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Abstract

The concept of potential outcome types is one of the fun-
damental components of causal inference. However, even in
randomized experiments, assumptions on the data generat-
ing process, such as monotonicity, are required to evaluate
the probabilities of the potential outcome types. To solve the
problem without such assumptions in experimental studies, a
novel identification condition based on proxy covariate infor-
mation is proposed in this paper. In addition, the estimation
problem of the probabilities of the potential outcome types
reduces to that of singular models when they are identifiable
through the proposed condition. Thus, they cannot be evalu-
ated by standard statistical estimation methods. To overcome
this difficulty, new plug-in estimators of these probabilities
are presented, and the asymptotic normality of the proposed
estimators is shown.

Introduction
Motivation
Simultaneously deriving the results of the same subjects re-
ceiving the experimental treatment and the controlled treat-
ment is an essential part of causal inference. However, even
in randomized experiments (Pearl 2009, pp.284–285), this
cannot be achieved. Thus, it is difficult to evaluate the like-
lihood that one event would cause another event.

To understand the importance of the above situation, con-
sider the following statement regarding the phase III ran-
domized clinical trial comparing the COVID-19 vaccine
with the placebo, as reported by Goodman, Grabenstein, and
Braun (2020)

“The US Food and Drug Administration (FDA) guid-
ance set as an expectation for licensure that a COVID-
19 vaccine would prevent disease or decrease its
severity in at least 50% of people who are vaccinated.
. . . It will also be important to understand whether a
vaccine reduces not only mild but also more severe
disease, as well as hospitalizations and deaths.”

This statement implies that it was uncertain whether the
severity would be decreased if unvaccinated healthy subjects
would be vaccinated (counterfactually) at that time. To ad-
minister the vaccine to the subjects most likely to benefit
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from it, it is useful to (i) classify the situations of the sub-
jects into four outcome types, which are labeled, “doomed”,
“causative”, “preventive” and “immune”, and (ii) evaluate
the probabilities of these four outcome types. In the phase
III randomized clinical trial described above, the “doomed”
situation represents a case where treatment is irrelevant be-
cause the disease occurs whether the vaccine or the placebo
are received. The “causative” situation represents a case
where the disease occurs if and only if subjects receive the
placebo. The “preventive” situation represents a case where
the disease occurs if and only if subjects receive the vaccine.
The “immune” situation occurs when the treatment is irrel-
evant because the disease does not occur where the vaccine
or the placebo are received. Because each subject belongs to
one of four outcome types, these outcomes are referred to as
“potential outcome types”. However, we do not know from
the observed data to which type a subject belongs. Here, as
an effective vaccination policy, it would be better to target
subjects in the “causative” outcome type because the sever-
ity in this type of subjects is reduced when they are vacci-
nated, but not when they are not vaccinated. In contrast, the
probability of the “preventive” outcome type would be use-
ful to evaluate the severity of receiving the vaccination be-
cause the severity in this type of subjects is decreased when
they do not receive the vaccination but not when they receive
the vaccination.

Theoretical Background and Contribution
One representative example of “the probabilities of the po-
tential outcome types” is “the probabilities of causation”,
which probabilistically evaluate the “necessity cause”, “suf-
ficiency cause”, and “necessity and sufficiency cause” (Cai
and Kuroki 2005; Dawid, Musio, and Fienberg 2016; Dawid,
Musio, and Murtas 2017; Dawid and Musio 2022; Pearl
2015; VanderWeele 2012). Pearl (2009) and Tian and Pearl
(2000) developed formal semantics for the probabilities of
causation based on structural causal models. These proba-
bilities are formulated based on the probabilities of the po-
tential outcome types, and thus are not identifiable even in
randomized experiments (Pearl 2009, pp.284–285). To solve
the problem, Kuroki and Cai (2011) and Tian and Pearl
(2000) showed how to bound these quantities from data ob-
tained in experimental and observational studies. Although
these bounds provide the range within which the probabili-
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Figure 1: Graphical representation of causal dependencies in
a randomized experiment

ties of causation must lie, it has been pointed out that these
bounds are too wide to evaluate the probabilities of causa-
tion.

To overcome this difficulty, Tian and Pearl (2000) also
noted that the probabilities of causation are identifiable if
monotonicity can be assumed and causal risks are identifi-
able. Additionally, Pearl (2009) showed that specific func-
tional relationships between cause and effect lead to the
identification of the probabilities of causation. However,
when the present assumptions are violated, there has been
much less discussion of how to identify the probabilities of
the potential outcome types. Referring to the effect restora-
tion by Kuroki and Pearl (2014), Shingaki and Kuroki
(2021) provided the identification conditions using the co-
variate information in observational studies.

In this paper, we provide a novel identification condi-
tion for the probabilities of the potential outcome types in
a randomized experiment with proxy covariate information.
Without relying on the previously used assumptions, the pro-
posed condition enables us to derive a consistent estimator
for the probabilities of the potential outcome types under
less covariate information than that used in Shingaki and
Kuroki (2021). In addition, the estimation problem of the
probabilities of the potential outcome types reduces to that
of singular models when they are identifiable through the
proposed condition. Thus, they cannot be evaluated by stan-
dard statistical estimation methods. Although Shingaki and
Kuroki (2021) used the augmented Lagrangian method to
overcome this difficulty, different from Shingaki and Kuroki
(2021), new plug-in estimators of these probabilities are pre-
sented in this paper. Given space constraints, the proofs, the
details of the statistical estimation method, some numerical
experiments and a case study application are provided in the
supplementary material.

Problem Description and Notation
To describe our problem, we consider randomized experi-
ments with the purpose of comparing the outcome of an
experimental treatment (e.g., the COVID-19 vaccine) with
the outcome of a controlled treatment (e.g., the placebo), as
shown in Figure 1. For the graph-theoretic terminology and
the basic theory of the structural causal models used in this
paper, we refer readers to Pearl (2009). In addition, we as-
sume that readers are familiar with the basic theory of causal
inference (Imbens and Rubin 2015; Pearl 2009).

Intuitively, in Figure 1, given variables X and Y and the
set U of variables, a directed edge from X to Y (X → Y )
indicates that X could have an effect on Y . The absence
of a directed edge from Y to X (Y → X) indicates that
Y cannot be a cause of X . A directed edge from U to Y
(U → Y ) indicates that some elements of U could have
an effect on Y . In addition, the absence of a directed edge
from Y to U (Y → U ) indicates that Y cannot be a cause
of any element of U . The absence of edges between X and
U (X → U , X ← U , X ↔ U ) indicates that there are
no cause-effect relationships or associational relationships
between X and U .

In Figure 1, we assume that X and Y represent the ob-
served dichotomous treatment variable and the observed di-
chotomous outcome variable, respectively. Here, we let x
and y represent the values taken by the variables X and Y ,
respectively, with the following meanings. x ∈ {x0, x1},
where x0 indicates the controlled treatment, and x1 indi-
cates the experimental treatment; y ∈ {y0, y1}, where y0
indicates that there is an occurrence of the disease, and y1
indicates that there is no occurrence of the disease. In ad-
dition, U , which is often called a covariate vector, repre-
sents the set of all discrete and continuous variables (both
observed and unobserved) that cannot be affected by X or
Y . Here, some elements inU could have an effect on X and
Y in observational studies. However, in randomized experi-
ments, any elements ofU are not associated withX because
X is randomized. This situation is common in practical sci-
ence. Here, it is straightforward to extend our results from
the case of dichotomous observed variables to the case of
multivalued observed variables. In particular, as Balke and
Pearl (1997) stated, a multivalued or continuous outcome
can be accommodated in the model using the event Y < y
as a (dichotomous) outcome variable. For the related dis-
cussion, refer to Galhotra, Pradhan, and Salimi (2021) and
Kada, Cai, and Kuroki (2013). In addition, when the treat-
ment variable is continuous, according to Balke and Pearl
(1997), it is reasonable to assume that there exists a treat-
ment interval around each x, within which a subject’s out-
come is homogeneous. Under this assumption, it is possible
to apply our results.

Let n be the sample size. For x ∈ {x0, x1} and y ∈
{y0, y1}, let p(X = x, Y = y) = p(x, y) be the joint prob-
ability of (X,Y ) = (x, y), p(Y = y |X = x) = p(y |x)
be the conditional probability of Y = y given X = x, and
p(X = x) = p(x) be the marginal probability of X = x.
A similar notation is used for other probabilities. Then, in
principle, for x ∈ {x0, x1}, the i-th of n subjects has a po-
tential outcome variable Yx(i) that would have resulted if X
had been x for the i-th subject. Here, Yx(i) = y means that
“Y takes the value y when X is experimentally set to x for
the i-th subject” or the counterfactual sentence “Y would be
y, had X been x for the i-th subject”. The potential outcome
variable Yx is observed only ifX is x. This property is called
the consistency (Robins 1989; Pearl 2009).

In this paper, we assume the stable unit treatment value
assumption (Imbens and Rubin 2015), which can be sum-
marized as follows: (i) the treatment status of any subject
does not affect the outcomes of the other subjects (i.e., no
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interference) and (ii) the treatments of all subjects are com-
parable (i.e., no variation in treatment). Thus, when the n
subjects in the study are considered as random samples from
the population of interest, Yx(i) is referred to as the value of
a random variable Yx.

The causal risk of X = x on Y = y is defined as p(Yx =
y), and the causal risk difference of X = x1 in comparison
with X = x0 is defined as p(Yx1

= y1) − p(Yx0
= y1).

When a randomized experiment is conducted and compli-
ance is perfect, since X is independent of {Yx0 , Yx1}, the
causal risk p(Yx = y) is identifiable and is given by

p(Yx = y) = p(y |x) (1)

from the consistency. Here, “identifiable” means that the
causal quantities, such as p(Yx = y), can be estimated con-
sistently from a joint probability of the observed variables.
Although there are other identification conditions of causal
risks (e.g., Pearl 2009), they are not covered in this paper due
to space constraints. Note that X is considered independent
of all covariates in successful randomized experiments.

In contrast, our main interest is to evaluate the probabili-
ties of the potential outcome types in a randomized experi-
ment. Through the pair (Yx0 , Yx1), “doomed”, “causative”,
“preventive” and “immune”, which are described in the sec-
tion “Motivation”, are represented by

u1 = (Yx0
= y0, Yx1

= y0), u2 = (Yx0
= y0, Yx1

= y1),

u3 = (Yx0 = y1, Yx1 = y0), u4 = (Yx0 = y1, Yx1 = y1),

respectively, and the corresponding probabilities we wish to
evaluate are given by

p(u1), p(u2), p(u3), p(u4),

respectively. These probabilities, which are called probabili-
ties of the potential outcome types, are fundamental compo-
nents of causal inference in the sense that (i) if they are iden-
tifiable, then the causal risk is also identifiable, but not vice
versa (Pearl 2009; Tian and Pearl 2000), and (ii) they enable
us to evaluate the probabilistic aspects of “necessity cause”,
“sufficiency cause”, and “necessity and sufficiency cause”,
which are important concepts for providing successful ex-
planations in the field of explainable artificial intelligence
(XAI) (Watson et al. 2021). However, these probabilities are
not identifiable because Yx1

and Yx0
cannot be simultane-

ously observed for each subject, even under randomized ex-
periments. Here, under monotonicity, i.e., p(u3) = 0, in ran-
domized experiments, we note that p(u1), p(u2) and p(u4)
are identifiable and given by p(u1) = p(y0|x1), p(u2) =
p(y1|x1) − p(y1|x0), p(u3) = 0 and p(u4) = p(y1|x0)
(Pearl 2009; Tian and Pearl 2000).

Identification
Referring to the problem description in the section “Problem
Description and Notation”, we formulate our problem for
evaluating the probabilities of the potential outcome types
based on randomized experiments, which are represented by
the directed graph shown in Figure 2a. Here, covariates Z
and W are measured as proxy variables of the set of covari-
ates U . Note that Z and W can be a set of discrete and/or

•
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•
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•
Y

•
X

•
U

(a) Unobserved covariates

•
Z

•
W

•
Y

•
X

•
{Yx, Yx′}

(b) Potential outcomes

Figure 2: Graphical representation of causal dependencies in
randomized experiments

continuous variables. A graphical representation of the data
generating process is also shown in this figure.

Y = gy(X,U , εy), X = gx(εx),

Z = gz(U , εz), W = gw(U , εw),
(2)

where εx, εy , εz , and εw are independent random distur-
bances and are also independent of U . When structural
equation models, such as Equation (2), are used to repre-
sent the data generating process, the corresponding graph,
as shown in Figure 2a, is called the causal diagram.

In a situation such as that shown in Figure 2a, U can in-
clude the uncertain number of all discrete and continuous
covariates that influence the way that a subject responds to
treatment. Thus, in many situations, it is reasonable to as-
sume the existence of covariates Z and W that are inde-
pendent of {X,Y } given U . Then, irrespective of the com-
plexity of U ∪ {εy, εz, εw}, the impact of U on Y remains
restricted to the modification of the functional relationships
between X and Y . This yields four functions for two di-
chotomous variables X and Y ; thus, the value taken by
U ∪ {εy, εz, εw} selects one of these four functions (Pearl
2009). Considering these observations, as stated in the sec-
tion “Motivation”, according to Lash et al. (2021, p. 59), the
states ofU ∪{εy, εz, εw} are divided into the following four
potential outcome types: “doomed” (u1), “causative” (u2),
“preventive” (u3) and “immune” (u4).

According to the partition of the states ofU∪{εy, εz, εw},
U is redefined as a variable U taking a value u (u ∈
{u1, u2, u3, u4}). Then, for any x, y, z and w, we assume
that Figure 2a can be redescribed, as shown in Figure 2b, and
the corresponding recursive factorization of the joint proba-
bilities of Y , Z and W given X , p(y, z, w |x) is as follows

p(y, z, w |x) =
4∑

i=1

p(y |x, ui)p(z |ui)p(w |ui)p(ui) (3)

according to Figure 2b. When Z has two categories or
more and W has three categories or more, i.e., z ∈
{z1, z2, . . . , zk} (k ≥ 2) and w ∈ {w1, w2, . . . , wl} (l ≥ 3),
let

Qxyw =

[
p(y | x) p(y, w | x)

p(y, z1 | x) p(y, z1, w | x)

]
(4)

for x ∈ {x0, x1}, y ∈ {y0, y1} and w ∈ {w1, w2, . . . , wl},
and

Rx0y0
=

[
1 p(z1 |u1)
1 p(z1 |u2)

]
, Rx0y1

=

[
1 p(z1 |u3)
1 p(z1 |u4)

]
,
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Rx1y0
=

[
1 p(z1 |u1)
1 p(z1 |u3)

]
, Rx1y1

=

[
1 p(z1 |u2)
1 p(z1 |u4)

]
,

Sx0y0w =

[
1 p(w |u1)
1 p(w |u2)

]
, Sx0y1w =

[
1 p(w |u3)
1 p(w |u4)

]
,

Sx1y0w =

[
1 p(w |u1)
1 p(w |u3)

]
, Sx1y1w =

[
1 p(w |u2)
1 p(w |u4)

]
,

∆x0y0
=

[
p(u1) 0

0 p(u2)

]
,∆x0y1

=

[
p(u3) 0

0 p(u4)

]
,

∆x1y0 =

[
p(u1) 0

0 p(u3)

]
, ∆x1y1 =

[
p(u2) 0

0 p(u4)

]
for w ∈ {w1, w2, . . . , wl}. Then, we derive

Qxy0wl1
= R>xy0

∆xy0
Sxy0wl1

,

Qxy0wl2
= R>xy0

∆xy0Sxy0wl2
,

Qxy1wl1
= R>xy1

∆xy1
Sxy1wl1

,

Qxy1wl2
= R>xy1

∆xy1Sxy1wl2
.

(5)

for x ∈ {x0, x1} and wl1 , wl2 ∈ {w1, w2, . . . , wl} (wl1 6=
wl2 ). Here, “>” stands for a transposed vector/matrix. When
Qxyw are invertible for x ∈ {x0, x1}, y ∈ {y0, y1} and
w ∈ {w1, w2, . . . , wl}, we obtain

Sxy0wl1
Q−1xy0wl1

= Sxy0wl2
Q−1xy0wl2

,

Sxy1wl1
Q−1xy1wl1

= Sxy1wl2
Q−1xy1wl2

(6)

for x ∈ {x0, x1} and wl1 , wl2 ∈ {w1, w2, . . . , wl} (wl1 6=
wl2 ). Then, we derive the following theorem:

Theorem 1 Let Z and W be variables that take k (≥ 2)
and l (≥ 3) values, e.g., z ∈ {z1, z2, . . . , zk} for Z and w ∈
{w1, w2, . . . , wl} forW respectively. Then, the probabilities
of the potential outcome types p(u1), p(u2), p(u3) and p(u4)
are identifiable if the following conditions are satisfied:

(1) Positive probabilities p(y, z, w|x) are available for x ∈
{x0, x1}, y ∈ {y0, y1}, z ∈ {z1, z2, . . . , zk} and w ∈
{w1, w2, . . . , wl}.

(2) Both W á Z | U and X á {U,Z,W} hold.
(3) Qxyw are invertible for x ∈ {x0, x1}, y ∈ {y0, y1} and

w ∈ {w1, w2, . . . , wl}, and

|Qx0y0wl1
|

|Qx0y0wl2
|
6=
|Qx1y0wl1

|
|Qx1y0wl2

|
,
|Qx0y0wl1

|
|Qx0y0wl2

|
6=
|Qx1y1wl1

|
|Qx1y1wl2

|
,

|Qx0y1wl1
|

|Qx0y1wl2
|
6=
|Qx1y0wl1

|
|Qx1y0wl2

|
,
|Qx0y1wl1

|
|Qx0y1wl2

|
6=
|Qx1y1wl1

|
|Qx1y1wl2

|
(7)

hold for wl1 , wl2 ∈ {w1, w2, . . . , wl} (wl1 6= wl2 ). Here
| · | denotes the determinant.

The proof is given in Supplementary Material. Conditions
(1) and (3) are testable from observed data. Regarding Con-
dition (2), X á {U,Z,W} is automatically satisfied in ran-
domized experiments. Here, both Z and W are proxy co-
variates of U in Figure 2a, but Theorem 1 states that they
can be any pair of variables such that both W á Z | U and

X á {U,Z,W} hold (e.g., W → U → Z). In addition,
although the probabilities that include unobserved variables
are not fully identified in Kuroki and Pearl (2014), Theo-
rem 1 shows that the probabilities of the potential outcome
types are identifiable. Here, note that the independence as-
sumptions between two observed variables may be affected
by partitioning the states of U . In addition, although Shin-
gaki and Kuroki (2021) required that both proxy covariates
take at least four values, it is sufficient to observe two proxy
covariates taking two and three values in Theorem 1.

When Z is a dichotomous variable, Cinelli and Pearl
(2021) showed that if Yx0

á Z | Yx1 holds in a random-
ized experiment, i.e., {Y0, Yx1 , Z} á X , then the proba-
bilities of the potential outcome types are identifiable with-
out additional covariate information, e.g., W in Figure 2.
Here, note that it is easy to extend the result of Cinelli and
Pearl (2021) from an experimental study to an observational
study. To understand this, let x ∈ {x0, x1}, y ∈ {y0, y1}
and z ∈ {z1, z2}. When positive probabilities p(x, y, z) are
available under the assumption that p(Yx1 = y0 | z1) 6=
p(Yx1 = y0 | z2) holds, since Yx0

á Z | Yx1 , we obtain[
p(Yx0

= y1 |Yx1
= y0)

p(Yx0
= y1 |Yx1

= y1)

]
=

[
p(Yx1

= y0 | z1) p(Yx1
= y1 | z1)

p(Yx1
= y0 | z2) p(Yx1

= y1 | z2)

]−1
×
[
p(Yx0

= y1 | z1)
p(Yx0

= y1 | z2)

]
.

Thus, if the conditional causal risk p(Yx = y | z) is identi-
fiable by, for example, the back-door criterion (Pearl 2009),
in an observational study, then the probabilities of the po-
tential outcome types are also identifiable. Referring to this
consideration, it would not be difficult to extend our results
from an experimental study to an observational study.

Estimation
When the probabilities of the potential outcome types are
identifiable through the proposed condition, as seen from
the proof of Theorem 1 (refer to Supplementary Material A),
the estimation problem is reduced to that of singular models,
and thus, these probabilities cannot be evaluated by standard
statistical estimation methods, such as the maximum likeli-
hood estimation method. To solve this problem, we propose
new plug-in estimators of the probabilities of the potential
outcome types.

Consider the matrices Q̂xyw that are derived by replacing
p(y |x), p(w |x, y), p(z, w |x, y) and p(z |x, y) of Qxyw

with sample probabilities p̂(y |x), p̂(w |x, y), p̂(z, w |x, y)
and p̂(z |x, y), respectively, for x ∈ {x1, x0}, y ∈ {y1, y0},
z = z1 and w ∈ {w1, w2}. From Equation (6), the con-
sistent estimators of p(w|u) for w ∈ {w1, w2} and u ∈
{u1, u2, u3, u4} are given by

[
p̂(w1 |u1)
p̂(w2 |u1)

]
=


1 −|Q̂x0y0w1

|
|Q̂x0y0w2 |

1 −|Q̂x1y0w1 |
|Q̂x1y0w2

|


−1
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×


p̂(w1 |x0, y0)− |Q̂x0y0w1 |

|Q̂x0y0w2
|
p̂(w2 |x0, y0)

p̂(w1 |x1, y0)− |Q̂x1y0w1
|

|Q̂x1y0w2
|
p̂(w2 |x1, y0)

 , (8)

[
p̂(w1 |u2)
p̂(w2 |u2)

]
=


1 −|Q̂x0y0w1 |

|Q̂x0y0w2
|

1 −|Q̂x1y1w1
|

|Q̂x1y1w2 |


−1

×


p̂(w1 |x0, y0)− |Q̂x0y0w1 |

|Q̂x0y0w2
|
p̂(w2 |x0, y0)

p̂(w1 |x1, y1)− |Q̂x1y1w1
|

|Q̂x1y1w2
|
p̂(w2 |x1, y1)

 , (9)

[
p̂(w1 |u3)
p̂(w2 |u3)

]
=


1 −|Q̂x0y1w1 |

|Q̂x0y1w2
|

1 −|Q̂x1y0w1
|

|Q̂x1y0w2
|


−1

×


p̂(w1 |x0, y1)− |Q̂x0y1w1

|
|Q̂x0y1w2

|
p̂(w2 |x0, y1)

p̂(w1 |x1, y0)− |Q̂x1y0w1
|

|Q̂x1y0w2
|
p̂(w2 |x1, y0)

 , (10)

[
p̂(w1 |u4)
p̂(w2 |u4)

]
=


1 −|Q̂x0y1w1 |

|Q̂x0y1w2
|

1 −|Q̂x1y1w1
|

|Q̂x1y1w2
|


−1

×


p̂(w1 |x0, y1)− |Q̂x0y1w1

|
|Q̂x0y1w2

|
p̂(w2 |x0, y1)

p̂(w1 |x1, y1)− |Q̂x1y1w1
|

|Q̂x1y1w2
|
p̂(w2 |x1, y1)

 . (11)

Then, let

Ŝx0y0w1
=

[
1 p̂(w1 |u1)
1 p̂(w1 |u2)

]
,

Ŝx0y1w1
=

[
1 p̂(w1 |u3)
1 p̂(w1 |u4)

]
.

(12)

Referring to Equation (6), when we consider

Ŝxy0w1Q̂
−1
xy0w1

= Ŝxy0w2Q̂
−1
xy0w2

,

Ŝxy1w1
Q̂−1xy1w1

= Ŝxy1w2
Q̂−1xy1w2

(13)

for x ∈ {x0, x1}, the first rows of Q̂x0y0w1 Ŝ
−1
x0y0w1

and Q̂x0y1w1
Ŝ−1x0y1w1

provide the consistent estimators of
(p(u1), p(u2)) and (p(u3), p(u4)), respectively. In addition,
they have the following asymptotic normality:

Theorem 2 For θij = (p(w1 |xi, yj), p(w2 |xi, yj),
p(z1, w1 |xi, yj), p(z1, w2 |xi, yj), p(z1 |xi, yj))>

(denoted as (θij1 , θ
ij
2 , θ

ij
3 , θ

ij
4 , θ

ij
5 )>) and T

(n)
ij =

(p̂(w1 |xi, yj), p̂(w2 |xi, yj), p̂(z1, w1 |xi, yj),
p̂(z1, w2 |xi, yj), p̂(z1 |xi, yj))> (i, j = 0, 1), sup-

pose that
√
n
(
T

(n)
ij − θij

)
asymptotically follows

the joint normal distribution with a zero mean vector
and a covariance matrix Σij for i, j = 0, 1. Then,
√
n
(
Ŝ−>x0y0w1

Q̂>x0y0w1
e− (p(u1), p(u2))

>
)

asymptotically
follows the joint normal distribution with a zero mean
vector and a covariance matrix

∂S−>x0y0w1
Q>x0y0w1

e

∂θ00
∂S−>x0y0w1

Q>x0y0w1
e

∂θ10
∂S−>x0y0w1

Q>x0y0w1
e

∂θ11



>

[
Σ00 O O
O Σ10 O
O O Σ11

]

×



∂S−>x0y0w1
Q>x0y0w1

e

∂θ00
∂S−>x0y0w1

Q>x0y0w1
e

∂θ10
∂S−>x0y0w1

Q>x0y0w1
e

∂θ11

 ,

and
√
n
(
Ŝ−>x0y1w1

Q̂>x0y1w1
e− (p(u3), p(u4))

>
)

asymptoti-
cally follows the joint normal distribution with a zero mean
vector and a covariance matrix

∂S−>x0y1w1
Q>x0y1w1

e

∂θ01
∂S−>x0y1w1

Q>x0y1w1
e

∂θ10
∂S−>x0y1w1

Q>x0y1w1
e

∂θ11



>

[
Σ01 O O
O Σ10 O
O O Σ11

]

×



∂S−>x0y1w1
Q>x0y1w1

e

∂θ01
∂S−>x0y1w1

Q>x0y1w1
e

∂θ10
∂S−>x0y1w1

Q>x0y1w1
e

∂θ11


under the assumptions of Theorem 1. Here the notation
“−>” stands for a transposed inverse matrix and e =
(1, 0)>.

The proof of Theorem 2 is straightforward by the delta
method (e.g., van der Vaart 1998).

Numerical Experiment
In this section, we present a numerical experiment to ex-
amine the properties of the proposed estimation method
through the “probability of necessity and sufficiency” (PNS)
p(u2), which has been discussed in the context of the proba-
bilities of causation, and the causal risk difference p(Yx1

=
y1) − p(Yx0

= y1) = p(u2) − p(u3). For simplicity, let
X , Y , Z, W , and U be discrete variables. Then, we con-
sider the causal diagrams shown in Figure 2, where the joint
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p(Z |U) p(W |U) p(Y = 0 |X,U)
p(U) p(X)

Z = 1 Z = 2 W = 1 W = 2 W = 3 X = 1 X = 0

U = 1 9/10 1/10 8/10 3/20 1/20 1 1 1/4
X = 0 1/2

U = 2 8/10 2/10 3/20 1/20 8/10 0 1 1/4
U = 3 2/10 8/10 7/10 2/10 1/10 1 0 1/4

X = 1 1/2
U = 4 1/10 9/10 2/10 1/10 7/10 0 0 1/4

Table 1: Conditional probabilities

probabilities of (X,Y, Z,W,U) are given according to Ta-
ble 1. Under the situation where (X,Y, Z,W ) can be ob-
served but U cannot, the properties of the proposed estima-
tors p̂(u2) and p̂(u2) − p̂(u3) of p(u2) and p(u2) − p(u3),
respectively, are verified in a numerical experiment using
the setting with sample sizes n = 500, 1000, 5000 and
10000. In this situation, since p(u2) and p(u2) − p(u3) are
0.25 and 0.00, respectively, the sample means of p̂(u2) and
p̂(u2)− p̂(u3) are expected to be close to 0.25 and 0.00, re-
spectively. Table 2 and Figure 3 show the basic statistics and
the box plots of p̂(u2) and p̂(u2) − p̂(u3) for 1000 replica-
tions with the given sample size n, respectively. Note that
if the determinants of Q̂xyw are close to zero, then Condi-
tion (3) in Theorem 1 may not be satisfied. Thus, Table 2
and Figure 3 are considered with the exception of a maxi-
mum of 85 cases. The horizontal lines in Figure 3 show the
true values of p(u2) and p(u2) − p(u3). Here, since we fo-
cus on the randomized experiments, p(u2) − p(u3) can be
estimated by p̂(y1|x1)− p̂(y1|x0) without the proposed esti-
mation method. Although we know that p̂(y1|x1)− p̂(y1|x0)
provides better estimation accuracy than the proposed esti-
mation method due to the smaller value of |Q̂xyw| in Equa-
tions (8)-(11), we estimate p(u2) − p(u3) by the proposed
estimation method for our purpose.

From Table 2, the sample means of p̂(u2) and p̂(u2) −
p̂(u3) are close to the true values and the sample standard
errors (s.e.) are smaller as the sample size is larger. Thus, it
seems that the proposed estimation method provides con-
sistent estimators for p(u2) and p(u2) − p(u3). In addi-
tion, from Figure 3, the interquantile ranges for p̂(u2) and
p̂(u2) − p̂(u3) are narrower and still include the true val-
ues even if the sample size is large. In contrast, it seems
that p̂(u2) − p̂(u3) is symmetrically distributed, and thus,
the asymptotic normality holds, but p̂(u2) may not hold for
the smaller sample size. This is because the true value of
p(u2) is relatively close to zero for the finite sample size.
Actually, the boxplot of p̂(u2) for n = 10000 is more sym-
metrical than those for n ≤ 5000. Here, note that there are
many outliers in each sample size. Outliers occur when it is
difficult to judge that the conditions of Theorem 1 hold from
the observed data. For further discussion of the simulation
experiments, see the supplementary material.

Discussion
The probabilities of the potential outcome types often appear
in unit selection problems (Li and Pearl 2019), the impact
evaluation problem of social programs (Heckman, Smith,

and Clements 1997), the non-compliance problem of treat-
ment effects (Angrist, Imbens, and Rubin 1996; Balke and
Pearl 1997), the principal stratification (Frangakis and Ru-
bin 2002), the identification problems of natural direct and
indirect effects (Pearl 2001) and prevented and preventable
proportions (Yamada and Kuroki 2017), traffic conflict (Ya-
mada and Kuroki 2019), the explainability problem of ar-
tificial intelligence (Watson et al. 2021), and causal clas-
sification (Fernández-Lorı́a and Provost 2022). Therefore,
the identification and estimation problems of these proba-
bilities have been an important topic in causal inference.
To solve these problems in experimental studies, we have
proposed a novel identification condition of the probabili-
ties of the potential outcome types. While Miao, Geng, and
Tchetgen Tchetgen (2018) and Lee and Bareinboim (2021)
discussed the identification problem of causal effects with
proxy variables, we have rather discussed the identification
problem of the probabilities of the potential outcome types.
In addition, the proposed condition enables us to derive a
consistent estimator for the probabilities of the potential out-
come types under less covariate information than that used
in Shingaki and Kuroki (2021). When the probabilities of
the potential outcome types are identifiable through the pro-
posed condition, the estimation problem is reduced to that
of singular models. To overcome this difficulty, we proposed
new plug-in estimators of these probabilities. Here, the esti-
mation problem of singular models often appears in the con-
text of causal inference, but it seems that no solution has
been given in the literature. Thus, the results of this paper
extend the range of solvable evaluation problems in causal
inference under nonparametric causal models.

To estimate the joint probabilities of potential outcomes,
the proposed method needs to input two proxy variables that
satisfy the conditions in Theorem 1. As stated in the sec-
tion “Identification”,U can include the uncertain number of
all discrete and continuous covariates that influence the way
that a subject responds to treatment. Thus, in many situa-
tions, it is reasonable to assume the existence of covariates
Z and W that are independent given U .

As seen from Figure 3, the proposed estimation meth-
ods could be unstable in practice due to matrix inversion.
Although the paper focuses on the identification and esti-
mation problems, the problem of the variance estimation is
also an important topics in causal inference. Empirically, we
note that the unstable estimations would be caused by (1)
the lower association between U and the proxy covariates
and (2) the small sample size. We leave the problem of such
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(a) p̂(u2) (b) p̂(u2)− p̂(u3)

n = 500 n = 1000 n = 5000 n = 10000 n = 500 n = 1000 n = 5000 n = 10000

Minimum −9.609 −15.024 −2.530 −0.480 −19.961 −14.944 −4.966 −12.621
1st Quantile 0.164 0.177 0.194 0.213 −0.157 −0.135 −0.110 −0.084

Median 0.275 0.267 0.247 0.247 0.051 0.044 0.003 −0.003
Mean 0.314 0.291 0.284 0.243 0.067 0.084 0.050 −0.026
3rd 0.406 0.369 0.295 0.280 0.325 0.255 0.110 0.059

Maximum 17.233 8.404 15.692 2.053 17.236 8.196 15.494 3.194
s.e. 1.047 0.921 0.764 0.116 1.603 1.285 0.932 0.494

Table 2: Basic statistics of estimates based on the proposed method

(a) Boxplots for PNS (b) Boxplots for causal risk difference

Figure 3: Boxplots of estimates based on the proposed method

variance estimation as future work.
Finally, we assume that both a treatment variable and an

outcome variable are dichotomous. As we stated in the sec-
tion “Problem Description and Notation”, it is straightfor-
ward to extend our results from the case of dichotomous ob-
served variables to the case of multivalued observed vari-
ables under certain assumptions. Here, note that in such
cases, it may be difficult to obtain reliable statistics of the
recovered probabilities due to data sparseness. This problem
has been left for future work.
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