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Abstract

We propose ordering-based approaches for learning the max-
imal ancestral graph (MAG) of a structural equation model
(SEM) up to its Markov equivalence class (MEC) in the pres-
ence of unobserved variables. Existing ordering-based meth-
ods in the literature recover a graph through learning a causal
order (c-order). We advocate for a novel order called remov-
able order (r-order) as they are advantageous over c-orders
for structure learning. This is because r-orders are the mini-
mizers of an appropriately defined optimization problem that
could be either solved exactly (using a reinforcement learning
approach) or approximately (using a hill-climbing search).
Moreover, the r-orders (unlike c-orders) are invariant among
all the graphs in a MEC and include c-orders as a subset.
Given that set of r-orders is often significantly larger than the
set of c-orders, it is easier for the optimization problem to find
an r-order instead of a c-order. We evaluate the performance
and the scalability of our proposed approaches on both real-
world and randomly generated networks.

Introduction
A causal graph is a probabilistic graphical model that rep-
resents conditional independencies (CIs) among a set of ob-
served variables V with a joint distribution PV. When all
the variables in the system are observed (i.e., causal suffi-
ciency holds), a causal graph is commonly modeled with a
directed acyclic graph (DAG), G. It is well-known that from
mere observational distribution PV, graph G can only be
learned up to its Markov equivalence class (MEC) (Spirtes
et al. 2000; Pearl 2009). Therefore, the problem of causal
structure learning (aka causal discovery) from observational
distribution in the absence of latent variables refers to iden-
tifying the MEC of G using a finite set of samples from PV

and has important applications in many areas such as biol-
ogy (Sachs et al. 2005), advertisements (Bottou et al. 2013),
social science (Russo 2010), etc.

There are three main classes of algorithms for causal
structure learning: constraint-based, score-based, and hy-
brid methods. Constraint-based methods use the available
data from PV to test for CI relations in the distribution,
from which they learn the MEC of G. Score-based meth-
ods define a score function (e.g., regularized likelihood func-
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Figure 1: In this figure, {G1, · · · ,Gk} denotes a set of
Markov equivalent DAGs. Π(V) denotes the set of orders
over V, which is the search space of ordering-based meth-
ods. Πc(Gi) denotes the set of c-orders of Gi, the target space
of existing ordering-based methods in the literature. Πr(Gi)
denotes the set of r-orders of Gi, which is the target space of
the proposed methods in this paper.

tion or Bayesian information criterion (BIC)) over the space
of graphs and search for a structure that maximizes the
score function. Hybrid methods combine the strength of both
constraint-based and score-based methods to improve score-
based algorithms by applying constraint-based techniques.

Under causal sufficiency assumption, the search space of
most of the score-based algorithms is the space of DAGs,
which contain 2Ω(n2) members when there are n variables
in the system. In score-based methods, a variety of search
strategies are proposed to solve the maximization problem.
Teyssier and Koller (2005) introduced the first ordering-
based search strategy to solve the score-based optimiza-
tion. The search space of such ordering-based methods is
the space of orders over the vertices of the DAG, which
includes 2O(n log(n)) orders. Note that the space of orders
is significantly smaller than the space of DAGs. Ordering-
based methods divide the learning task into two stages. In
the first stage, they use the available data to find a causal or-
der (c-order) over the set vertices of G. They use the learned
order in the second stage to identify the MEC of G (Zhu, Ng,
and Chen 2020; Larranaga et al. 1996; Teyssier and Koller
2005; Friedman and Koller 2003).

All the aforementioned ordering-based approaches for
causal discovery require causal sufficiency. In practice, pres-
ence of unobserved variables is more the norm rather than
the exception. In such cases, instead of a DAG, graphical
models such as maximal ancestral graph (MAG) and induc-
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ing path graph (IPG) are developed in the literature to rep-
resent a causal model (Richardson and Spirtes 2002). We
introduce a novel type of order for MAGs, called removable
order (in short, r-order), and argue that r-orders are advan-
tageous over c-orders for structure learning. For one, as r-
orders are defined for MAGs (as opposed to DAGs), they can
be used to design algorithms for causal graph structure dis-
covery in the absence of causal sufficiency. Moreover, even
in the absence of latent variables, r-orders are better suited
for learning the MEC. This is because, as depicted in Figure
1, r-orders include c-orders. As a consequence, the problem
of searching for an r-order is easier than finding a c-order
as the search space remains the same, but the set of feasible
solutions is larger. Our main contributions are summarized
as follows.

1. We introduce a novel type of order for MAGs, called r-
order, which is invariant among the MAGs in a MEC
(Proposition 2). In the case of DAGs, we note that this
property does not hold for c-orders as they are mutually
exclusive across the graphs in a MEC (Figure 1).

2. We propose ordering-based approaches for identifying
the MEC of a MAG using r-orders. In particular, our
methods do not require causal sufficiency. Furthermore,
we show that the problem of finding an r-order can be
cast as a minimization problem and prove that r-orders
are the unique minimizers of this problem (Theorem 2).

3. We show that our minimization problem can be formu-
lated with appropriately defined costs as a reinforcement
learning problem. Accordingly, any reinforcement learn-
ing algorithm can be applied to find a solution to our
problem. Additionally, we propose a hill-climbing search
algorithm to approximate the solution to the optimization
problem of our interest.

Related Work
Under causal sufficiency assumption, several causal struc-
ture discovery approaches have been proposed in the lit-
erature: constraint-based (Zhang et al. 2011, 2017; Spirtes
et al. 2000; Margaritis and Thrun 1999; Pellet and Elis-
seeff 2008b; Mokhtarian et al. 2021; Zhang et al. 2019;
Tsamardinos, Aliferis, and Statnikov 2003; Sun et al. 2007;
Mokhtarian et al. 2022), score-based (Nandy, Hauser, and
Maathuis 2018; Zheng et al. 2018; Bottou et al. 2013; Yu
et al. 2019; Yang et al. 2022), and hybrid (Tsamardinos,
Brown, and Aliferis 2006; Nandy, Hauser, and Maathuis
2018; Gámez, Mateo, and Puerta 2011; Schulte et al. 2010;
Schmidt et al. 2007; Alonso-Barba et al. 2013). Some score-
based methods formulate the structure learning problem as
a smooth continuous optimization and exploit gradient de-
scent to solve it (Yu et al. 2019; Lachapelle et al. 2020; Ng
et al. 2022; Zheng et al. 2020). Zhu, Ng, and Chen (2020)
and Wang et al. (2021) formulated the optimization prob-
lem as a reinforcement learning problem, where the score
function is defined over DAGs and orders, respectively. Fur-
thermore, among score-based approaches, various ordering-
based methods have been proposed that exploit different
search strategies to find a c-order (Zhu, Ng, and Chen 2020;
Larranaga et al. 1996; Teyssier and Koller 2005; Friedman

and Koller 2003). Ordering-based approaches are also useful
for a variety of causal discovery-related tasks (Rolland et al.
2022; Ghoshal, Bello, and Honorio 2019). All of these ap-
proaches are heuristics and provide no guarantees of finding
a correct c-order.

There are a few papers in the literature that do not
require causal sufficiency. FCI (Spirtes et al. 2000) is a
constraint-based algorithm that starts with the skeleton of
the graph learned by PC algorithm and then performs more
CI tests to learn a MAG up to its MEC. RFCI (Colombo
et al. 2012), FCI+ (Claassen, Mooij, and Heskes 2013), and
MBCS*(Pellet and Elisseeff 2008a) are three modifications
of FCI. L-MARVEL (Akbari et al. 2021) is a recursive algo-
rithm that iteratively eliminates specific variables and learns
the skeleton of a MAG. M3HC (Tsirlis et al. 2018) is a hy-
brid method that can learn a MAG up to its MEC. To the
best of our knowledge, the only other work in the literature
that uses an ordering-based approach for causal discovery in
MAGs (i.e., in the presence of latent variable) is GSPo which
proposes a greedy algorithm that is only consistent as long
as there are no latent variables in the system (the graph is a
DAG) (Raskutti and Uhler 2018), but there are no theoretical
guarantees in case of MAGs (Bernstein et al. 2020).

Preliminary and Problem Description
Throughout the paper, we denote random variables by capi-
tal letters (e.g., X) and sets of variables by bold letters (e.g.,
X). A mixed graph (MG) is a graph G = (V,E1,E2),
where V is a set of vertices, E1 is a set of directed edges, i.e.,
E1 ⊆ {(X,Y ) | X,Y ∈ V}, and E2 is a set of bidirected
edges, i.e., E2 ⊆ {{X,Y } | X,Y ∈ V}. For a subset Z ⊆
V, MG G[Z] = (Z,EZ

1 ,E
Z
2 ) denotes the induced subgraph

of G over Z, that is EZ
1 = {(X,Y ) ∈ E1 | X,Y ∈ Z} and

EZ
2 = {{X,Y } ∈ E2 | X,Y ∈ Z}. For each directed edge

(X,Y ) in E1, we say X is a parent of Y and Y is a child of
X . Further, we say X and Y are neighbors if a directed or
undirected edge exists between them in G. The skeleton of G
is the undirected graph obtained by removing the directions
of the edges of G. A path (X1, X2, · · ·, Xk) in G is called
a directed path from X1 to Xk if (Xi, Xi+1) ∈ E1 for all
1 ≤ i < k. If a directed path exists from X to Y , X is called
an ancestor of Y . We denote the set of parents, children, and
ancestors of X in G by PaG(X), ChG(X), and AncG(X), re-
spectively. We also apply these definitions disjunctively to
sets of variables, e.g., AncG(X) =

⋃
X∈X AncG(X). A non-

endpoint vertex Xi on a path (X1, X2, · · · , Xk) is called a
collider, if one of the following situations arises.

Xi−1 → Xi ← Xi+1, Xi−1 ↔ Xi ← Xi+1,

Xi−1 → Xi ↔ Xi+1, Xi−1 ↔ Xi ↔ Xi+1.

A pathP = (X,W1, · · · ,Wk, Y ) between two distinct vari-
ables X and Y is said to be blocked by a set Z ⊆ V\{X,Y }
in G if there exists 1 ≤ i ≤ k such that (i) Wi is a collider on
P and Wi /∈ AncG(Z ∪ {X,Y }), or (ii) Wi is not a collider
on P and Wi ∈ Z. We say Z m-separates X and Y in G and
denote it by (X ⊥⊥ Y |Z)G if all the paths in G between X
and Y are blocked by Z.

A directed cycle exists in an MG G = (V,E1,E2)
when there exists X,Y ∈ V such that (X,Y ) ∈ E1 and
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Y ∈ AncG(X). Similarly, an almost directed cycle exists in
G when there exists X,Y ∈ V such that {X,Y } ∈ E2 and
Y ∈ AncG(X). An MG with no directed cycles or almost-
directed cycles is said to be ancestral. An ancestral MG is
called maximal if every pair of non-neighbor vertices are m-
separable, i.e., there exists a set of vertices that m-separates
them. An MG is called a maximal ancestral graph (MAG) if
it is both ancestral and maximal. A MAG with no bidirected
edges is called a directed acyclic graph (DAG). Two MAGs
G1 and G2 are Markov equivalent if they impose the same set
of m-separations, i.e., (X ⊥⊥ Y |Z)G1 ⇐⇒ (X ⊥⊥ Y |Z)G2 .
We denote by [G] the Markov equivalence class (MEC) of
MAG G, i.e., the set of Markov equivalent MAGs of G.
Moreover, if G is a DAG, we denote by [G]DAG the set of
Markov equivalent DAGs of G.

Suppose G = (V,E1,E2) is a MAG and let PV denote
a joint distribution over V. For two distinct variables X and
Y in V and a subset Z ⊆ V \ {X,Y }, if P (X,Y | Z) =
P (X | Z)P (Y | Z), then X and Y are said be conditionally
independent given Z and it is denoted by (X ⊥⊥ Y |Z)PV

.
A Conditional Independence (CI) test refers to detecting
whether (X ⊥⊥ Y |Z)PV

. MAG G satisfies faithfulness w.r.t.
(is faithful to) PV if m-separations in G is equivalent to CIs
in PV, i.e., (X ⊥⊥ Y |Z)G ⇐⇒ (X ⊥⊥ Y |Z)PV

.
Consider a set of variables V ∪ U, where V and U de-

note the set of observed and unobserved variables, respec-
tively. In a structural equation model (SEM), each variable
X ∈ V ∪ U is generated as X = fX(Pa(X), ϵX), where
fX is a deterministic function, Pa(X) ⊆ V ∪ U \ {X},
and ϵX is the exogenous variable corresponding to X with
an additional assumption that the exogenous variables are
jointly independent (Pearl 2009). The causal graph of an
acyclic SEM is a directed acyclic graph (DAG) over V ∪U
obtained by adding a directed edge from each variable in
Pa(X) to X , for X ∈ V ∪U. The latent projection of this
DAG over V is a MAG over V such that for X,Y ∈ V and
Z ⊆ V \ {X,Y }, we have

(X ⊥⊥ Y |Z)DAG ⇐⇒ (X ⊥⊥ Y |Z)MAG.

For more details regarding the latent projection, please re-
fer to Verma and Pearl (1991); Akbari et al. (2021). Let us
denote by G the resulting MAG over V. In this paper, we
assume faithfulness, i.e.,

(X ⊥⊥ Y |Z)PV
⇐⇒ (X ⊥⊥ Y |Z)G .

The assumption of causal sufficiency refers to assuming that
U = ∅. Note that with causal sufficiency, G is a DAG.

The problem of causal discovery refers to identifying the
MEC of G using samples from the observational distribution.
We propose three methods for identifying MEC [G] using
a finite set of samples from PV. It is noteworthy that our
proposed methods do not require causal sufficiency.

Ordering-based Methods: Removable Orders
vs Causal Orders

In this section, we first define orders and c-orders. Then, we
introduce our novel order, r-order, and provide some of its
appealing properties.

X1

X2

X3 X4

(a) DAG G1,
Πc(G1) = {(X1, X2, X3, X4),

(X1, X2, X4, X3)}.

X1

X2

X3 X4

(b) DAG G2,
Πc(G2) = {(X2, X1, X3, X4),

(X2, X1, X4, X3)}.

Figure 2: Two Markov equivalent DAGs G1 and G2 that
form a MEC together and their disjoint sets of c-orders.
In this example, any order over V = {X1, X2, X3, X4}
is an r-order, i.e., Πr(G1) = Πr(G2) = Π(V). Note that
|Πr(G1)| = |Πr(G2)| = 24 > 2 = |Πc(G1)| = |Πc(G2)|.

Definition 1 (order). An n-tuple (X1, · · · , Xn) is called an
order over a set V if |V| = n and V = {X1, · · · , Xn}. We
denote by Π(V), the set of all orders over V.
Definition 2 (c-order). An order (X1,· · ·, Xn) ∈ Π(V) is
called a causal order (in short c-order1) of a DAG G =
(V,E1,∅) if i > j for each (Xi, Xj) ∈ E1. We denote
by Πc(G) the set of c-orders of G.

Consider the two DAGs G1 and G2 and their sets of c-
orders depicted in Figure 2. In this case, G1 and G2 are
Markov equivalent and together form a MEC. Furthermore,
Πc(G1) and Πc(G2) are disjoint and each contain 2 orders.

As mentioned earlier, nearly all existing ordering-based
methods assume causal sufficiency. These methods divide
the learning task into two stages. In the first stage, they
search in Π(V) (which we refer to as the search space)
to find an order in Πc(G) (which we refer to as the target
space). In the second stage, they use the discovered order to
identify MEC [G]DAG.

Next, we show that different DAGs in a MEC have a dis-
joint set of c-orders. In other words, c-orders are not invari-
ant among the DAGs in a MEC. Note that detailed proofs
appear in the appendix.
Proposition 1. Let G denotes a DAG with MEC [G]DAG =
{G1, ...,Gk}. For any two distinct DAGs Gi and Gj in [G]DAG,
we have Πc(Gi) ∩Πc(Gj) = ∅.

Removable Orders: In this section, we propose a novel
set of orders over the vertices of a MAG, called removable
order (in short r-order), and show that r-orders are advanta-
geous for structure learning. First, we review the notion of a
removable variable in a MAG, which was recently proposed
in the structure learning literature (Mokhtarian et al. 2021,
2022; Akbari et al. 2021).
Definition 3 (removable variable). Suppose G =
(V,E1,E2) is a MAG. A variable X ∈ V is called
removable in G if G and G[V′] impose the same set of
m-separation relations over V′, where V′ = V \{X}. That
is, for any variables Y,W ∈ V′ and Z ⊆ V′ \ {Y,W},

(Y ⊥⊥W |Z)G ⇐⇒ (Y ⊥⊥W |Z)G[V′].
1Note that this definition is in the opposite direction than usu-

ally c-order is defined in the literature.
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Below, we introduce the notion of r-order.
Definition 4 (r-order). An order π = (X1, · · · , Xn)
over set V is called a removable order (r-order) of a
MAG G = (V,E1,E2) if Xi is a removable variable in
G[{Xi, · · · , Xn}] for each 1 ≤ i ≤ n. We denote by Πr(G)
the set of r-orders of G.

Back to the example in Figure 2 where G1 and G2 are two
Markov equivalent DAGs. In this case, any order over the
set of vertices is an r-order for both G1 and G2. Hence, each
graph has 24 r-orders.

In general, all MAGs in a MEC have the same set of r-
orders. Furthermore, in DAGs, r-orders include all the c-
orders as subsets (See Figure 1). The following propositions
formalize these assertions.
Proposition 2. If G1 and G2 are two Markov equivalent
MAGs, then Πr(G1) = Πr(G2).
Proposition 3. For any DAG G, we have Πc(G) ⊆ Πr(G).

In light of the above propositions, we can summarize
some clear advantages of r-orders as follows:

(i) Implication of Proposition 2 is that, unlike c-ordering-
based methods, which fail to find a c-order consistent with
all the DAGs within a MEC (Proposition 1), r-ordering-
based methods can find an order which is an r-order for all
the MAGs in its corresponding MEC.

(ii) Proposition 3 implies that in DAGs, the space of
r-orders is, in general, bigger than the space of c-orders.
Hence, the target space of an r-ordering-based method is
larger than the target space of a c-ordering-based method.
For instance, in Figure 2, a c-ordering-based method must
find one of the two c-orders of either G1 or G2, while an
r-ordering-based method can find any of the 24 r-orders in
Πr(G1) = Πr(G2).

(iii) Since r-orders are defined for MAGs (instead of
DAGs), they could be used in ordering-based structure learn-
ing approaches without requiring causal sufficiency.

Learning an R-order
In this section, we describe our approach for learning an r-
order of the MAGs in [G]. Recall that all MAGs in [G] have
the same set of r-orders. We first propose an algorithm that
constructs an undirected graph Gπ corresponding to an ar-
bitrary order π ∈ Π(V). Subsequently, we assign a cost to
an order π based on the constructed graph Gπ , which is sim-
ply the number of edges in Gπ , and show that finding an
r-order for [G] can be cast as an optimization problem with
the aforementioned cost. Then, we propose three algorithms
to solve the optimization problem.

Learning an Undirected Graph From an Order
Algorithm 1 iteratively constructs an undirected graph Gπ =
(V,Eπ) from a given order π ∈ Π(V). The inputs of Al-
gorithm 1 are an order π over V and observational data
Data(V) sampled from a joint distribution PV. The algo-
rithm initializes V1 with V and Eπ with the empty set in
lines 2 and 3, respectively. Then in lines 4-8, it iteratively
selects a variable Xt according to the given order π (line
5) and calls function FindNeighbors in line 6 to learn a set

Algorithm 1: Learning Gπ .
1: Function LearnGPi (π, Data(V))
2: V1 ← V, Eπ ← ∅
3: for t = 1 to |V| − 1 do
4: Xt ← π(t)
5: NXt

← FindNeighbors(Xt, Data(Vt))
6: Add undirected edges between Xt and the variables

in NXt to Eπ .
7: Vt+1 ← Vt \ {X}
8: Return Gπ = (V,Eπ)

NXt ⊆ Vt \ {Xt}. Then, the algorithm adds undirected
edges to Gπ to connect Xt and its discovered neighbors NXt

(line 7). Finally, it updates Vt+1 by removing Xt from Vt

(line 8) and repeats the process.
The output of function FindNeighbors, i.e., NXt

, is the
set of variables in Vt that are not m-separable from Xt us-
ing the variables in Vt. Hence, if MAG G[Vt] is faithful to
PVt

, then NXt
would be the set of neighbors of Xt among

the variables in Vt.2 However, since π is arbitrary, G[Vt] is
not necessarily faithful to PVt

and therefore, NXt
can in-

clude some vertices that are not neighbors of Xt. There ex-
ist several constraint-based algorithms in the literature that
are designed to verify whether two given variables are m-
separable (Spirtes et al. 2000; Pellet and Elisseeff 2008a;
Colombo et al. 2012; Akbari et al. 2021). Accordingly, Find-
Neighbors can use any of such algorithms. Please note that
unlike the methods in (Mokhtarian et al. 2022; Akbari et al.
2021) where removable variables are discovered in each it-
eration, Algorithm 1 selects variables according to the given
order π (line 4).

Cost of an Order
Suppose G is faithful to PV. It is shown in (Akbari et al.
2021) that omitting a removable variable does not violate
faithfulness in the remaining graph. Hence, due to the def-
inition of r-order, if π ∈ Πr(G), then after each iteration t,
MAG G[Vt] remains faithful to PVt

. The next result shows
that Algorithm 1 constructs the skeleton of G correctly if and
only if π is an r-order of G.
Theorem 1. Suppose G = (V,E1,E2) is a MAG and is
faithful to PV, and let Data(V) be a collection of i.i.d. sam-
ples from PV with a sufficient number of samples to recover
the CI relations in PV. Then, we have the following.
• The output of Algorithm 1 (i.e., Gπ) equals the skeleton

of G if and only if π ∈ Πr(G).
• For an arbitrary order π over set V, Gπ is a supergraph

of the skeleton of G.
Theorem 1 implies that if π ∈ Πr(G), then Gπ is the

skeleton of G, and if π /∈ Πr(G), then Gπ is a supergraph
of the skeleton of G that contains at least one extra edge.
Therefore, by defining the cost of an order in Π(V) equal to
the number of edges in Gπ , r-orders will be the minimizers,
which implies the following.

2Note that non-neighbor variables in any MAG are m-separable.

12263



Algorithm 2: Hill-climbing approach (ROLHC)
1: Input: Data(V), maxSwap, maxIter
2: Initialize π ∈ Π(V) as discussed in Appendix A.1
3: Cπ ← ComputeCost(π,Data(V))
4: for 1 to maxIter do
5: Denote π by (X1, · · · , Xn)
6: Πnew← {(X1, · · ·Xa−1, Xb, Xa+1, · · · ,

Xb−1, Xa, Xb+1, · · · , Xn)|1 ≤ b− a ≤ maxSwap}
7: for πnew ∈ Πnew do
8: Cπnew ← ComputeCost(πnew,Data(V))
9: if Cπnew < Cπ then

10: π ← πnew, Cπ ← Cπnew

11: Break go to line 5
12: Return π

1: Function ComputeCost (π, Data(V))
2: Gπ = (V,Eπ)← LearnGPi(π, Data(V))
3: Return |Eπ|

Theorem 2 (Consistency of the score function). Any solu-
tion of the optimization problem

argmin
π∈Π(V)

|Eπ|, (1)

is an r-order, i.e., a member of Πr(G). Conversely, every
member of Πr(G) is also a solution of (1).

Next, we propose both exact and heuristic algorithms for
solving the above optimization problem.

Algorithmic Approaches to Finding an R-order
In this section, we propose three algorithms for solving the
optimization problem in (1).

Hill-climbing Approach (ROLHC) In Algorithm 2, we
propose a hill-climbing approach, called ROLHC

3 for find-
ing an r-order. In general, the output of Algorithm 2 is a
suboptimal solution to (1) as it takes an initial order π and
gradually modifies it to another order with less cost, but it
is not guaranteed to find a minimizer of (1) by taking such
greedy approach. Nevertheless, this algorithm is suitable for
practice as it is scalable to large graphs and also achieves
superior accuracy compared to the state-of-the-art methods
(please refer to the experiment section).

Inputs to Algorithm 2 are the observational data Data(V)
and two parameters maxIter and maxSwap. maxIter denotes
the maximum number of iterations before the algorithm ter-
minates, and maxSwap is an upper bound on the index dif-
ference of two variables that can get swapped in an iteration
(line 6). Initial order π in line 2 can be any arbitrary order,
but selecting it cleverly will improve the performance of the
algorithm. In Appendix A.1, we describe several ideas for
selecting the initial order, such as initialization using the out-
put of other approaches. The algorithm computes the cost of
π (denoted by Cπ) in line 3 by calling subroutine Compute-
Cost which itself calls subroutine LearnGPi (See Algorithm

3ROL stands for R-Order Learning.

1). The remainder of the algorithm (lines 4-12) updates π
iteratively, maxIter number of times. It updates the current
order π=(X1,· · ·, Xn) as follows: first, it constructs a set of
orders Πnew ⊆ Π(V) from π by swapping any two variables
Xa and Xb in π as long as 1 ≤ b − a ≤ maxSwap. Next,
for each πnew ∈ Πnew, it computes the cost of πnew and if it
has a lower cost compared to the current order, the algorithm
replaces π by that order and repeats the process.

In Appendix A.2, we present a slightly modified version
of Algorithm 2, called Algorithm 4, which does not compute
the cost of an order as in line 8 of Algorithm 2 but rather
uses the information of Cπ for computing the cost of the
new permutation Cπnew (using Algorithm 3 also presented in
the Appendix A.2). By doing so, Algorithm 4 significantly
reduces the computational complexity.

Exact Reinforcement Learning Approach (ROLVI) In
this section, we show that the optimization problem in (1)
can be cast as a reinforcement learning (RL) problem.

Recall the process of recovering Gπ from a given order π
in Algorithm 1. This process can be interpreted as a Markov
decision process (MDP) in which the iteration index t de-
notes time, the set of variables V represents the action space,
and the state space is the set of all subsets of V. More pre-
cisely, let st and at denote the state and the action of the
MDP at time/iteration t, respectively. In our setting, st is the
remaining variables at time t, i.e., st = Vt, and action at
is the variable that is getting removed from Vt in that iter-
ation, i.e., at = Xt. Accordingly, the state transition due to
action at is st+1 = Vt \ {at}. The immediate reward of
selecting action at at state st will be the negative of the in-
stant cost that is the number of discovered neighbors for at
by FindNeighbors in line 6 of Algorithm 1, i.e.,

r(st, at) = |FindNeighbors(at, Data(st))| = −|Nat
|.

Since the form of the function r(st, at) is not known, this is
an RL as opposed to a classic MDP setting. We denote by
πθ, a deterministic policy parameterized by θ. That is, for
any state st, at = πθ(st) is an action in st. Accordingly, we
modify Algorithm 1 as follows: it gets a policy πθ instead of
a permutation π as input. Furthermore, it selects Xt in line
5 as Xt = πθ(Vt). Given a policy πθ and the initial state
s1 = V, a trajectory τ = (s1, a1, s2, a2, · · · , sn−1, an−1)
denotes the sequence of states and actions selected by πθ.
The cumulative reward of this trajectory, denoted by R(τθ),
is the sum of the immediate rewards.

R(τθ) =
n−1∑
t=1

r(st, at) = −
n−1∑
t=1

|Nat
|.

Hence, if we denote the output of this modified algorithm by
Gθ = (V,Eθ), then R(τθ) = −|Eθ|. In this case, any algo-
rithm that finds the optimal policy for RL, such as Value it-
eration (Sutton and Barto 2018) or Q-learning (Watkins and
Dayan 1992) can be used to find a minimum-cost policy πθ.

Remark 1. According to the introduced RL setting, value-
iteration can be used to find the optimal policy with the time
complexity of O(n2n), which is much less than O(n!) for
naively iterating over all orders.
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Approximate Reinforcement Learning Approach
(ROLPG) Although any algorithm suited for RL is
capable of finding an optimal deterministic policy for
us, the complexity does not scale well as the graph size.
Therefore, we advocate searching for a stochastic policy
that increases the exploration during the training of an RL
algorithm. As discussed earlier, we could exploit stochastic
policies parameterized by neural networks to further im-
prove scalability. However, this could come at the price of
approximating the optimal solution instead of finding the
exact one. In the stochastic setting, an action at is selected
according to a distribution over the remaining variables,
i.e., at ∼ Pθ(·|st = Vt), where θ denotes the parameters
of the policy (e.g., the weights used in training of a neural
network). In this case, the objective of the algorithm is to
minimize the expected total number of edges learned by
policy Pθ(·|st = Vt), i.e.,

argmax
θ

Eτθ∼Pθ

[
− |Eθ|

]
, (2)

where the expectation is taken w.r.t. randomness of the
stochastic policy. Many algorithms have been developed
in the literature for finding stochastic policies and solving
(2). Some examples include Vanilla Policy Gradient (VPG)
(Williams 1992), REINFORCE (Sutton et al. 1999),and
Deep Q-Networks (DQN) (Mnih et al. 2013).

Second Stage: Identifying the MEC
In the previous section, we proposed three algorithms for
finding an r-order π∗ ∈ Πr(V). Recall that our goal in this
paper is to identify the MEC [G] using the available data
from PV. To this end, we can recover the skeleton of the
MAGs in [G] by calling Algorithm 1 with input π∗. More-
over, since FindNeighbors finds a separating set for non-
neighbor variables of Xt in G[Vt], we can modify Algorithm
1 to further return a set of separating sets for all the non-
neighbor variables in MAG G. This information suffices to
identify [G] by maximally orienting the edges using the com-
plete set of orientation rules introduced in Zhang (2008).

Experiments
In this section, we evaluate and compare our algorithms4

against two types of methods: (i) those assuming causal
sufficiency (DAG learning): PC (Spirtes et al. 2000),
NOTREARS (Zheng et al. 2018), CORL (Wang et al. 2021),
and ARGES (Nandy, Hauser, and Maathuis 2018); (ii) those
that do not require causal sufficiency (MAG learning): RFCI
(Colombo et al. 2012), FCI+ (Claassen, Mooij, and Heskes
2013), L-MARVEL (Akbari et al. 2021), MBCS* (Pellet and
Elisseeff 2008a), and GSPo (Bernstein et al. 2020).

We evaluated the aforementioned algorithms5 on finite
sets of samples, where they were generated using a linear
SEM. The coefficients were chosen uniformly at random
from [−1.5,−1] ∪ [1, 1.5]; the exogenous noises were gen-
erated from normal distribution N (0, σ2), where σ was se-
lected uniformly at random from [0.7, 1.2]. We measured the

4github.com/ban-epfl/ROL
5Details pertaining to the reproducibility, hyperparameters, and

additional experiments are provided in Appendix C.

Structure Earthquake Survey Asia Sachs
(#nodes,#edges) (5, 4) (6, 6) (8, 8) (11, 17)

ROLVI
F1 0.96 1 0.97 0.97

SHD 0.4 0 0.4 1

ROLHC
F1 0.96 0.98 0.97 0.95

SHD 0.4 0.2 0.4 1.6

Table 1: Comparing ROLHC and ROLVI on small graphs.

performance of the algorithms by two commonly used met-
rics in the literature: F1-score and Structural Hamming Dis-
tance (SHD) (the discrepancy between the number of extra
and missing edges in the learned vs the ground truth graph).

Each point on the plots is reported as the average of 10
runs with 80% confidence interval. Also, each entry in the
tables is reported as an average of 10 runs.

DAG Learning
We consider two types of graphs: random graphs gener-
ated from Erdös-Rènyi model Er(n, p) and real-world net-
works6. To generate a DAG from Er(n, p), the skeleton is
first sampled using the Erdös-Rènyi model (Erdős and Rényi
1960) in which undirected edges are sampled independently
with probability p. Then, the edges are oriented according to
a randomly selected c-order.

Figure 3 shows the results for learning DAGs. In Figure
3a, DAGs are generated from Er(n, p = n−0.7) and n varies
from 10 to 100. The size of the datasets generated for this
part is 50n. Figures 3b, 3c, and 3d depict the performance of
the algorithms on three real-world structures, called Alarm,
Barley, and Hepar2, for a various number of samples. As
shown in these figures, ROLPG and ROLHC outperform the
state of the art in both SHD and F1-score metrics.

Table 1 illustrates the performance of ROLVI in compari-
son to ROLHC on four small real-world structures. This table
shows that ROLVI achieves better accuracy on small graphs.
Note that ROLVI unlike ROLHC has theoretical guarantees,
but is not scalable to large graphs. However, ROLVI’s perfor-
mance is limited to the accuracy of CI tests, and by increas-
ing the dataset sizes, ROLVI performs without any errors.

MAG Learning
We selected seven real-world DAGs for this part. For each
structure, we randomly removed 5% to 10% of the variables
and constructed a MAG over the set of observed variables
(those not eliminated) using the latent projection approach
of Verma and Pearl (1991). Finally, we generated a finite set
of samples over all the variables and fed the data pertaining
to the observed variables as the input to all the algorithms.
The goal of all algorithms is to learn the MEC of the corre-
sponding MAG from the samples they have.

Table 2 presents the results. As demonstrated by the bold
entries in the table, ROLHC achieves the best F1-score and
SHD in almost all the cases.

Remark 2. Recall that prior to this work, GSPo was the
only ordering-based method in the literature that does not

6bnlearn.com/bnrepository
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(a) Erdös-Rènyi Er(n, p = n−0.7), sample size = 50n.

(b) Alarm (n = 37, e = 46). (c) Barley (n = 48, e = 84). (d) Hepar2 (n = 70, e = 123).

Figure 3: DAG learning; n and e denote the number of variables and the number of edges, respectively.

Structure Insurance Water Ecoli70 Hailfinder Carpo Hepar2 Arth150
(#Observed, #Unobserved) (24, 3) (29, 3) (43, 3) (53, 3) (57, 4) (65, 5) (100, 7)

ROLHC
F1-score 0.89 0.86 0.93 0.90 1.00 0.97 0.93

SHD 10.1 18.3 8.1 13.9 0.2 7.6 19.3

ROLPG
F1-score 0.86 0.76 0.90 0.87 0.97 0.84 0.93

SHD 12.9 35.3 12.7 18.4 4.1 36.5 21.5

RFCI F1-score 0.74 0.68 0.84 0.84 0.86 0.70 0.86
SHD 20.5 34.0 17.7 19.7 16.8 52.6 36.3

FCI+ F1-score 0.60 0.55 0.78 0.77 0.80 0.57 0.78
SHD 31.2 50.0 23.5 27.2 24.4 81.4 56.7

L-MARVEL F1-score 0.87 0.78 0.93 0.90 0.99 0.94 0.92
SHD 11.5 26.2 8.5 12.8 0.8 12.3 21.2

MBCS* F1-score 0.77 0.62 0.90 0.83 0.99 0.92 0.87
SHD 17.8 38.7 12.0 20.1 1.1 17.0 34.2

GSPo F1-score 0.75 0.60 0.66 0.58 0.84 0.58 0.45
SHD 32.3 89.1 67.6 101.4 31.2 170.6 358.5

Table 2: MAG learning; performance of various algorithms on seven real-world structures, when sample size is 50n.

require causal sufficiency. However, the table shows that it
has the worst performance among the algorithms and is not
scalable to large graphs. For instance, it has a poor perfor-
mance on Arth150, which is a graph with 100 variables.

Conclusion
We advocated for a novel type of order, called an r-order, and
argued that r-orders are advantageous over the previously
used orders in the literature. Accordingly, we proposed three
algorithms for causal structure learning in the presence of
unobserved variables: ROLHC, a Hill-climbing-based heuris-
tic algorithm that is scalable to large graphs; ROLVI, an ex-

act RL-based algorithm that has theoretical guarantees but
is not scalable to large graphs; ROLPG, an approximate RL-
based algorithm that exploits stochastic policy gradient. We
showed in our experiments that ROLVI on small graphs and
ROLHC on larger graphs outperform the state-of-the-art al-
gorithms. Although ROLPG is scalable to large graphs and
outperforms the existing methods, ROLHC performs slightly
better, mainly due to better initialization. The weights of
the neural networks in ROLPG are selected randomly, while
we proposed clever methods for the initialization step in
ROLHC. Nevertheless, an important future work is to im-
prove the policy gradient approaches.
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Erdős, P.; and Rényi, A. 1960. On the evolution of random
graphs. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences, 5: 17–61.
Friedman, N.; and Koller, D. 2003. Being Bayesian about
network structure. A Bayesian approach to structure discov-
ery in Bayesian networks. Machine learning, 50(1): 95–125.
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