
Computing Divergences between Discrete Decomposable Models

Loong Kuan Lee1, Nico Piatkowski2, François Petitjean1, and Geoffrey I. Webb1

1 Department of Data Science and AI, Monash University, Melbourne, Australia
2Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany

mail@lklee.dev

Abstract

There are many applications that benefit from computing the
exact divergence between 2 discrete probability measures, in-
cluding machine learning. Unfortunately, in the absence of
any assumptions on the structure or independencies within
these distributions, computing the divergence between them
is an intractable problem in high dimensions. We show that
we are able to compute a wide family of functionals and di-
vergences, such as the alpha-beta divergence, between two
decomposable models, i.e. chordal Markov networks, in time
exponential to the treewidth of these models. The alpha-
beta divergence is a family of divergences that include popu-
lar divergences such as the Kullback-Leibler divergence, the
Hellinger distance, and the chi-squared divergence. Thus, we
can accurately compute the exact values of any of this broad
class of divergences to the extent to which we can accurately
model the two distributions using decomposable models.

Introduction
Computing the divergence, i.e. the degree of “difference”,
between two joint probability distributions is a problem that
has many applications in the field of Machine Learning. For
instance, it can be used to estimate the divergence between
the underlying distributions of two data samples. This par-
ticular application is useful in the study of changing distribu-
tions, i.e. concept drift (Schlimmer and Granger 1986; Webb
et al. 2018), in the detection of anomalous regions in spatio-
temporal data (Barz et al. 2019; Piatkowski, Lee, and Morik
2013), and in tasks related to the retrieval, classification, and
visualisation of time series data (Chen, Ye, and Li 2020).

Although there has been much work in estimating the di-
vergence between 2 general high-dimensional discrete dis-
tributions (Bhattacharya, Kar, and Pal 2009; Abdullah et al.
2016), they do not compute the exact divergence between
these distributions as it is intractable to do so without any
knowledge or assumptions made regarding the structure
within these distributions. Instead, approaches that do take
advantage of some structural properties within the distri-
butions for an efficient computation of divergences have
appeared in the literature before, e.g., for computing the
Kullback-Leibler (KL) divergence between Bayesian net-
works (BNs) (Moral, Cano, and Gómez-Olmedo 2021). It

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is also possible to tractably compute the KL divergence be-
tween a general Markov network (MN) and a MN where
inference tasks are tractable (Koller and Friedman 2009).

However, there are situations where one might want
to compute divergences other than the KL divergence
(Nowozin, Cseke, and Tomioka 2016), in particular in the
variational inference community where they have been em-
ployed to derive alternative evidence lower bounds (Chen
et al. 2018; Li and Turner 2016; Dieng et al. 2017) or in the
context of generative models (Genevay, Peyre, and Cuturi
2018). Furthermore, in natural language processing, using
the KL divergence is problematic in the presence of uneven
word frequencies (Labeau and Cohen 2019). Even for fun-
damental problems like model selection, we show that con-
sidering different types of divergences can be beneficial.

Motivated by these considerations, in this paper we show
how to compute a wide family of divergences, the αβ-
divergences, between two decomposable models (DMs). In
the process of showing how the αβ-divergence can be com-
puted between any two DMs, we will reach a more general
result. That is, we will show how one can compute, between
two DMs, the functional F defined in Definition 1:
Definition 1. (Functional F)
F(P,Q; g, h, g∗, h∗)

=
∑
x∈X

[
g
[
P
]
(x)

] [
h
[
Q
]
(x)

]
L
(
[g∗[P](x)] [h∗[Q](x)]

)
where, for any distribution P of a DM with graph structure
G, L is any function with the property L (

∏
r r) =

∑
r L(r),

and f ∈ {g, h, g∗, h∗} are functionals with the property:

f

 ∏
C∈C(G)

PC

 (xC) =
∏

C∈C(G)

f
[
PC

]
(xC) (1)

An example of such a functional is the power functional:
[
∏

C∈C(G) PC(xC)]
2 =

∏
C∈C(G) PC(xC)

2.
This result implies the possibility for the computation of

divergences and functionals other than the αβ-divergence
between two DMs. In fact, we show that F can be computed
by running the junction tree algorithm (JTA) over a specifi-
cally constructed chordal graph and set of initial factors.

Proofs for our contributed theoretical results are deferred
to the technical appendix of the extended version of this pa-
per at: https://arxiv.org/abs/2112.04583

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12243

Background and Notation
Let us summarize the notation and background necessary for
the subsequent development.

Markov Networks (MNs)
An undirected graph G = (V,E) consists of n = |V |
vertices, connected via edges (v, w) ∈ E. For two graphs
G1,G2, we write V (G1) and V (G2) to denote the vertices of
G1 and G2, respectively and similar E(G1) and E(G2) for
the edges. A clique C is a fully-connected subset of vertices,
i.e., ∀v, w ∈ C : (v, w) ∈ E. The set of all cliques of G is
denoted by C(G). Here, any undirected graph represents the
conditional independence structure of an undirected graphi-
cal model or MN (Wainwright and Jordan 2008).

To this end, we identify each vertex v ∈ V with a ran-
dom variable Xv taking values in the state space Xv =
Dom(Xv). The random vector X = (Xv : v ∈ V), with
probability mass function (pmf) P, represents the random
joint state of all vertices in some arbitrary but fixed or-
der, taking values x in the Cartesian product space X =
Dom(X) =

⊗
v∈V Xv . If not stated otherwise, X is a dis-

crete set. Moreover, we allow to access these quantities for
any proper subset of variables S ⊂ V , i.e., XS = (Xv : v ∈
S), xS , and XS =

⊗
v∈S Xv , respectively. We write ω(G) to

indicate the treewidth of G, i.e. ω(G) = maxC∈C(G) |C| − 1.
According to the Hammersley-Clifford theorem (Ham-

mersley and Clifford 1971), the probability mass of X fac-
torizes over positive functions ψC : X → R+, one for each
maximal clique of the underlying graph,

P(X = x) =
1

Z

∏
C∈C

ψC(xC) , (2)

normalized via Z =
∑

x∈X
∏

C∈C ψC(xC). Due to positiv-
ity of ψC , it can be written as an exponential, i.e., ψC(xC) =
exp(⟨θC , ϕC(xC)⟩) with sufficient statistic ϕC : XC →
R|XC|. The overcomplete sufficient statistic of discrete data
is a “one-hot” vector that selects a specific weight value,
e.g., ψC(xC) = exp(θC=xC). The full joint can be writ-
ten in the famous exponential family form P(X = x) =
exp(⟨θ, ϕ(x)⟩ − logZ) with θ = (θC : C ∈ C) and
ϕ(x) = (ϕC(xC) : C ∈ C).

The parameters of exponential family members are es-
timated by minimizing the negative average log-likelihood
ℓ(θ;D) = −(1/|D|)

∑
x∈D logPθ(x) for some data set D

via first-order numeric optimization methods. D contains
samples from X , and it can be shown that the estimated
probability mass converges to the data generating distribu-
tion as the size of D increases. However, computing Z and
hence performing probabilistic inference is #P-hard (Valiant
1979; Bulatov and Grohe 2004). There are approximation
techniques for inference with quality guarantees (Piatkowski
and Morik 2018), but for exact inference, the junction tree
algorithm is needed. The junction tree representation of an
undirected model is a tree, in which each vertex represents
a maximal clique of a triangulation1 of G (Wainwright and

1A triangulation of a graph G = (V,E) is another graph G′ =
(V,E′) with E ⊆ E′, such that G′ is a chordal graph.

Ca

Cb Cc

Cd

Ce

ψa

ψb ψc

ψd

ψe

Initial State

Ca

Cb

ψb

Cc

ψc

Cd

Ce

ψe

∏
i ψi

ψd · ψe
βa

After Junction Tree Algorithm

βa = ψa

∑
x

ψb(x)ψc(x)ψd(x)ψe(x)
∏
i

ψi(x)

Figure 1: Illustration of the Junction Tree Algorithm.

Jordan 2008, Sec. 2.5.2). The cutset of each pair of adjacent
clique-vertices is called a separator.

Nevertheless, junction trees require the underlying graph-
ical structure of the graphical model to be decomposable.

Decomposable Models (DMs)
A DM, PG , is a MN where the underlying conditional inde-
pendence structure, G, is a chordal graph 2.

DMs can be translated directly into an equivalent junc-
tion tree representation by finding the maximum spanning
tree of its clique graph . Each vertex of the clique graph is
a maximal clique in the DM and each edge is the separa-
tor between the vertex. The weight of each edge is then the
number of variables in the corresponding separator. The re-
sulting junction tree, T = (C,S), will have vertices that
are the maximal cliques, C, and edges that are the minimal
separators, S, of the DM.

Beside allowing for fast inference, another benefit of a
DM is that there is a closed form solution to the maximum
likelihood parmeter estimation problem for the joint distri-
bution over all the variables in the model (Haberman 1977).
Therefore, the joint distribution for the DM PG is:

PG(x) =

∏
C∈C PC(x)∏
S∈S PS(x)

where Pd(·) represents the marginal probability over Xd.
Alternatively, we can also represent the joint distribution

of PG as a product of conditional probability tables (CPTs)
if we choose a maximal clique in C to be the root node of
PG’s junction tree T .

PG(x) =
∏
C∈C

PC−pa(C)|pa(C)(xC−pa(C)|xpa(C)) =
∏
C∈C

PT
C (x)

where PT
C (x) = PC−pa(C)|pa(C)(xC−pa(C)|xpa(C)) and pa(C)

is the parent clique of C in the junction tree T . pa(C) = ∅
when C is the assigned root node of T .

Junction Tree Algorithms (JTAs)
Recall the partition function of a general MN Z: Z =∑

x∈X
∏

C∈C ψC(xC). Evaluating the partition function of
loopy models exactly does not necessarily require a naive

2A graph is cordial if every induced cycle has exactly 3 vertices.

12244

(a) (b) (c)

Figure 2: (a) a non-chordal MN, (b) a possible triangulation
of this MN, (c) a minimal triangulation of this MN

summation over the state space X ; there is another, more
efficient, technique. Any loopy graph can be triangulated
and converted into a chordal graph with a junction tree rep-
resentation. (Lauritzen and Spiegelhalter 1988; Wainwright
and Jordan 2008). Then, as illustrated in Figure 1, the junc-
tion tree algorithm goes a step further and computes the
un-normalized marginal “probability”, β, for each maximal
clique in the JT (Koller and Friedman 2009, Corollary 10.2):

∀C ∈ C : βC(xC) =
∑

x∈XX−C

∏
C∈C

ψC(x,xC)

As with belief propagation in ordinary trees, inference on
the junction tree has a time complexity that is polynomial
in the maximal state space size of its vertices. The maxi-
mal vertex state space size of a junction tree is, however,
exponential in the treewidth of the triangulation of G used.
Hence, if the treewidth of the triangulation of a loopy model
is small, exact inference via the junction tree algorithm is
rather efficient. Choosing a triangulation that results in a
minimal treewidth is an NP-hard problem, but a valid tri-
angulation can be found with time and memory complexity
linear in the number of vertices (Dechter 2003; Berry et al.
2004; Heggernes 2006). See Figure 2 for an example of a
non-minimal and minimal triangulation of a graph.

αβ-Divergence between DMs
A divergence is a measure of the “difference” between 2
probability distributions. More formally, a divergence is a
function between 2 distributions as defined in Definition 2.

Definition 2. (Divergence) Suppose S is the set of probabil-
ity distributions with the same support. A divergence, D, is
the function D(· || ·) : S × S → R such that ∀P,Q ∈ S :
D(P || Q) ≥ 0 and P = Q ⇔ D(P || Q) = 0 3.

Furthermore, there are also generalized divergences
where common divergences, such as the KL divergence,
are special cases of the generalized divergence. Specifically,
we will use the generalized divergence known as the αβ-
divergence (Cichocki, Cruces, and Amari 2011).

Definition 3 (αβ-divergence). The αβ-divergence,DAB, be-
tween 2 positive measures P and Q is defined by the follow-

3Some authors also require that the quadratic part of the Taylor
expansion of D(p, p+dp) define a Riemannian metric on S (Amari
2016). However, this requirement is not needed by the methods
described in this paper and is therefore left out.

ing, where α and β are parameters:

Dα,β
AB (P,Q) =

∑
x∈X

dα,βAB

(
P(x),Q(x)

)
(3)

where (Cichocki, Cruces, and Amari 2011):

d
(α,β)
AB (P(x),Q(x)) (4)

=



− 1
αβ

(
P(x)αQ(x)β − αP(x)α+β

α+β − βQ(x)α+β

α+β

)
for α, β, α+ β ̸= 0

1
α2

(
P(x)α log P(x)α

Q(x)α − P(x)α +Q(x)α
)

for α ̸= 0, β = 0

1
α2

(
log Q(x)α

P(x)α +
(

Q(x)α

P(x)α

)−1

− 1

)
for α = −β ̸= 0

1
β2

(
Q(x)β log Q(x)β

P(x)β −Q(x)β + P(x)β
)

for α = 0, β ̸= 0
1
2 (logP(x)− logQ(x))2 for α, β = 0.

The parameters α and β in the αβ-divergence is used
to express other commonly used divergences. Specifically,
the α = 1, β = 0 gives the KL divergence, while the
α = 0.5, β = 0.5 gives the Bhattacharyya coefficient which
immediately gives the Hellinger distance.

The expression of the αβ-divergence in Equation 4 can be
expressed as a linear combination of 3 smaller functionals.
Theorem 1. The 5 cases of the αβ-divergence in Equation 4
are linear combinations of the following 3 functionals:

f1(P,Q) =
∑
x∈X

1

2
(logP(x)− logQ(x))

2

f2(P,Q; a, b) =
∑
x∈X

P(x)aQ(x)b

f3(P,Q; a, b, c, d) =
∑
x∈X

P(x)aQ(x)b log(P(x)cQ(x)d)

Therefore, the ability to tractably compute these function-
als between 2 DMs will imply the ability to tractably com-
pute the αβ-divergence between 2 DMs. Here we assume
a complexity exponential to the treewidth of our DMs is
tractable.
Theorem 2. The time complexity for computing the
functional f1 directly between 2 DMs is O(n2ω2ω+1)
where ω(G) is the treewidth of chordal graph G, ω =
max(ω(GP), ω(GQ)), and n is the number of variables.

Since computing f1 directly is tractable, the focus of the
rest of this paper will be to show how to compute function-
als f2 and f3 between 2 DMs. In order to simplify further
exposition, it will be ideal if functionals f2 and f3 can be
expressed by a single, more general, functional.
Theorem 3. f2 can be expressed by functional F .
Theorem 4. f3 can be expressed by functional F .

Therefore, any method that can tractably compute F , as
defined in Definition 1, between 2 DMs can also tractably
compute the αβ-divergence between these models.

12245

With reasoning for the definition of F established, we can
now substitute the maximum likelihood estimator of DMs
PGP and QGQ into functional F . But before we start, first
recall the notation established in Section :

P(x) =
∏
C∈C

P
(
xC−pa(C) | xpa(C)

)
=

∏
C∈C

PT
C (xC)

where, for C ⊂ X : PT
C (xX) = PT

C (xC)

and pa(C) is the parent of the maximal clique C in the junc-
tion tree of P’s and Q’s respective chordal graph. Then con-
tinuing with the substitution we get:

F(P,Q; g, h, g∗, h∗) (5)

=
∑
x∈X

(
g [P] (x)

)(
h [Q] (x)

)
L
((
g∗ [P] (x)

)(
h∗ [Q] (x)

))
=

[∑
C∈CP

∑
x∈X

L
(
g∗

[
PT
C
]
(x)

) (
g [P] (x)

)(
h [Q] (x)

)]
+ ∑

C∈CQ

∑
x∈X

L
(
h∗

[
QT

C
]
(x)

) (
g [P] (x)

)(
h [Q] (x)

)
=

∑
C∈C(GP)

∑
xC∈XC

L
(
g∗

[
PT
C
]
(xC)

)
SPC(xC)+

∑
C∈C(GQ)

∑
xC∈XC

L
(
h∗

[
QT

C
]
(xC)

)
SPC(xC)

where, for ease of notation:

SPC(xC)

=
∑

x∈XX−C

(
g [P] (xC ,x)

)(
h [Q] (xC ,x)

)

=
∑

x∈XX−C

[∏
C∈CP

g
[
PT
C
]
(x)

] ∏
C∈CQ

h
[
QT

C
]
(x)


(6)

which represents the marginalisation of all the variables that
are not in the clique C over the all the non-log factors pro-
duced by F . The equality in Equation 5 holds mainly due to
the associativity of summations.
Remark 1. The lower bound complexity of directly comput-
ing Equation 5 is Ω(2n) where n is the number of variables.
Therefore directly computing the functional F between 2
DMs is intractable.

Consequently, in order to compute F(P,Q), and therefore
DAB(P,Q), while avoiding complexity exponential to n, we
require a more sophisticated method for its computation.

Computing Functional F between DMs
In order to tractably compute F between DMs PGP and QGQ ,
and therefore the αβ-divergence, we first require knowledge
of a computation graph between DMs PGP and QGQ .
Definition 4 (strictly larger, clique mapping α). A chordal
graph H is strictly larger than chordal graphs GP and GQ
if all the maximal cliques in both chordal graphs is either a
subset or equal to a maximal clique in H. In other words, H

Ca

Cb Cc

Cd

Ce

ψa

ψb ψc

ψd

ψe

Initial State

Ca

Cb

ψb

Cc

ψc

Cd

Ce

ψe

∏
i ψi

ψd · ψe
βa

After Junction Tree Algorithm

ψi =
∏

CP∈Ai(C(GP))

g
(
PT
CP

) ∏
CQ∈Ai(C(GQ))

h
(
QT

CQ

)
where : Ai(C) = {C : C ∈ C ∧ α(C) == Ci}

βa = ψa

∑
x∈X

ψb(x)ψc(x)ψd(x)ψe(x)
∏
i

ψi(x)

Figure 3: Junction Tree Algorithm to compute the functional
F between 2 DMs PGP and QGQ using computation graph H,
assuming H is a connected graph.

is strictly larger than GP and GQ if and only if there exists a
mapping α such that:

α : C(GP,GQ) → C(H)

s.t. ∀C ∈ C(GP,GQ) : C ⊆ α(C)
where C(GP,GQ) = C(GP) ∪ C(GQ) is the set of maximal
cliques in chordal graphs GP and GQ.
Definition 5 (computation graph). If a chordal graph, H, is
strictly larger than chordal graphs GP and GQ, then H is a
computation graph of DMs PGP and QGQ .

We can obtain the computation graph H by first taking the
graph union of GP and GQ, and then triangulating GP ∪ GQ.

For the rest of this section, we will provide details on how
our method, Junction Forest Computation (JFComp), uses
the junction tree algorithm to compute the functional F be-
tween 2 DMs. We will first describe how JFComp works on
a connected computation graph H before generalising this
to cases when H is a disconnected graph.

Junction Tree Computation (JTComp)
Recall we want to compute F(P,Q) as expressed in Equa-
tion 5. Observe that the 2 nested sums in F(P,Q) has inner-
most sums over XC with similar forms but over different sets
of maximal cliques, C(GP) and C(GQ) respectively. There-
fore, we want to re-express F(P,Q) such that the two sums
over XC are over the same set of maximal cliques, C(H).
Theorem 5. Assume we have 2 DMs PGP and QGQ and a
computation graph H for both models. By Definition 4, we
also have a mappingα from maximal cliques in PGP and QGQ
to maximal cliques in H. Then the following equivalences
holds for D ∈ {P,Q}:∑

C∈C(GD)

∑
xC∈XC

L
(
g∗

[
DT

C
]
(xC)

)
SPC(xC) (7)

=
∑

C∈C(GD)

∑
xα(C)∈
Xα(C)

L
(
g∗

[
DT

C
]
(xα(C))

)
SPα(C)(xα(C))

12246

Ca

Cb

ψb

Cc

ψc

Cd

Ce

ψe

∏
i ψi

ψd · ψe
βa

SPa = βa

Junction Tree Computation

Ca

Cb

ψb

Cc

ψc

Cc

Ce

ψe

∏
i ψi

βa βc

Junction Forest Computation

SPa = βa
∑

x∈X βc(x)

Figure 4: Differences in getting the clique beliefs over each
maximal clique in the computation graph H between a con-
nected and a disconnected computation graph

With that, we will now show how the computation of
SPα(C), ∀C ∈ C(H) is equivalent to the running the junc-
tion tree algorithm over the junction tree of H with a set of
specific initial factors. Figure 3 shows an illustration of this
procedure that we will now describe.
Theorem 6. Given 2 DMs, PGP and QGQ , and a computation
graph of both models, H. Let Ψ be a set of factors defined
as follows:

Ψ :=
{
g ◦ PT

CP
: CP ∈ C(GP

)
}
⋃{

h ◦QT
CQ

: CQ ∈ C(GQ)
}

After running the junction tree algorithm over the junction
tree of H with factors Ψ, we will get the following beliefs
over each maximal clique in H:

∀C ∈ C(H) : βC(xC) = SPC(xC)

Therefore, using the junction tree algorithm, we obtain
beliefs over each maximal clique in H that we can use to
substitute for SP in Equation 5. However, this assumes that
H is a connected graph, which might not always be the case.

Junction Forest Computation (JFComp)
We now show how JFComp can be extended to handle cases
where H is disconnected.

When the computation graph H is disconnected, H can be
represented as a list of chordal graphs, H = {Hi}. There-
fore, we also have a list of clique trees for each chordal graph
in H, T = {Ti}, as well.

Since the H is still strictly larger than the chordal graph
structure of PGP and QGQ , by Definition 4, there is still a
mapping α from C(GP) ∪ C(GQ) to C(H). However, since
chordal graph H is now comprised of multiple chordal
graphs, and therefore clique trees, we are unable to apply
Theorem 6 directly to compute SP from Equation 6. The
reason for this is because there is no single clique tree to run
the junction tree algorithm on, therefore factors from differ-
ent clique trees are unable to propagate to each other.

Instead, we show in Theorem 7, that having a discon-
nected computation graph H, and therefore a set of clique
trees, T , which are disconnected from each other, essentially
breaks up SP into smaller sub-problems over each clique tree
in T . The results of these sub-problems can then be com-
bined via multiplication to compute SP. An illustration of

the result from Theorem 7 and its difference in computing
SP on a connected H can be found in Figure 4.

Definition 6 (τ , clique to clique tree mapping). Let τ be
a mapping from the maximal cliques of PGP and QGQ to a
clique tree in T that contains the maximal clique given by
the clique mapping, α, from Definition 4:

τ : C(GP) ∪ C(GQ) → T
s.t. ∀C ∈ C(GP) ∪ C(GQ) : α(C) ∈ C(τ(C))

Theorem 7. If the computation graph H for DMs PGP
and QGQ is disconnected, SPα(C) in Equation 7 can be re-
expressed as follows:

SPα(C)(xα(C))

= βα(C)(xα(C))
∏

Ti∈T −τ(C)

∑
x∈XC(Ti)

βC(Ti)(xα(C),x)

= βα(C)(xα(C))Rτ(C)

where C(Ti) represents any clique in the set of maximal
cliques in clique tree Ti and Rτ(C) ∈ R.

Then we can obtain the required beliefs by running the
junction tree algorithm for each junction tree in T sepa-
rately. Therefore, even if the computation graph H is discon-
nected, we can compute SP and thus F(P,Q). Substituting
these beliefs back into Equation 5 we get:

F(P,Q) (8)

=
∑

C∈C(GP)

Rτ(C)
∑

xα(C)∈
Xα(C)

L
(
g∗

[
PT
C
]
(xα(C))

)
βα(C)(xα(C))

+
∑

C∈C(GQ)

Rτ(C)
∑

xα(C)∈
Xα(C)

L
(
h∗

[
QT

C
]
(xα(C))

)
βα(C)(xα(C))

Section will show that the complexity of computing the ex-
pression in Equation 8, and in general, that the complexity
of JFComp is more efficient than computing F directly.

Computational Complexity
We can determine the computational complexity of com-
puting the αβ-divergence between 2 DMs by first checking
what the given values for α and β are. This step takes O(1)
time. When α, β = 0, from Theorem 2 we know that the
complexity of computing D0,0

AB(P || Q) is:

D0,0
AB(P,Q) ∈ O(n2ω2ω+1)

where ω(G) is the treewidth of chordal graph G and ω =
max(ω(GP), ω(GQ)).

When α and β takes values other than 0, we require the
use of JFComp to compute parameterisations of F between
PGP and QGQ . In general, the αβ-divergence is a linear com-
bination of different parameterisations of F . Therefore, the
complexity of computing the αβ-divergence is equivalent to
computing F in big-O notation. As such, for the remainder
of this section, we will discuss the overall complexity of JF-
Comp for computing F between 2 DMs.

12247

The first step of JFComp involves assigning factors con-
structed from the CPTs over C(GP) and C(GQ) to C(H)
Therefore, for each factor ψ, and therefore for each C ∈
C(GP) ∪ C(GQ), we need to search through C(H) to find a
suitable clique to assign ψ to. This results in the complexity:

O(|C(GP)| · |C(H)|) +O(|C(GP)| · |C(H)|) ∈ O(n2)

since the number of maximal cliques in any chordal graph is
bounded by the number of vertices in the graph.

Once all ψs have been assigned to a maximal clique in H,
we then run the junction tree algorithm to calibrate the clique
tree(s) of H with these factors. The complexity of this is:

O(|C(H)| · 2ω(H)+1) ∈ O(n · 2ω(H)+1)

Once the clique tree/forest is calibrated and we know βα(C)
for all C ∈ C(GP)∪C(GQ), we can then compute Equation 8:

F(P,Q)

=
∑

C∈C(GP)

Rτ(C)
∑

xα(C)∈
Xα(C)

L
(
g∗

[
PT
C
]
(xα(C))

)
βα(C)(xα(C))

+
∑

C∈C(GQ)

Rτ(C)
∑

xα(C)∈
Xα(C)

L
(
h∗

[
QT

C
]
(xα(C))

)
βα(C)(xα(C))

∈ O(C(GP) · 2ω(H)+1) +O(C(GQ) · 2ω(H)+1)

∈ O(n · 2ω(H)+1)

Adding up the computational complexity of each step in JF-
Comp results in the final complexity of computing the func-
tional F between 2 DMs PGP and QGQ :

O(n2) +O(n · 2ω(H)+1) +O(n · 2ω(H)+1)

∈ O(n · 2ω(H)+1)

which is more efficient than Ω(2n), the complexity of com-
puting F directly.

Therefore, the computational complexity of computing
the αβ-divergence between PGP and QGQ is:

D
(α,β)
AB (P || Q) ∈

{
O(n2 · ω2ω+1) α, β = 0

O(n · 2ω(H)+1) otherwise

Runtime Comparison with mcgo
Recall that a method already exists for computing the KL di-
vergence between 2 BNs (Moral, Cano, and Gómez-Olmedo
2021) which we will refer to as mcgo. Also note that it is
possible to take a distribution represented by a BN and, in
exchange for some loss in independence information, rep-
resent it using a DM instead (Koller and Friedman 2009,
p.p. 134). Therefore, one might ask, how does the practical
runtime of JFComp compare to mcgo when computing the
KL divergence between 2 BNs.

To answer this question, we will replicate the experiment
used by Moral, Cano, and Gómez-Olmedo. They chose a set
of BNs from the bnlearn (Scutari 2010) repository (https:
//www.bnlearn.com/bnrepository/) to sample from and es-
timated a second BN from these samples. The authors

Network mcgo (secs) JFComp (secs)
mean sd mean sd

cancer 0.0117 0.0026 0.0132 0.0033
earthquake 0.0104 0.0025 0.0075 0.0009
survey 0.0140 0.0032 0.0081 0.0002
asia 0.0163 0.0001 0.0137 0.0007
sachs 0.0464 0.0106 0.0151 0.0001
child 0.0778 0.0101 0.0402 0.0013
insurance 0.3838 0.0051 0.1590 0.0029
water 6.9326 0.0329 7.6454 0.0637
mildew 19.326 0.1318 19.459 0.0852
alarm 0.3177 0.0099 0.0875 0.0018
hailfinder 0.8543 0.0243 0.1672 0.0052
hepar2 1.3058 0.0307 0.2403 0.0140
win95pts 1.0256 0.0289 0.3538 0.0049

Table 1: Mean runtimes in seconds and their standard devia-
tion for mcgo and JFComp on computing the KL divergence
between 2 BN. The lower the better. Fastest times are bold.

have provided these estimated BNs for each of the BN
from bnlearn used in their experiments: https://github.com/
mgomez-olmedo/KL-pgmpy. Therefore, we will use this set
of BNs from their repository in our own experiments.

Now that we have multiple pairs of BNs, one original and
one estimated from samples, we then compute the KL diver-
gence between each BN pair using both mcgo and JFComp.
We repeat this 10 times in order to get an estimate of both
methods’ runtime in seconds. We also do not factor in the
conversion of these BNs into DMs in the final runtime.

We run the experiments on an Intel NUC-10i7FNH with
64GB of RAM. The implementation of both methods are in
Python and use the pgmpy library (Ankan and Panda 2015).
The repository for the implementation for JFComp can be
found at: https://lklee.dev/pub/2023-aaai/code

From the results in Table 1, we can observe that despite
mcgo containing numerous computation optimisations, our
direct application of belief propagation to carry out the
computation has a practical runtime that is comparable to
mcgo. Furthermore, on some networks, JFComp is faster
than mcgo, probably due to having a lower overhead and be-
ing better able to leverage the optimized code in the pgmpy
library for the bulk of the computation.

Case Study in Model Selection
Although allowing for a simpler implementation that can
leverage existing library implementations of the junction
tree algorithm for most of the computation is a satisfactory
result by itself, recall that the original motivation of JFComp
is to compute a wider range of divergences between graphi-
cal models. Therefore, in order to motivate the need of using
divergences other than the KL divergence, we now present a
case study on the application of computing divergences be-
tween BNs for the problem of model selection, a problem
that the KL divergence is normally well suited for.

Consider a scientist who, in an attempt to model a natural
phenomenon that they have samples from, constructs 2 can-

12248

run Kullback-Leibler Hellinger

A || E B || E A,E B,E

1 0.4021 0.5169 0.3027 0.2915
2 0.3993 0.5182 0.3009 0.2895
3 0.3979 0.5234 0.3014 0.2906
4 0.4018 0.5219 0.3022 0.2904
5 0.3996 0.5275 0.3018 0.2908

Table 2: Divergence between the candidate models and
a Bayesian network estimated from randomly sampled
datasets of size 10000. Lower numbers indicate a better fit
and are bold.

sachs|| A sachs|| B
Kullback-Leibler 0.3687 0.3090
Hellinger 0.3013 0.2921

Table 3: Divergence between the candidate models and the
original Bayesian network sachs. Lower numbers indicate
a better fit. Lowest divergences are bold.

didate BNs,A andB. They then wish to determine, using the
samples, which candidate model is a better representation of
the phenomenon they wish to model. One way to do this, is
to estimate a new BN, E, from the samples and compute the
divergence between E and the candidate models.

In order to recreate this scenario synthetically, we use the
BN sachs from the bnlearn repository (Scutari 2010) as
the “phenomenon” the scientist wishes to model. The scien-
tist’s “candidate models” are then constructed by removing
edges from sachs and marginalising the CPTs according
to (Choi, Chan, and Darwiche 2005). Further details regard-
ing the construction of A and B can be found in Appendix I
of the extended version of this paper.

Sampling 100000 samples from sachs, we then learn
BN E from these samples using the constraint-based struc-
ture learner in pgmpy and maximum likelihood estimation
with Laplace smoothing for learning the parameters of E.
The use of a smoothing technique is to ensure that the KL di-
vergence is defined. We then compute the Hellinger and KL
divergence between the candidate models and the estimated
model: D(A || E) and D(B || E). We repeat the experiment
5 times, with different random samples from sachs.

From the results in Table 2, we can observe that the KL
divergence indicates that A is the BN closest to E and that
the scientist should choose A, while the Hellinger distance
indicates the opposite, choosing B instead. With this dis-
crepancy, the question then is, which candidate model, A or
B, is actually the closer approximation to the actual phe-
nomenon, and therefore, which divergence is “correct”.

Since, for the purpose of this case study, we already have
the true model of the “phenomenon” we are modelling,
we can just compute the divergence between our candidate
models and sachs to get an answer. From Table 3, we
can observe that when computing the divergence between
sachs and the candidate models, both divergences agree

that B is closer to sachs. Consequently, in our case study,
our scientist would have chosen the incorrect model if they
only used the KL divergence in their experiment.

Of course, it might be possible to avoid such a scenario if
a different smoothing technique is used to learn the param-
eters of E. However, the use of multiple divergences is still
needed in order for the scientist to even be aware of possi-
ble issues in the smoothing technique used in the first place.
In general, the main takeaway from this example should be
that, one must not be over-reliant on just a single divergence,
and that the use of a wide array of divergences can be helpful
in avoiding mistakes in model selection.

Conclusion
In conclusion, we showed how computing the functional F ,
and therefore the αβ-divergence, between 2 DMs is equiva-
lent to belief propagation on a junction tree/forest with a set
of specific initial factors defined based on how the MLE of
DMs decomposes the functional F . The result is a method
with complexity exponential to the treewidth of the com-
putation graph H of these models. Therefore, the proposed
method is more efficient than computing the F between the
DMs directly unless H is a fully saturated graph.

One advantage of JFComp is that it can be easily imple-
mented in any environment that has a pre-existing imple-
mentation of the junction tree algorithm. Furthermore, since
JFComp can compute the general functional F between 2
DMs, it can compute, or approximate, other divergences or
functionals, and not just the αβ-divergence.

However, recall that in order to obtain the computation
graph H, we take the graph union of the two DMs we wish
to compute the divergence between, and triangulate the re-
sulting graph union to form a chordal computation graph.
Therefore, one potential area of concern is the possibility
for the triangulation step to produce a computation graph H
that has a large treewidth. Due to the complexity being ex-
ponential to the treewidth of H, this will result in the exact
value of F taking a long time to compute. Therefore, one
avenue of further research is doing away with the require-
ment that the computation graph H has to be a chordal graph
in exchange for an approximation of F instead of an exact
computation. In principle, this can be done by not triangu-
lating GP ∪ GQ, and instead running approximate inference
algorithms on the graph GP ∪ GQ using the set of factors Ψ
defined in Theorem 6.

Furthermore, throughout this work, we only considered
estimating the divergence between 2 discrete distributions.
Therefore, more work is needed to investigate how one
might extend this approach for divergence estimation to nu-
meric or even mixed type data.

Additionally, in this work we were only concerned with
computing the divergence between the joint distributions of
2 DMs. However, in practice, it is common to encounter sit-
uations where one might want to compute the divergence
between 2 conditional distributions. Therefore, more work
is needed to investigate this particular problem either by ex-
tending the current work or via some new method that only
draw inspiration from the current work.

12249

Acknowledgments
This research has been funded by the Federal Min-
istry of Education and Research of Germany and the
state of North-Rhine Westphalia as part of the Lamarr-
Institute for Machine Learning and Artificial Intelligence,
LAMARR22B, the Australian Research Council under
award DP210100072, as well as the Australian Government
Research Training Program (RTP) Scholarship.

References
Abdullah, A.; Kumar, R.; McGregor, A.; Vassilvitskii, S.;
and Venkatasubramanian, S. 2016. Sketching, Embed-
ding and Dimensionality Reduction in Information Theo-
retic Spaces. In Artificial Intelligence and Statistics, 948–
956.
Amari, S.-i. 2016. Information Geometry and Its Applica-
tions. Springer. ISBN 978-4-431-55978-8.
Ankan, A.; and Panda, A. 2015. Pgmpy: Probabilistic
Graphical Models Using Python. Proceedings of the 14th
Python in Science Conference, 6–11.
Barz, B.; Rodner, E.; Garcia, Y. G.; and Denzler, J. 2019.
Detecting Regions of Maximal Divergence for Spatio-
Temporal Anomaly Detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 41(5): 1088–1101.
Berry, A.; Blair, S. J. R.; Heggernes, P.; and Peyton, W. B.
2004. Maximum Cardinality Search for Computing Minimal
Triangulations of Graphs. Algorithmica, 39(4): 287–298.
Bhattacharya, A.; Kar, P.; and Pal, M. 2009. On Low Distor-
tion Embeddings of Statistical Distance Measures into Low
Dimensional Spaces. In Bhowmick, S. S.; Küng, J.; and
Wagner, R., eds., Database and Expert Systems Applica-
tions, Lecture Notes in Computer Science, 164–172. Berlin,
Heidelberg: Springer. ISBN 978-3-642-03573-9.
Bulatov, A.; and Grohe, M. 2004. The Complexity of Parti-
tion Functions. In Automata, Languages and Programming,
volume 3142 of Lecture Notes in Computer Science, 294–
306. Heidelberg, Germany: Springer.
Chen, L.; Tao, C.; Zhang, R.; Henao, R.; and Carin, L. 2018.
Variational Inference and Model Selection with Generalized
Evidence Bounds. In International Conference on Machine
Learning (ICML), 892–901.
Chen, Y.; Ye, J.; and Li, J. 2020. Aggregated Wasserstein
Distance and State Registration for Hidden Markov Models.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 42(9): 2133–2147.
Choi, A.; Chan, H.; and Darwiche, A. 2005. On Bayesian
Network Approximation by Edge Deletion. In Proceedings
of the Twenty-First Conference on Uncertainty in Artificial
Intelligence, UAI’05, 128–135. Arlington, Virginia, USA:
AUAI Press. ISBN 978-0-9749039-1-0.
Cichocki, A.; Cruces, S.; and Amari, S.-i. 2011. Generalized
Alpha-Beta Divergences and Their Application to Robust
Nonnegative Matrix Factorization. Entropy, 13(1): 134–170.
Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann. ISBN 978-1-55860-890-0.

Dieng, A. B.; Tran, D.; Ranganath, R.; Paisley, J. W.; and
Blei, D. M. 2017. Variational Inference via χ Upper Bound
Minimization. In Advances in Neural Information Process-
ing Systems, 2732–2741.

Genevay, A.; Peyre, G.; and Cuturi, M. 2018. Learning
Generative Models with Sinkhorn Divergences. In Storkey,
A.; and Perez-Cruz, F., eds., International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 84
of Proceedings of Machine Learning Research, 1608–1617.
PMLR.

Haberman, S. J. 1977. The Analysis of Frequency Data. Uni-
versity of Chicago Press. ISBN 978-0-226-31185-2.

Hammersley, J. M.; and Clifford, P. 1971. Markov fields on
finite graphs and lattices. Unpublished manuscript.

Heggernes, P. 2006. Minimal triangulations of graphs: A
survey. Discrete Mathematics, 306(3): 297–317.

Koller, D.; and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques - Adaptive Computation
and Machine Learning. The MIT Press. ISBN 978-0-262-
01319-2.

Labeau, M.; and Cohen, S. B. 2019. Experimenting with
Power Divergences for Language Modeling. In Inui, K.;
Jiang, J.; Ng, V.; and Wan, X., eds., Empirical Methods in
Natural Language Processing (EMNLP), 4102–4112. Asso-
ciation for Computational Linguistics.

Lauritzen, S. L.; and Spiegelhalter, D. J. 1988. Local Com-
putations with Probabilities on Graphical Structures and
Their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B (Methodological), 50(2): 157–
224.

Li, Y.; and Turner, R. E. 2016. Rényi Divergence Variational
Inference. In Advances in Neural Information Processing
Systems, 1073–1081.

Moral, S.; Cano, A.; and Gómez-Olmedo, M. 2021. Com-
putation of Kullback–Leibler Divergence in Bayesian Net-
works. Entropy, 23(9): 1122.

Nowozin, S.; Cseke, B.; and Tomioka, R. 2016. f-GAN:
Training Generative Neural Samplers using Variational Di-
vergence Minimization. In Lee, D.; Sugiyama, M.; Luxburg,
U.; Guyon, I.; and Garnett, R., eds., Advances in Neural
Information Processing Systems, volume 29. Curran Asso-
ciates, Inc.

Piatkowski, N.; Lee, S.; and Morik, K. 2013. Spatio-
Temporal Random Fields: Compressible Representation and
Distributed Estimation. Machine Learning, 93(1): 115–139.

Piatkowski, N.; and Morik, K. 2018. Fast Stochastic Quadra-
ture for Approximate Maximum-Likelihood Estimation. In
Conference on Uncertainty in Artificial Intelligence (UAI),
715–724.

Schlimmer, J. C.; and Granger, R. H. 1986. Incremental
Learning from Noisy Data. Machine Learning, 1(3): 317–
354.

Scutari, M. 2010. Learning Bayesian Networks with the Bn-
learn R Package. Journal of Statistical Software, 35: 1–22.

12250

Valiant, L. G. 1979. The complexity of enumeration and re-
liability problems. SIAM Journal on Computing, 8(3): 410–
421.
Wainwright, M. J.; and Jordan, M. I. 2008. Graphical Mod-
els, Exponential Families, and Variational Inference. Foun-
dations and Trends in Machine Learning, 1(1–2): 1–305.
Webb, G. I.; Lee, L. K.; Goethals, B.; and Petitjean, F. 2018.
Analyzing Concept Drift and Shift from Sample Data. Data
Mining and Knowledge Discovery, 32(5): 1179–1199.

12251

