spearman’s ρ can be used only to large
datasets due to the large coefficient in its sensitivity while
conditional Kendall’s τ works better in generally cases. For
treatment effect analysis, (Lee et al. 2019) proposes a dif-
ferentially private inverse probability weighting method for
average treatment effect, and (Niu et al. 2022) provides a
meta-algorithm for differentially private estimation of the
conditional average treatment effect.

These works above significantly advance differential pri-
vacy causal discovery in different scenarios. However, this
area has not yet been extensively explored. Particulary, as
(Lun, Qi, and Dawn 2020) points out, an important research
issue in this area is how to perform private causal discovery
in nonlinear numerical cases where neither Spearman’s ρ nor
Kendall’s τ and other existing tests with differential privacy
guarantee are effective. In fact, nonlinear numerical cases are
more common than the linear, categorical cases in real-world
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scenarios. So in this work, we aim to explore private causal
discovery techniques for handling nonlinear numerical cases.

Our contributions are summarized as follows:
• We propose an effective method for private causal dis-

covery from observed nonlinear numerical data by using
regression-based CI test (RCIT) that consists of kernel
ridge regression (KRR) (An, Liu, and Venkatesh 2007)
and HSIC with permutation approximation.

• We perform the sensitivity analysis of RCIT and show
that the time complexity of evaluating the bound of its
local sensitivity is O(k) (k is the number of permutations).
Furthermore, we develop a private constraint-based causal
discovery framework with differential privacy guarantee.

• We validate the effectiveness and advantage of our method
by extensive experiments on both synthetic and real-world
datasets. Experimental results show that our method is
effective in handling nonlinear numerical cases and easy
to implement.

Preliminaries
Here, we briefly review some important concepts about dif-
ferential privacy, CI test and private causal discovery.

Differential Privacy
The concept of differential privacy is first formally introduced
by (Dwork et al. 2006), which is now considered the golden
standard for private analysis.
Definition 1. ((ε, δ)-differential privacy). A randomized al-
gorithmA with input domainD and output range Rand(A) is
(ε, δ)-differential private for ε, δ ≥ 0, if for all O ⊆ Rand(A)
and for any two neighboring datasetsD and D̃ ∈ D, we have

P[A(D) ∈ O] ≤ eεP[A(D̃) ∈ O] + δ.

Particularly, if δ = 0, it is called ε-differential privacy.
Typically, two datasetsD and D̃ are considered to be neigh-
bors when they differ by only one tuple. Here, we denote this
byD ' D̃.

A common approach to achieving differential privacy is
to perturb the output with additive random noise. The noise
is carefully calibrated to appropriately hide the maximum
difference of the output, which is defined as sensitivity.
Definition 2. (Global sensitivity). The global sensitivity of a
algorithmA : D→ R is:

4A := max
D,D̃∈D s.t. D'D̃

|A(D) −A(D̃)|

It may be that the global sensitivity of an algorithmA is
unbounded in general, but can be bounded in the context of a
specific data setD over all its neighbors D̃. For such datasets
we can bound the local sensitivity.
Definition 3. (Local sensitivity). The local sensitivity of a
algorithmA : D→ R is:

4(D)A := max
D̃∈D s.t. D'D̃

|A(D) −A(D̃)|

If an algorithm has bounded global sensitivity it certainly
has bounded local sensitivity. Local sensitivity can also lead
to differential privacy for datasets (Nissim, Raskhodnikova,
and Smith 2007; Jain and Thakurta 2013).

Hypothesis Conditional Independence Testing
Generally, independence and CI tests are the key tools for
constraint-based causal discovery. Assume two variables X,
Y and a set of variables Z constitute n i.i.d. pairs (Xi,Yi,Zi),
the problem of testing CI between X and Y given Z can be
written in the form of a hypothesis testing:

H0 : X ⊥⊥ Y |Z versus H1 : X 6⊥⊥ Y |Z.

Hypothesis CI testing generally consists of the following
steps: First, define the relevant CI test statistic T and calculate
the value of T from the observational data. Then, given a user-
selected significance level α (typically set to 0.05), which
indicates the lower bound of the probability threshold for
rejecting H0, i.e., the null hypothesis H0 is rejected if the
p-value ≤ α.

There are two types of errors that may occur during hy-
pothesis testing. Type I error means the rejection ofH0 when
it is actually true, and Type II error is the acceptance ofH0
although it is not true. A well performed CI test requires that
Type I error rate is not greater than the chosen significance
level, while Type II error rate is as low as possible (Zhang
et al. 2011).

Private Causal Discovery
In statistics, causal discovery is usually formulated as a causal
graph — directed acyclic graph (DAG) to encode the assump-
tions about the generating process of a set of variables, such
that any directed edge between two variables indicates a
causal relationship. Causal discovery refers to the process of
discovering the hidden causal graph from a given observed
dataset, and if differential privacy is required to be preserved
during causal discovery, we call this process private causal
discovery.

In constraint-based causal discovery (Pearl and Mackenzie
2018), the causal graph can be (partially) recovered by apply-
ing CI tests to the observed variables (Zhang et al. 2022a).
The CI of two nodes vi and v j allows us to separate them
by constructing a probabilistic model, based on the joint
distribution of observed variables under the faithfulness as-
sumptions (Spirtes, Glymour, and Scheines 2000):

vi y v j|Ṽ =⇒ Ṽ dsep. vi − v j,

where Ṽ is the controlling set and dsep. denotes d-
separation (Pearl 2009). The performance of constraint-based
causal discovery is usually heavily affected by Type II error of
CI test, as it may lead to edges being falsely removed (Zhang
et al. 2017, 2022b). Comparatively speaking, Type I error has
less impact on causal discovery, because once a Type I error
occurs, the CI test will continue with another controlling set.

In this work, we try to design a new constraint-based
method to achieve private causal discovery. Our focus is
on nonlinear causal relationships among numerical data. We
aim to ensure that 1) the designed CI tests are able to handle
the concerned scenario with good control over Type I & II
error rates; 2) either global sensitivity or local sensitivity of
the statistic is bounded for the CI tests, and the tighter the
bound, the better. In practice, infinite sensitivity (or bounded
by 1) would fail to achieve private causal discovery.
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Sensitivity Analysis of Regression-Based
Conditional Independence Test

In this section, we introduce RCIT (Ramsey 2014; Zhang
et al. 2017) that is used for causal discovery in this work.
RCIT relaxes CI test to independence test:

X − E[X|Z] y Y − E[Y |Z] =⇒ X y Y |Z,

which contains two regressions and one independence test.
In fact, the independence of the two residuals is not exactly
equivalent to CI without additional assumption (Flaxman,
Neill, and Smola 2016; Zhang et al. 2019). However, such a
method works well in many scenarios like causal discovery.
To derive a smaller bound for the sensitivity of RCIT and
be more effective in dealing with nonlinear numerical data,
here we use kernel ridge regression (KRR) for regression
and HISC with permutation approximation for independence
test. To achieve private RCIT, in what follows we conduct the
sensitivity analysis in two steps: first bound the sensitivity of
empirical RCIT score, and then bound the sensitivity of the
statistic for RCIT.

Bound Sensitivity of Empirical RCIT Score
We consider the empirical RCIT score for statistical depen-
dence measurement between two residuals X − E[X|Z] and
Y − E[Y |Z] w.r.t. RCIT.
Definition 4. (Empirical RCIT score) Let (X,Y,Z) :=
{(X1,Y1,Z1), ..., (Xm,Ym,Zm)} be a series of m independen-
t observations drawn from the joint distribution PXYZ, an
empirical estimator of RCIT score is given by

R̂CIT (X,Y,Z) := ĤS ICk,l(U,V) :=
1

(m − 1)2 tr(KHLH)

where ĤS IC is the empirical HSIC score, U = X − E[X|Z],
V = Y − E[Y |Z]), H = I − 1/m, Ki j = k(ui, u j), Li j = l(vi, v j),
k and l are the given kernels. Particularly, if Z = ∅, then

ĤS ICk,l(U,V) = ĤS ICk,l(X,Y).

In this work, we use Gaussian kernel for HSIC and KRR.
Following the mechanism of HSIC, ĤS ICk,l(U,V) = 0 can
approximate U y V with sufficient samples (Large m) (Rindt,
Sejdinovic, and Steinsaltz 2020). A bound of global sensitiv-
ity for HSIC with two random variables X and Y has been
studied in previous work (Kusner et al. 2016). For readability,
in what follows we simply denote ĤS ICk,l by ĤS IC.
Theorem 1. (Kusner et al. 2016) The empirical HSIC score
given in Def. 4 has the global sensitivity bounded by

|ĤS IC(X,Y) − ĤS IC(X̃, Ỹ)| ≤
12m − 11
(m − 1)2 (1)

where X̃ ' X and Ỹ ' Y.
We can see that the bound given in Equ. (1) can be used for

private dependence measurement (not test statistic) between
two random variables X and Y , but it is only applicable to the
case involving controlling set Z = ∅, so we need to further
consider the more complex case of Z , ∅.

In this work, we use KRR to calculate the two residuals
U and V , so the regression function regarding (X,Z) can be

written as f (w,Z) = wTφ(Z), where φ(Z) is a feature space
mapping to the Hilbert space H regarding a chosen kernel
function. Then, the KRR used in RCIT can be written as

w = arg min
w∈H

λ

2
||w||2

H
+

1
n

n∑
i=1

(wTφ(Zi) − Xi)2, (2)

where λ is the regularization parameter. Let f̃ (w∗, ·) and
f̃ (w̃∗, ·) be the regression functions obtained from the op-
timization problem in Equ. (2) with input variables (X,Z)
and (X̃, Z̃), respectively, where X̃ ' X and Z̃ ' Z. We then
have the following result:
Theorem 2. Say λ ≤ 1, given the regression function f̃ (w∗, ·)
and f̃ (w̃∗, ·) obtained from the optimization problem in E-
qu. (2), denote the residuals of the two functions by U and Ũ,
respectively, then we have

|ui − ũi| ≤
8

mλ3/2

for all i, where ui and ũi are the i-th elements of U and Ũ,
and m is the sample size.
The proof of Theorem 2 can be derived from Theorem 5 in
(Kusner et al. 2016), which is also presented in Appendix A
(in the Supplementary Material) for the interested readers.
Now we put Theorem 1 and Theorem 2 together to obtain the
bound of sensitivity of RCIT score (not the test statistics of
p-value) as follows:
Theorem 3. Let (X,Y,Z) := {(X1,Y1,Z1), ..., (Xm,Ym,Zm)}
be a series of m independent observations drawn from PXYZ,
U and V are the residuals obtains from Equ. (2) with (X,Z)
and (Y,Z), respectively, Ũ and Ṽ are similarly obtained by
neighbors (X̃, Z̃) and (Ỹ , Z̃), then the sensitivity of RCIT
score is bounded by

if Z , ∅, then

|ĤS IC(U,V) − ĤS IC(Ũ, Ṽ)|

≤
2(m2 − m)(2 − e

− 128
m2λ3δ2k − e

− 128
m2λ3δ2l )

(m − 1)2 ,
(3)

if Z = ∅, then

|ĤS IC(U,V) − ĤS IC(Ũ, Ṽ)| ≤
12m − 11
(m − 1)2 , (4)

where δk and δl are the parameters of bandwidth regarding
Gaussian kernels k and l, respectively, λ is the regularization
parameter in Equ. (2).
Proof of Theorem 3 is given in Appendix B.

For readability, we denote the bounds of |ĤS IC(U,V) −
ĤS IC(Ũ, Ṽ)| in Equ. (3) and Equ. (4) by “4R”.

Note that Equ. (4) can be derived from Theorem 1 that cor-
responds to the case of independence test, we mainly fucus
on the proof of Equ. (3) w.r.t. CI test. On the other hand, if δk,
δl and λ can be given in advance by prior knowledge, then
Equ. (3) leads to a bound for global sensitivity, otherwise
gives a bound for local sensitivity. In practice, the kernel
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bandwidth generally heavily relies on the input data, thus a
global sensitivity with fixed bandwidth may reduce the ro-
bustness of private RCIT. Therefore, a local global sensitivity
seems to be more useful in general cases.

Bear in mind that we cannot test CI by using RCIT score
directly, but need to further design a test statistic based on
this score, and finally compare the p-value with the signifi-
cant level. In what follows, we will show how to bound the
sensitivity of CI test statistic.

Bound Sensitivity of Test Statistic of RCIT
In fact, the test statistics for many CI tests including RCIT is
general unbounded or bounded by 1 in many cases, such a
loose bound is useless when compared with the significant
level. Alternatively, we try to bound the local sensitivity.

There are two general ways to produce the test statistic
of HSIC: Gamma approximation and permutation/bootstrap
approximation (Gretton et al. 2005). As we find that it is very
time-consuming to calculate a bound for the sensitivity w.r.t.
Gamma approximation (we need to solve an optimization
problem that requires considerable extra time and might lead
to poor performance. More details are presented in Appendix
C for the interested readers), in what follows we focus on how
to bound the sensitivity w.r.t. permutation approximation.

We follow the notation of (Pfister et al. 2018) for the permu-
tation approximation of HSIC. Define maps ψi : {1, ...,m} →
{1, ...,m} for i = 1, ..., k, then ψi maps U (or V) by

ψi(U) := ψi(u1, ..., um) (5)

It can be seen that each ψi is a random permutation of
{1, ...,m}. Then, we can calculate the k new scores of
ĤS IC(ψi(U),V), ..., ĤS IC(ψk(U),V), and each of which
corresponds to the hypothesis test H0 : U y V , we thus
can compare the k scores with ĤS IC(U,V) to derive the
independence test statistic:

RejectH0 if∑k
i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V)}

k
≤ α,

otherwise reject H1, where 1 is the indicator function, α is
the given significant level.

We now consider the sensitivity of test statistic of HSIC be-
tween two residuals U and V , e.g., RCIT, using permutation
approximation. We have the following result:
Theorem 4. Let p and p̃ be the test statistic of HSIC with
permutation approximation of (U,V) and (Ũ, Ṽ), respectively,
then

|p − p̃| ≤ max{p −A,B − p} (6)
where

A =

∑k
i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V) − 24R}

k
(7)

and

B =

∑k
i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V) + 24R}

k
. (8)

Proof. Consider the test statistic of ĤS IC(U,V) with permu-
tation approximation:

p =

∑k
i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V)}

k
.

There are two cases, (1) rejectH1 : U 6y V if p > α, and (2)
rejectH0 : U y V if p ≤ α.

Case (1). In this case, we need to consider how much p will
decrease after changing one sample. We have

ĤS IC(Ũ, Ṽ) − 4R ≤ ĤS IC(U,V) + 4R

and

ĤS IC(ψk(Ũ), Ṽ) + 4R ≥ ĤS IC(ψk(U),V) − 4R.

Then yield

|p − p̃|

≤ |p − (
k∑

i=1

1{ĤS IC(U,V) + 4R

< ĤS IC(ψk(U),V) − 4R})/k|

=

∣∣∣∣∣∣p −
∑k

i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V) − 24R}
k

∣∣∣∣∣∣ .
(9)

Case (2). In this case, similarly we need to consider how
much p will increase after changing one sample. Therefore
we have

|p − p̃|

≤

∣∣∣∣∣∣
∑k

i=1 1{ĤS IC(U,V) < ĤS IC(ψk(U),V) + 24R}
k

− p

∣∣∣∣∣∣ .
(10)

The two equations yield |p − p̃| ≤ max{p −A,B − p}. �

For simplicity, we denote the bound of |p − p̃| regard-
ing permutation approximation in Equ. (6) by “4P”. Since
ĤS IC(U,V) and ĤS IC(ψi(U),V) are calculated in testing
independence between U and V with a time complexity of
O(km2), therefore the time cost of calculating 4P is trivial in
private (conditional) independence test.

Corollary 1. Given 1 + k scores of ĤS IC(U,V) and
ĤS IC(ψi(U),V) (i = 1, ..., k), the time complexity of cal-
culating the bound of sensitivity in Equ. (6) is O(k).
Proof of Corollary 1 is straightforward according to Equ. (7)
and Equ. (8), we need only to call the indicator function 2k
times to return the bound in Equ. (6). Generally, k can be set
to 100 (Gretton et al. 2005).

In fact, the bound 4P can be further improved. Generally,
we do not need to consider both cases mentioned in the proof
of Theorem 4 at the same time. Concretely, assume the test
rejectsH0 with p ≤ α, then the decreasing of p after changing
one sample would not affect the decision of rejectingH0, i.e.,
we need only to consider the Case (2) that how much p will
increase after changing one sample. Similarly, if the test
rejects H1 with p > α, we need only to consider Case (1)
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that how much p will decrease after changing one sample.
Consequently, we can improve 4P by 4P = B− p in the case
of p ≤ α, and by 4P = p −A in the case of p > α.

Next, we will develop an effective framework for private
causal discovery based on RCIT.

Private Causal Discovery Based on RCIT
In this work, we use 4P to achieve private causal discov-
ery. We call the proposed framework Differentially Private
Nonlinear Causal Discovery (PCD in short). The details are
outlined in Alg. 1. PCD is similar to the PC algorithm in
non-private part, which starts with constructing a complete
graph on V (Line 1). We then test the independence and CI
between any two nodes vi, v j ∈ V given the controlling set
Z by using RCIT, here simply denote the corresponding s-
tatistic by r(i j|Z). There are two cases: r(i j|Z) ≥ α (Lines
4-11) and r(i j|Z) ≤ α (Lines 12-17). Consider the first case,
we need to judge whether r(i j|Z) minus its bound of sensi-
tivity is small enough to affect the result. If not, we directly
accept H0 and delete the edge vi − v j from G (Line 11). If
yes, we apply sparse vector technique (SVT) (Dwork and
Roth 2014) to achieving differentially privacy (Lines 8&16).
Similarly, for the second case, we need to decide whether
r(i j|Z) plus its bound of sensitivity is large enough to affect
the result, and then determine whether or not to apply SVT
(Lines 11-14). Line 15 follows the PC algorithm to orient
causal directions by determining V-structure and performing
consistent propagation. Finally, we output the causal graph
G (generally a partial DAG)(Line 19). In what follows, we
give the differential privacy guarantee for PCD.

Algorithm 1: Differentially Private Nonlinear Causal Discov-
ery (PCD)

Input: V: vertex set, D: dataset, ε: privacy parameter, εt:
total privacy and is initialized to 0, α: significant level.

Output: G: causal graph of V .
1: Construct a complete graph on V , denote by G
2: for ∀vi, v j ∈ V and ∀Z ⊆ V\vi,v j do
3: calculate the statistic r(i j|Z)
4: if r(i j|Z) > α then
5: calculate 4P = r(i j|Z) −A,A follows Equ. (7)
6: if r(i j|Z) − 4P ≤ α then
7: εt = εt + ε
8: if r(i j|Z) + Lap( 44P

ε
) ≥ α + Lap( 24P

ε
) then

9: delete edge vi − v j from G
10: else
11: delete edge vi − v j from G
12: else
13: calculate 4P = B − r(i j|Z), B follows Equ. (8)
14: if r(i j|Z) + 4P ≥ α then
15: εt = εt + ε
16: if r(i j|Z) + Lap( 44P

ε
) ≥ α + Lap( 24P

ε
) then

17: delete edge vi − v j from G
18: Orientating causal directions of G by V-structure and

consistent propagations.
19: Return G.

Theorem 5. Causal discovery following Alg. 1 is ε-
differentially private.

Proof Sketch. As we directly use SVT to achieve differen-
tially privacy (Lines 7,13), and the rest part follows the PC
algorithm and is not related to privacy, Alg. 1 does not change
ε-differentially private of SVT according to the composition
theorem (Dwork and Roth 2014). �

Performance Evaluation
We first compare RCIT with conditional Kendall’s τ (Lun,
Qi, and Dawn 2020) on testing CIs with differentially private
setting, then evaluate their performance on causal discovery
with PCD by simulations and real-world datasets. Note that
there is no existing CI tests with differential privacy guarantee
can handle the nonlinear numerical case, but conditional
Kendall’s τ can work in the case of the controlling set Z =
∅. Our RCIT consists of KRR and HSIC with permutation
approximation. We fix the regularization parameter λ = 1
for KRR, and set the kernel size to median distance between
points and k = 100 permutations for HSIC. These are normal
parameter settings for KRR and HSIC.

Simulation on Conditional Independence Test
Here, we consider the performance of RCIT and conditional
Kendall’s τ on private CI tests. As CI tests are heavily affected
by the sample size of Z, we examine how the probabilities of
Type I & II errors of the two methods change with the sample
size of Z. We consider the following two cases:

1. (CI test) All variables in Z = {Z1, ...,Z5} are effective in
generating X and Y with the causal structure X ← Z→ Y ,
where X = sin(

∑
Zi) + c1 · εx, Y = sin(

∑
Zi) + c2 · εy, Zi,

εx and εy are i.i.d. sampled from U(−0.5, 0.5), c1 and c2
are two independent coefficients randomly chosen from
U(0.5, 1). Type I error rate is evaluated by testing whether
X and Y are independent given Z, while Type II error rate
is calculated by testing whether X and Y are independent
given S where S ⊂ Z and |S | = |Z| − 1. Obviously, the
ground truth is X 6y Y |S .

2. (Independence test) Type I error rate is calculated by
testing whether Z1 and Z2 are independent, and Type II
error rate is evaluated by testing whether X and Y are
independent.

For each experiment setting, we randomly generate
{200, 500} samples, the privacy parameter ε is set to
{0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8}. We repeat the test 100 times and
average the corresponding results.

Type I error rate. The results of CI tests are presented in
Fig. 1 (a). We simply use “Inf” to denote non-private test. It
is clear that Type I error rate of RCIT is heavily affected by ε,
it decreases as ε increases. Similarly, increasing the sample
size from 200 to 500 can also reduce the error rate, as large
sample size can improve the test performance and tighten the
bound of sensitivity of RCIT. We can also see that conditional
Kendall’s τ fails to handle these cases, as each value for Z is
unique, Kendall’s τ cannot calculate the correlation for the
case of only one sample.
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Figure 1: Performance comparison of RCIT and conditional
Kendall’s τ with sample size s1 = 200, s2 = 500 and privacy
parameter ε = {0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8}. Here, “Inf” de-
notes non-private test. (a) Type I error rate of CI test X y Y |Z;
(b) Type II error rate of CI test X 6y Y |S (|S | = |Z| − 1); (c)
Type I error rate of independence test Z1 y Z2; (d) Type II
error rate of independence test X 6y Y .

The results of independence test are presented in Fig. 1
(c). RCIT and Kendall’s τ perform similarly with 200 sam-
ples, but when the sample size increases to 500, Kendall’s τ
outperforms RCIT.
Type II error rate. In contrast to the performance on Type I
error rate, Fig. 1 (d) shows that RCIT performs significantly
better than Kendall’s τ in terms of Type II error rate of in-
dependence test. The curve of RCIT stays stable at around
0 as ε increases for 200 samples. Different from conditional
Kendall’s τ, the bound of sensitivity for HSIC is calculated by
permutation approximation, the HSIC score in independence
test is generally far from the threshold of accepting H0 by
permutation test, and it is hard to exceed this threshold even
after subtracting its (small) bound of sensitivity. Therefore,
in most cases, the bound of sensitivity of RCIT is very small,
so it is hard to generate Type II error.

The results of CI tests are presented in Fig. 1 (b). As afore-
mentioned, conditional Kendall’s τ cannot handle CI tests, it
directly treats all cases as being not conditional independent,
thus Type II error rate is stable at 0. Type II error rate of
RCIT is very small, around 0.01 given 200 samples. So there
is not much difference between the two methods in CI tests
in terms of Type II error rate.

Here, we do not compare the two methods in terms of
running time, as HSIC needs to calculate the trace of the
product of two kernel matrices and k times of permutations
for approximation, the time complexity of RCIT is obviously
higher than that of conditional Kendall’s τ. Next, we will fur-
ther demonstrate the advantage of RCIT in private nonlinear
causal discovery.

Graph #Nodes #Arcs Max in-degree
Cancer 5 4 2

Asia 8 8 2
Child 20 25 2
Alarm 37 46 4

Table 1: Statistics of four causal graphs.

Performance on Causal Discovery
Here, we compare RCIT and conditional Kendall’s τ with
PCD (Alg.1) in terms of causal discovery performance. The
two methods are evaluated on four causal graphs 1 that cover
different applications, including biomedicine (Cancer and
Asia), expert systems (Child) and medicine (Alarm). The
structural statistic data of these causal networks are summa-
rized in Tab. 1. We generate data by following a nonlinear
causal model: xi = φi(

∑
ai j ·pai j)+bi ·εi, where pai j is the par-

ent of xi, εi is the noise term sampled from U(−0.5, 0.5), ai j
and bi are two coefficients randomly chosen from U(0.5, 1),
φi is a nonlinear function randomly chosen from sin, cos,
tanh, quadratic and exponential functions with probability of
20%. Such a data generation process in widely used in many
previous works such as (Zhang et al. 2011). For each experi-
ment setting, we randomly generate {1000, 2000, 4000, 8000}
samples, repeat the experiments 100 times and average their
results. We do not present the error bar as they are very small.
Other parameters and settings follows the previous section.

The results are shown in Fig 2. We can see that
Precision is higher than Recall in most cases. Note
that Recall =

Discovered edges ∩ Actual edges
Actual edges and Precision =

Discovered edges ∩ Actual edges
Discovered edges . Type I errors in RCIT and con-

ditional Kendall’s τ would not affect structure learning much,
that is because CI tests will continue to test x and y given
another controlling set Z when Type I error occurs. However,
such a traversal search strategy will be greatly affected by
Type II error. For example, assume that Type II error rate
is ri for each controlling set Zi, then the rate of rejecting all
CI hypotheses when they are really false is

∏
(1 − ri), and

we have lim
k→+∞

∏
i=1,...,k

(1 − ri) = 0. Therefore, the performance

of constraint-based causal discovery is largely determined
by Type II error rate of CI tests. Compared to conditional
Kendall’s τ, we can see that the performance of RCIT with
PCD is more stable and more advantageous as the sample
size increases.

Independence Test on Protein-Signaling Network
The experiments above show that the proposed method works
well in private (conditional) independence tests and causal
discovery on simulations. Here, we evaluate the proposed
method on a well-known real-world causal protein-signaling
network, S achs (Sachs et al. 2005). The underlying causal
graph of S achs has 11 nodes and 18 arcs, which is usually
regarded as the ground truth and widely used in previous
works of causal discovery (He et al. 2021).

1http://www.bnlearn.com/bnrepository/
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Figure 2: Performance of RCIT and conditional Kendall’s τ with PCD on four causal graphs with ε = {0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8}
and sample size = {1000, 2000, 4000, 8000}, “Inf” denotes non-private test.

The results are shown in Fig. 3, which indicates that RCIT
with PCD achieves better performance on this dataset. We
can see that the F1 of conditional Kendall’s τ is around 0.3
when ε ≤ 1, which is far below that of RCIT. The low Recall
indicates that both the two methods are prone to Type II error,
which is much more serious than the results of simulations
in Fig. 1 and Fig. 2. This indicates that real-world data are
more complex and challenging than simulations. Therefore,
it is still a tough issue to reduce Type II error rate, especially
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Figure 3: Performance on Sachs dataset.

in real-world scenarios of private causal discovery.

Conclusion & Future Work
In this paper, we take an significant step towards differential-
ly private causal discovery from nonlinear numerical data,
which is an important research topic highlighted in previous
studies. Concretely, we propose a method to infer nonlin-
ear causal relations from observed numerical data by using
regression-based conditional independence (CI) test (RCIT).
To derive a small and feasible bound of sensitivity for pri-
vate causal inference, we use kernel ridge regression and
Hilbert-Schmidt independence criteria to implement RCIT.
Furthermore, we develop a private constraint-based causal
discovery framework with differential privacy guarantee. We
conduct extensive experiments of both CI tests and causal
discovery. To the best of our knowledge, there is no existing
CI test methods with differential privacy guarantee that can
handle nonlinear numerical data. In experiments, we compare
our method with the latest Kendall’s τ. Experiment results
demonstrate the effectiveness and advantage of the proposed
method in handling nonlinear numerical data.

However, there are still many challenges in differentially
private causal discovery. For example, it is unclear how to
reconcile independence tests with infinite/large bound of
sensitivity, and it is challenging to derive privacy guarantee
for the state-of-the-art causal discovery techniques such as
some continuous optimization based methods. These issues
can be promising future research topics.
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