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Abstract

We propose novel identification conditions and a statistical es-
timation method for the probabilities of potential outcome
types using covariate information in randomized trials in
which the treatment assignment is randomized but subject
compliance is not perfect. Different from existing studies,
the proposed identification conditions do not require strict
assumptions such as the assumption of monotonicity. When
the probabilities of potential outcome types are identifiable
through the proposed conditions, the problem of estimating
the probabilities of potential outcome types is reduced to that
of singular models. Thus, the probabilities cannot be evaluated
using standard statistical likelihood-based estimation methods.
Rather, the proposed identification conditions show that we
can derive consistent estimators of the probabilities of poten-
tial outcome types via the method of moments, which leads to
the asymptotic normality of the proposed estimators through
the delta method under regular conditions. We also propose
a new statistical estimation method based on the bounded
constrained augmented Lagrangian method to derive more
efficient estimators than can be derived through the method of
moments.

Introduction
Practical Background
A central concern in practical sciences is to elucidate the
cause-effect relationship between a treatment and an outcome.
Randomized trials have been regarded as a more reliable and
powerful tool with which to evaluate causal effects than ob-
servational studies, where confounding, information bias, and
selection bias all hinder the evaluation of causal effects from
observed data. In contrast, to evaluate the likelihood that
one event will cause another event, it is necessary to simul-
taneously derive the results for the same subjects receiving
experimental and control treatments. However, doing so is
difficult, even in successful randomized trials.

The importance of this topic can be seen in various fields
of the practical sciences. For example, consider the follow-
ing statements regarding the randomized clinical trial (RCT)
comparing the coronavirus disease 2019 (COVID-19) vaccine
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with a placebo, as reported by Cohen (2020):

“An EUA (emergency use authorization) for a vac-
cine might also make it more difficult to recruit
people for clinical trials of that vaccine and others
because participants might not want to take the risk
of receiving a placebo when they can get a shot of
a product that’s authorized for use.”

“Vaccines go into healthy people, so putting them
into use before fully assessing their risks and bene-
fits is a bigger gamble than issuing an EUA for an
experimental treatment for someone already ill.”

Cohen’s report implies that there are two issues in RCTs
in terms of evaluating the causal effect of the COVID-19
vaccine. First, there may be subjects who do not comply with
their treatment assignment. In such a situation, the RCT may
fail to evaluate the causal effect, even if it successfully re-
cruits a sufficient number of subjects. To derive the relevant
results in this situation, it is important to classify the subject’s
situation into four types: “compliance,” “defiance,” “always
take,” and “never take.” Here, “compliance” denotes a situa-
tion in which subjects receive the vaccine if and only if they
are assigned to the vaccination group. “Defiance” denotes
a situation in which subjects do the opposite of their treat-
ment assignment status. “Always-take” denotes a situation
in which subjects always receive the vaccine even if they
are assigned to the placebo group. “Never-take” denotes a
situation in which subjects do not receive the vaccine even if
they are assigned to the vaccination group. Here, “defiance,”
“always-take,” and “never-take” are collectively called “non-
compliance” or “imperfect compliance.” Second, it is uncer-
tain whether the severity of the disease would decrease if un-
vaccinated healthy subjects are (counterfactually) vaccinated.
To administer the vaccine to subjects who are most likely to
benefit from it, classification of the subject’s situation into
four types – “causative,” “preventive,” “doomed,” and “im-
mune” – is useful. Here, “causative” denotes a situation in
which the disease occurs if and only if the subject receives
the placebo. “Preventive” denotes a situation in which the
disease occurs if and only if the subject receives the vaccine.
“Doomed” denotes a situation in which the treatment received
is irrelevant in the sense that the disease occurs regardless
of whether the vaccine or the placebo is received. “Immune”
denotes a situation in which the treatment received is irrele-
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vant in the sense that the disease does not occur regardless of
whether the vaccine or the placebo is received.

For an effective vaccination policy, it is better to target
subjects in the “causative” group since the vaccination can
decrease the severity of the disease for these subjects, but
otherwise not. In contrast, the probability of the “preventive”
situation is useful for evaluating the severity of the vacci-
nation since non-vaccination decreases the severity of the
disease for these subjects, but otherwise not.

The above types are called “potential outcome types,” as
each subject belongs to one of 4× 4 = 16 types but we do
not know from the observed data to which type they belong.
The central aim of this paper is to evaluate “probabilities
of 16 potential outcome types” in randomized trials with
non-compliance. The probabilities of these potential outcome
types are fundamental components of causal inference since,
if they are identifiable, the causal effect is also identifiable,
but not vice versa (Pearl 1999, 2009).

Theoretical Background
The identification and estimation of the probabilities of po-
tential outcome types are important issues in causal inference.
One representative example of the probabilities of potential
outcome types involves the probabilities of causation that
enable us to evaluate the probabilistic aspects of “necessity
cause,” “sufficiency cause,” and “necessity and sufficiency
cause.” The probabilities of causation have been widely uti-
lized in such areas as epidemiology, risk analysis, tort law
liability, social program impact evaluation, and traffic conflict
(Lagakos and Mosteller 1986; Khoury et al. 1989; Heckman,
Smith, and Clements 1997; Beyea and Greenland 1999; Cai
and Kuroki 2005; Yamada and Kuroki 2019). Currently, they
are among the fundamental concepts of successful explana-
tion in the field of explainable artificial intelligence (XAI)
(Galhotra, Pradhan, and Salimi 2021; Mothilal et al. 2020;
Watson et al. 2021). Thus, the evaluation of the probabilities
of potential outcome types has become an important issue in
terms of extending the range of solvable identification and
estimation problems in causal inference.

Pearl (1999, 2009) developed formal semantics for the
probabilities of causation based on structural causal models.
The probabilities of causation are formulated based on those
of potential outcome types. Since one cannot simultaneously
observe the results of the same subjects receiving the experi-
mental treatment and the control treatment in reality, these
quantities are not identifiable, even in successful randomized
trials (Pearl 2009). To solve this problem, Tian and Pearl
(2000) demonstrated how to bound these quantities from data
obtained in experimental and observational studies. Tian and
Pearl’s bounds provide the range within which the proba-
bilities of causation must lie. Subsequently, Kuroki and Cai
(2011) derived narrower bounds of the probabilities of causa-
tion than Tian and Pearl’s bounds using covariate information.
Dawid, Murtas, and Musio (2016) and Mueller, Li, and Pearl
(2021) provided the bounds of the probabilities of causation
using mediator variables. However, it has been pointed out
that these bounds are too wide to effectively evaluate the
probabilities of causation.

To overcome this difficulty, Tian and Pearl (2000) noted

that the probabilities of causation are identifiable if mono-
tonicity (e.g., no-prevention) can be assumed and the causal
effects are identifiable, and Pearl (2009) showed that specific
functional relationships between cause and effect lead to the
identification of the probabilities of causation. In addition,
in the context of natural direct and indirect effects (Pearl
2001), under the assumption of there being no unmeasured
confounding, Robins and Richardson (2011) stated that the
probabilities of potential outcome types are identifiable (i)
if two potential outcome variables are independent, or (ii) if
one potential outcome variable can be deterministically for-
mulated as a function of the other potential outcome variable.
These prior studies showed that the probabilities of poten-
tial outcome types play an important role in solving various
problems in causal inference. However, there has been much
less discussion of identifying the probabilities of potential
outcome types when the present assumptions are violated.

This paper proposes novel identification conditions, which
are developments of Kawakami (2021), and a statistical esti-
mation method for estimating the probabilities of potential
outcome types in randomized trials in which the treatment as-
signment is randomized but subject compliance is imperfect.
The proposed identification conditions enable us to derive
consistent estimators of the probabilities of potential outcome
types without relying on the previously used assumptions.
Notably, the proposed conditions achieve (i) a major expan-
sion of the existing results to evaluate the probabilities of
potential outcome types, from “4 potential outcome types”
to “16 potential outcome types”, and (ii) the identification
of the probabilities of “compliance,”’ “defiance,” “always
take,” and “never take,” which are important measures in
medical science (Frangakis and Rubin 2002; Kowalski 2020).
In particular, although it has been pointed out that adjustment
by a proxy variable of the outcome (graphically, the descen-
dant of the outcome) for the treatment provides a biased
estimate of the causal effect, this paper shows that the use of
such a proxy variable makes the causal effect identifiable, at
least in some situations. In addition, different from existing
studies, the proposed identification conditions do not require
strict assumptions such as monotonicity (Pearl 2009). When
the probabilities of potential outcome types are identifiable
through the proposed conditions, the problem of estimating
the probabilities of potential outcome types is reduced to
that of singular models. Thus, these probabilities cannot be
evaluated by standard likelihood-based estimation methods.
Rather, the proposed identification conditions show that we
can derive consistent estimators of the probabilities of poten-
tial outcome types via the method of moments, which leads to
the asymptotic normality of the proposed estimators through
the delta method under regular conditions. Noting that the
method of moments may not provide efficient estimators, we
also propose a new statistical estimation method based on the
bounded constrained augmented Lagrangian method (Birgin
and Martı́nez 2020) to derive more efficient estimators than
can be derived via the method of moments.

Due to space constraints, proofs, some simulation experi-
ments, and details of a case study are provided in the Supple-
mentary Material.
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Figure 1: Graphical representation of a randomized trial with
non-compliance

Problem Description
To describe our problem, let us consider a randomized trial
with the purpose of evaluating the causal effect of an experi-
mental treatment (e.g., the COVID-19 vaccine) in comparison
with a control treatment (e.g., a placebo), as shown in Fig-
ure 1. For the graph-theoretic terminology and basic theory of
the structural causal models used in this paper, we refer read-
ers to Pearl (2009). In addition, in this paper, we assume that
readers are familiar with the basic theory of causal inference
(e.g., Imbens and Rubin 2015; Pearl 2009).

Intuitively, in Figure 1 with variables X , Y , and Z and a
set U of variables, a directed edge from X to Y indicates
that X could have an effect on Y . In addition, the absence
of a directed edge from Y to X indicates that Y cannot be a
cause of X . A directed edge from U to Y indicates that some
elements of U could affect Y . Furthermore, the absence of
a directed edge from Y to U indicates that Y cannot be a
cause of any element of U . A directed path from Z to Y
through X indicates that Z could affect Y through X . X is
also called a mediator variable regarding the directed path
from Z to Y ; X could be affected by Z and have an effect
on Y . A similar interpretation is applied to other directed
edges and paths. This situation often appears in the medical
and statistical literature, for example, Multiple Risk Factor
Intervention Trial Research Group (1982), Balke and Pearl
(1997), Cai, Kuroki, and Sato (2007), and Lui (2011).

In this situation, we assume that Z, X , and Y are observed
dichotomous variables, where Z represents the randomized
treatment assignment, X represents the treatment actually
received, and Y represents the outcome. In addition, let z, x,
and y represent the values taken by the variables Z, X , and Y ,
respectively, with the following meanings: for z ∈ {z0, z1},
z1 indicates subjects randomized to the experimental treat-
ment, while z0 indicates subjects randomized to the control
treatment; for x ∈ {x0, x1}, x1 indicates receiving the exper-
imental treatment, while x0 indicates receiving the control
treatment; and for y ∈ {y0, y1}, y1 indicates non-disease,
while y0 indicates disease. U represents the set of all discrete
and continuous variables, both observed and unobserved, that
are not affected by X or Y . A variable that is not affected by
a treatment X is called a covariate.

In this situation, randomized treatment assignment Z sat-
isfies the instrumental variable (IV) assumptions: (i) Z is
associated with X , (ii) Z is independent of U , and (iii) Z
is conditionally independent of Y given U and {X} (Green-
land 2000). Then, Z is called an IV relative to (X,Y ). Here,
regarding X , Y , and Z, it is straightforward to extend our
results from the case of dichotomous observed variables to
the case of multivalued observed variables. In particular, as

Balke and Pearl (1997) stated, a multivalued or continuous
outcome can be accommodated in the model using event
Y < y as an outcome variable. For a related discussion, refer
to Galhotra, Pradhan, and Salimi (2021) and Kada, Cai, and
Kuroki (2013). In addition, when the treatment is continu-
ous, according to Balke and Pearl (1997), in some situations,
it is reasonable to assume that there exists a treatment in-
terval around each x, within which a subject’s outcome is
homogeneous. Then, it is possible to apply our idea.

Notation and Idea
Let N denote the sample size. For x ∈ {x0, x1} and y ∈
{y0, y1}, let pr(X = x, Y = y) = pr(x, y) be the joint
probability of (X,Y ) = (x, y), pr(Y = y |X = x) =
pr(y |x) be the conditional probability of Y = y given X =
x, and pr(X = x) = pr(x) be the marginal probability of
X = x. Similar notation is used for other probabilities. Then,
in principle, for x ∈ {x0, x1}, the i-th of the N subjects has
a potential outcome variable Yx(i) that would have resulted
if X had been x for the i-th subject. Here, Yx(i) = y denotes
that “Y takes the value y when X is experimentally set to x
for the i-th subject” or the counterfactual sentence that “Y
would be y had X been x for the i-th subject.” The potential
outcome variable Yx(i) is observed only if X is x for the i-th
subject, denoted as X(i) = x. This property is referred to as
consistency (Robins 1989; Pearl 2009), and formulated as

X(i) = x =⇒ Yx(i) = Y (1)

for the i-th subject.
This paper assumes the stable unit treatment value assump-

tion (Imbens and Rubin 2015), which can be summarized as
follows: (i) the treatment status of any subject does not affect
the outcomes of the other subjects (no interference) and (ii)
the treatments of all subjects are comparable (no variations
in treatment). Thus, when N subjects in the study are consid-
ered random samples from the population of interest, Yx(i)
is referred to as the value of a random variable, Yx.

The causal effect of X = x on Y = y is defined as a
contrast of two causal risks pr(Yx = y) and pr(Yx′ = y).
According to Pearl (2009), the causal risk of X = x on
Y = y is represented as

pr(Yx = y) =
∑
u

pr(y|x,u) pr(u) (2)

based on a set U of background variables. Here, summa-
tion signs are replaced by integrals whenever the summed
variables are continuous. Equation (2) is identifiable and is
given by the formula pr(Yx = y) = pr(y|x), if an ideal ran-
domized trial with X is feasible. Here, “identifiable” means
that the causal quantities, such as pr(Yx = y), can be es-
timated consistently from a joint probability of observed
variables. In contrast, when it is difficult to conduct a ran-
domized trial and only observed data are available, we can
still evaluate the causal effects according to the conditionally
ignorable treatment assignment condition (Rosenbaum and
Rubin 1983) or, graphically, the back-door criterion (Pearl
2009). In other words, for treatment X , if there exists such a
set S of observed covariates that X is conditionally indepen-
dent of (Yx0

, Yx1
) given S, then we can say that treatment
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Figure 2: Graphical representation of covariate information
in a randomized trial with non-compliance

assignment is conditionally ignorable given S. In this case,
the causal risk is identifiable and are given by the formula

pr(Yx = y) =
∑
s

pr(y |x, s) pr(s). (3)

Although there are other identification conditions of causal
effects (e.g., Tian and Pearl 2002; Pearl 2009), the present
paper does not cover them due to space constraints.

When compliance is not perfect and a set of observed
variables is insufficient for identification, the causal effect
is not identifiable without any further assumption. To solve
this problem, by using the data of the randomized treatment
assignment, the treatment actually received, and the outcome
from a randomized trial, Balke and Pearl (1997) provided
the sharp bounds of causal effects under the IV assumptions.
Balke and Pearl’s bounds provide the range within which
the causal effect must lie. In addition, noting that a set U
of covariates includes observed variables, Cai, Kuroki, and
Sato (2007) derived narrower bounds than Balke and Pearl’s
bounds using the observed covariate information. According
to Cai, Kuroki, and Sato (2007), such covariate information
does not need to include confounding factors to narrow the
bounds. This observation regarding covariate information mo-
tivates us to evaluate “probabilities of 16 potential outcome
types” in studies with non-compliance.

Identification
Referring to the problem described in the previous section,
we formulate the problem of evaluating the probabilities of
potential outcome types based on the directed graph shown in
Figure 2 (a). Here, a covariate W , in Figure 2 (a), is measured
as a proxy variable of a set U of covariates. Note that W can
be a set of discrete and/or continuous variables. Then, Figure
2 (a) graphically represents the data-generating process,

Y = fy(X,U , ϵy), X = fx(U , Z, ϵx),

W = fw(U , ϵw), Z = fz(ϵz),
(4)

where ϵx, ϵy , ϵz , and ϵw are independent random disturbances
and are also independent of U . When structural equation
models, such as equation (4), are used to represent the data-
generating process, the corresponding graph shown in Figure
2 (a) is called a causal diagram.

Regarding Figure 2 (a), note that this paper considers a
situation where U can include the uncertain number of all
discrete and continuous covariates that influence the way
a subject responds to treatments. Accordingly, in many sit-
uations, it is reasonable to assume the existence of a co-
variate, W , that is conditionally independent of {X,Y, Z}

given U and, thus, it would not be difficult to observe such
a proxy variable that satisfies the condition. Then, irrespec-
tive of the complexity of U ∪ {ϵx, ϵy, ϵz, ϵw}, the impact of
U ∪ {ϵx, ϵy, ϵz, ϵw} on Y remains restricted to the modifica-
tion of the functional relationship between X and Y . This
yields four functions for two dichotomous variables, X and
Y , and thus, the value taken by U ∪ {ϵx, ϵy, ϵz, ϵw} selects
one of these four functions (Pearl 2009). Considering these
observations, the states of U ∪ {ϵx, ϵy, ϵz, ϵw} are divided
into the following four potential outcome types: “doomed”
u1, “causative” u2, “preventive” u3, and “immune” u4, i.e.,

u1 = (Yx0 = y0, Yx1 = y0), u2 = (Yx0 = y0, Yx1 = y1),

u3 = (Yx0
= y1, Yx1

= y0), u4 = (Yx0
= y1, Yx1

= y1).

According to this partition of the states of U∪{ϵx, ϵy, ϵz, ϵw},
it is redefined as U taking a value of u (u ∈ {u1, u2, u3, u4}).
Similarly, in addition to the division of the above four po-
tential outcome types, the states of U ∪ {ϵx, ϵy, ϵz, ϵw} are
also divided into the following four potential outcome types:
“never take” v1, “compliance” v2, “defiance” v3, and “always
take” v4, i.e.,

v1 = (Xz0 = x0, Xz1 = x0), v2 = (Xz0 = x0, Xz1 = x1),

v3 = (Xz0 = x1, Xz1 = x0), v4 = (Xz0 = x1, Xz1 = x1).

According to this partition of the states of U∪{ϵx, ϵy, ϵz, ϵw},
it is redefined as V taking a value of v (v ∈ {v1, v2, v3, v4}).
Then, the corresponding probabilities that we wish to evaluate
are the probabilities of potential outcome types, i.e., pr(ui),
pr(vj), pr(ui, vj), i, j = 1, 2, 3, 4. These probabilities are
not identifiable even in a successful randomized trial without
any further information because Yx1

and Yx0
cannot be ob-

served simultaneously for each subject. In this paper, we use
Z as an instrumental variable (IV) to solve the identification
problem, where the IV assumptions are counterfactually rep-
resented as follows: (i) Xz is a nontrivial function of z, (ii)
Yx,z = Yx holds for any x and z (exclusion restriction), and
(iii) Z is independent of (Xz0 , Xz1 , Yx0

, Yx1
).

For any x, y, z, and w, we assume that Figure 2 (a) can
be redescribed as Figure 2 (b) and that the corresponding
recursive factorization of the joint probabilities of Y , Z, and
W given X , pr(y, z, w|x), is given by

pr(y, z, w | x) =
4∑

i=1

4∑
j=1

pr(y | x, ui, vj) pr(z | x, ui, vj)

× pr(w | ui, vj) pr(ui, vj |x) (5)

for pr(y, z, w, u, v | x) > 0. When W is a variable with
the number of values k ≥ 4, say w1, w2, w3, w4, for x ∈
{x0, x1}, the block matrices are defined as

[Px;Qx] =

(
P1,x Q1,x

P2,x Q2,x

)
(6)

where

P1,x =

(
1 pr(z0 | x)

pr(w1 | x) pr(w1, z0 | x)

)
, (7)

P2,x =

(
pr(w2 | x) pr(w2, z0 | x)
pr(w3 | x) pr(w3, z0 | x)

)
, (8)
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Figure 3: Graphical representation of potential outcome types
in a randomized trial with non-compliance

Q1,x =

(
pr(y0 | x) pr(y0, z0 | x)

pr(y0, w1 | x) pr(y0, w1, z0 | x)

)
, (9)

Q2,x =

(
pr(y0, w2 | x) pr(y0, w2, z0 | x)
pr(y0, w3 | x) pr(y0, w3, z0 | x)

)
(10)

for x ∈ {x0, x1}.
First, regarding the probabilities of potential outcome

types pr(u1), pr(u2), pr(u3), and pr(u4), under the situa-
tion shown in Figure 3 (a), the following theorem is derived:
Theorem 1. Letting W be a variable taking k(≥ 4) values,
e.g., w ∈ {w1, w2, w3, w4}, the probabilities of potential
outcome types pr(u1), pr(u2), pr(u3), and pr(u4) are iden-
tifiable if the following conditions are satisfied:

(i) probabilities pr(y, z, w|x) are available for x ∈ {x0,
x1}, y ∈ {y0, y1}, z ∈ {z0, z1} and w ∈ {w1, w2, w3,
w4}.

(ii) for positive probabilities pr(w|x, z, u), pr(w|x, z, u)
= pr(w|u) holds for x ∈ {x0, x1}, z ∈ {z0, z1}, and
w ∈ {w1, w2, w3, w4}.

(iii) the block (4 × 4) matrix [Px;Qx] and 2 × 2 matrices
Pi,x, Qi,x, and Pi,x − Qi,x are invertible for i = 1, 2
and x ∈ {x0, x1}.

(iv) the second column vectors of Q2,xQ
−1
1,x and (P2,x −

Q2,x)(P1,x − Q1,x)
−1 are different from those of

Q2,x′Q−1
1,x′ and (P2,x′ − Q2,x′)(P1,x′ − Q1,x′)−1 for

x ̸= x′.
(v) Z is the IV relative to (X,Y ): Xz is a nontrivial func-

tion of z, Yx,z = Yx holds for any x and z, and Z is
independent of (Xz0 , Xz1 , Yx0

, Yx1
).

The proof of Theorem 1 is given in Supplementary Ma-
terial A. Theorem 1 shows that there are some cases where
causal effects are identifiable even if the representative iden-
tification conditions, e.g., the back-door criterion, are not
applicable to estimating causal effects. The two causal risks
are given by the formula

pr(Yx0 = y0) =
∑
i=1,2

pr(ui), pr(Yx1 = y0) =
∑
i=1,3

pr(ui).

As for the probabilities of potential outcome types pr(v1),
pr(v2), pr(v3), and pr(v4), when W is a variable with the
number of values k ≥ 3, that is, w ∈ {w1, w2, w3}, we
define

Pw
x,z =

(
1 pr(y | x, z)

pr(w | x, z) pr(y, w | x, z)

)
(11)

for x ∈ {x0, x1} and z ∈ {z0, z1}. Then, under the situation
shown in Figure 3 (b), we derive the following new theorem:

Theorem 2. Letting W be a variable taking k(≥ 3) val-
ues, e.g., w ∈ {w1, w2, w3}, the probabilities of potential
outcome types pr(v1), pr(v2), pr(v3), and pr(v4) are identi-
fiable if the following conditions are satisfied:

(i) probabilities pr(y, w|x, z) are available for x ∈ {x0,
x1}, y ∈ {y0, y1}, z ∈ {z0, z1}, and w ∈ {w1, w2,
w3}.

(ii) for positive probabilities pr(y, w|x, z, v), both
pr(y|x,w, z, v) = pr(y|x, v) and pr(w|x, z, v) =
pr(w|v) hold for x ∈ {x0, x1}, y ∈ {y0, y1},
z ∈ {z0, z1}, w ∈ {w1, w2, w3}, and
v ∈ {v1, v2, v3, v4}.

(iii) Pw
x,z are invertible for any x, y, z, and w, and

det(Pw1
x,z)

det(Pw
x,z)

̸=
det(Pw1

x′,z′)

det(Pw
x′,z′)

(12)

for w ̸= w1 and (x, z) ̸= (x′, z′) (x, x′ ∈ {x0, x1},
z, z′ ∈ {z0, z1}, w ∈ {w2, w3}).

(iv) Z is the IV relative to (X,Y ).
The proof of Theorem 2 is given in Supplementary Ma-

terial B. Generally, the adjustment by the proxy variable of
the outcome for the treatment provides a biased estimation
for the causal effect of interest. However, Theorem 2 shows
that it is remarkable that the use of the proxy outcome makes
the probabilities of the potential outcome types identifiable
in some situations.

Finally, the following theorem, together with Theorems
1 and 2, enables us to identify the probabilities, pr(u, v), of
sixteen potential outcome types:
Theorem 3. Letting W be a variable taking k(≥ 4) values,
e.g., w ∈ {w1, w2, w3, w4}, the probabilities of potential
outcome types pr(ui, vj) (i, j = 1, 2, 3, 4) are identifiable if
the following conditions are satisfied:

(i) both pr(v|w) and pr(u|w) are identifiable for u ∈
{u1, u2, u3, u4}, v ∈ {v1, v2, v3, v4} and w ∈ {w1,
w2, w3, w4}.

(ii) one of the following conditions is satisfied:
(ii-a) for positive probabilities pr(u,w|v), pr(u|v, w)

= pr(u|v) holds for u ∈ {u1, u2, u3, u4}, v ∈
{v1, v2, v3, v4} and w ∈ {w1, w2, w3, w4}, and
the 4 × 4 matrix (pr(vi|wj))i,j=1,··· ,4 is invert-
ible.

(ii-b) for positive probabilities pr(v, w|u), pr(v|u,w)
= pr(v|u) holds for u ∈ {u1, u2, u3, u4}, v ∈
{v1, v2, v3, v4}, and w ∈ {w1, w2, w3, w4}, and
the 4 × 4 matrix (pr(ui|wj))i,j=1,··· ,4 is invert-
ible.

The proof is straightforward; for example, under condi-
tions (i) and (ii-a), we derive pr(u|v1)

...
pr(u|v4)

 =

 pr(v1|w1) · · · pr(v4|w1)
...

. . .
...

pr(v1|w4) · · · pr(v4|w4)


−1

×

 pr(u|w1)
...

pr(u|w4)

 (13)
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for u ∈ {u1, u2, u3, u4}, which shows that pr(u|v) is identi-

fiable, and thus leads to pr(u, v) =
4∑

i=1

pr(u|v) pr(v|wi) for

u ∈ {u1, u2, u3, u4} and v ∈ {v1, v2, v3, v4}.

Estimation
The proofs of Theorems 1 and 2 in the Supplementary Mate-
rial provide the explicit formula for the probabilities of po-
tential outcome types; thus, it is not difficult to show that the
method of moments provides consistent estimators of these
probabilities with asymptotic normality through the delta
method under regular conditions (Ferguson 1996). For exam-
ple, when the subjects in the study are considered random
samples from a multinomial distribution under the conditions
of Theorems 1, 2, and 3, the method of moments estimators
are consistent estimators of these probabilities and asymp-
totically follow a normal distribution. However, since the
explicit formulas for the asymptotic variances in the method
of moments estimators are complicated, it is better to use a
bootstrap procedure to evaluate the statistical properties of
these estimators. In this section, to illustrate more efficient
estimation, we refer to Theorem 1 as an example, and for-
mulate a statistical estimation method for pr(u) based on the
bounded constrained augmented Lagrangian method (Birgin
and Martı́nez 2020). For details on the statistical estimation
methods, the reader is referred to Supplementary Material
C.1 and C.2, which address Theorems 1 and 2, respectively.

Let {(Xi, Yi, Zi,Wi)}Ni=1 be a set of random samples
from the data-generating process in Figure 3 (a). In addi-
tion, for x ∈ {x0, x1}, y ∈ {y0, y1}, z ∈ {z0, z1}, and
w ∈ {w1, w2, w3, w4}, let p̂r(y, w, z|x) be the maximum
likelihood estimators of observed probabilities pr(y, w, z|x).
Then, we represent the plug-in estimators of Px and Qx as

P̂x =

(
P̂1,x

P̂2,x

)
, Q̂x =

(
Q̂1,x

Q̂2,x

)
(14)

for x ∈ {x0, x1}. Then, letting

Θx0
=

 1 θ11 θ12 θ13
1 θ21 θ22 θ23
1 θ31 θ32 θ33
1 θ41 θ42 θ43

 , (15)

Θx1 =

 1 θ11 θ12 θ13
1 θ31 θ32 θ33
1 θ21 θ22 θ23
1 θ41 θ42 θ43

 , (16)

the estimation problem of interest is formulated as the fol-
lowing Lagrangian function:

F
(
Θ,

{
λ
+ (l)
i,j , λ

− (l)
i,j : i = 0, 1; j = 1, 2, 3, 4

}
, µ

)
=

1∑
i=0

∥ΘT
xi
∆(Θxi

)−T P̂xi
− Q̂xi

∥2F

+
µ

2

 1∑
i=0

4∑
j=1

max

{
ei,j − 1 +

λ+
i,j

µ
, 0

}2

(a) pr(u, v)
u1 u2 u3 u4

v1 5/32 1/32 1/32 1/32
v2 1/32 5/32 1/32 1/32
v3 1/32 1/32 5/32 1/32
v4 1/32 1/32 1/32 5/32

(b) pr(w|u) and pr(w|v)
u1 u2 u3 u4

v1 v2 v3 v4
w1 7/10 1/10 1/10 1/10
w2 1/10 7/10 1/10 1/10
w3 1/10 1/10 7/10 1/10
w4 1/10 1/10 1/10 7/10

Table 1: Parameter Setting

+
µ

2

 1∑
i=0

4∑
j=1

max

{
−ei,j +

λ−
i,j

µ
, 0

}2

+
1∑

i=0

4∑
j=1

λ+
i,j max

{
ei,j − 1 +

λ+
i,j

µ
, 0

}

+
1∑

i=0

4∑
j=1

λ−
i,j max

{
−ei,j +

λ−
i,j

µ
, 0

}
, (17)

where ||G||F is the Frobenius norm of the matrix G, and
G−T = (GT )−1. Θ = {θi,j : i = 1, 2, 3, 4; j = 1, 2, 3} is
a set of 12 parameters that are included in Θx0 and Θx1 .
For i = 0, 1 and j = 1, 2, 3, 4, µ, λ+

i,j , and λ−
i,j are the

Lagrange multipliers. In addition, ei,j is the j-th element
of Θ−T

xi
P̂xi(1, 0)

T for i = 0, 1, and j = 1, 2, 3, 4, and ∆
is a diagonal matrix ∆ = diag(1, 1, 0, 0). Once we obtain
estimator Θ̂ as the solution to the estimation problem, the
estimators of {p̂r(ui|xj) : i = 1, 2, 3, 4; j = 0, 1} are given
by Θ̂−T

x0
P̂x0

(1, 0)
T and Θ̂−T

x1
P̂x1

(1, 0)
T . Thus, the proba-

bilities of potential outcome types are estimated by

p̂r(ui) = p̂r(ui|x0)p̂r(x0) + p̂r(ui|x1)p̂r(x1). (18)

Simulation Experiments

We conducted a series of simulation experiments to exam-
ine the statistical properties of the proposed estimators, based
on the bounded constrained augmented Lagrangian method
(Birgin and Martı́nez 2020), referring to the probabilities of
“causative” pr(u2), “compliance” pr(v2), and a combination
of both “causative” and “compliance” pr(u2, v2). For simplic-
ity, letting X , Y , Z, W , U , and V be discrete variables, we
consider the causal diagrams shown in Figure 3 (a), for pr(u2)
and pr(u2, v2), and in Figure 3 (b), for pr(v2). In Figure 3 (a),
we assume pr(v|u,w) = pr(v|u) for u ∈ {u1, u2, u3, u4},
v ∈ {v1, v2, v3, v4}, and w ∈ {w1, w2, w3, w4}. In ad-
dition, in order to estimate pr(v2), we applied Algorithm
2 in the Supplementary Material to any combination of
three distinct values from w ∈ {w1, w2, w3, w4} and de-
rived p̂r(v2) as the sample mean of the four estimates. The
Parameter setting in this section is given in Table 1 with
pr(z1) = 0.5(pr(z0) = 1− pr(z1)).

Based on the joint observed probabilities pr(x, y, w|z) de-
rived from the parameter setting, the statistical properties of
the proposed estimators p̂r(u2, v2), p̂r(u2), and p̂r(v2) are
verified in the simulation experiment using the parameter
setting with sample sizes N = 100, 200, 1000, and 5000. In
this situation, since pr(u2, v2) takes the value 5/32 and both
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pr(u2, v2) = 0.156 pr(u2) = 0.250 pr(v2) = 0.250
N 100 500 1000 5000 100 500 1000 5000 100 500 1000 5000

min 0.002 0.001 0.005 0.004 0.012 0.094 0.106 0.123 0.005 0.129 0.142 0.162
1st Quantile 0.104 0.107 0.113 0.111 0.196 0.219 0.224 0.225 0.199 0.222 0.228 0.230

median 0.143 0.147 0.152 0.151 0.245 0.251 0.251 0.250 0.242 0.252 0.252 0.251
3rd Quantile 0.195 0.190 0.193 0.194 0.300 0.283 0.278 0.277 0.290 0.280 0.277 0.273

max 0.435 0.415 0.421 0.377 0.474 0.422 0.392 0.368 0.439 0.372 0.390 0.361
mean 0.150 0.152 0.154 0.156 0.248 0.250 0.250 0.251 0.247 0.251 0.253 0.251

standard error 0.072 0.061 0.061 0.059 0.077 0.048 0.044 0.038 0.069 0.042 0.037 0.032
skewness 0.560 0.481 0.364 0.370 0.110 -0.124 -0.067 0.016 0.180 -0.069 0.087 0.019
kurtosis 3.590 3.299 3.341 3.114 2.897 2.950 3.115 3.045 3.033 2.869 3.092 2.981

Table 2: Basic Statistics
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(a) Boxplot of p̂r(u2, v2)
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Figure 4: Boxplots of the proposed estimators. The sample size is N = 100, 500, 1000, 5000 from left to right.

pr(u2) and pr(v2) take the value 1/4, the sample means of
p̂r(u2) and p̂r(v2) are expected to be close to 1/4 and zero,
respectively. Table 2 and Figures 4 show the basic statistics
and box-and-whisker plots of p̂r(u2, v2), p̂r(u2), and p̂r(v2)
for 1000 replications with the given sample size N , respec-
tively. In Figures 4-6, the horizontal solid lines show the
minimum/1st quantile/median/3rd quantile/maximum values
of p̂r(u2, v2), p̂r(u2), and p̂r(v2), respectively.

From Table 2, the sample means of p̂r(u2, v2), p̂r(u2), and
p̂r(v2) are close to the true values, and the sample standard
errors become smaller as the sample size becomes larger.
Thus, it seems that the proposed estimation method provides
the consistent estimators of pr(u2, v2), pr(u2), and pr(v2).
In addition, from Figures 5 and 6, the interquantile ranges for
p̂r(u2) and p̂r(v2) are shown to be narrower and still include
the true values even if the sample size is large. In contrast,
the interquantile ranges for p̂r(u2, v2) include the true values
but do not become so narrow even if the sample size is large.
Note that Theorems 1-3 require the calculation of the inverse
matrix of probability matrices with small nonzero determi-
nants to estimate the probabilities of potential outcome types.
This may be a reason why there are many outliers of the
estimates for each sample size. Such outliers occur when it is
difficult to judge that the proposed identification conditions
hold from the observed data. Finally, it appears that both
p̂r(u2) and p̂r(v2) are symmetrically distributed, and thus,
asymptotic normality holds, but p̂r(u2, v2) may not. This
finding may be due to Theorem 3, together with Theorems 1
and 2, requiring the calculation of the inverse matrix of the
probabilities more than Theorems 1 and 2 and thus becoming
unstable for a small sample size. In fact, in Table 2, regarding
p̂r(u2, v2), both the skewness and kurtosis of the distribution
of p̂r(u2, v2) become close to the skewness and kurtosis of
the normal distribution as the sample size increases. For a

further discussion of the simulation experiments and case
study, see the Supplementary Material.

Discussion
We have proposed novel identification conditions for the prob-
abilities of potential outcome types based on the IV assump-
tions with covariate information in randomized trials in which
the treatment assignment is randomized but subject compli-
ance is not perfect. When the probabilities of potential out-
come types are identifiable through the proposed conditions,
they cannot be evaluated by standard statistical likelihood-
based estimation methods, as our estimation problem leads to
that of singular models. To solve this problem, we provided
consistent estimators of the probabilities of potential outcome
types based on the method of moments, which leads to the
asymptotic normality of the proposed estimators through the
delta method under regular conditions. However, the method
of moments estimator may not be efficient. To improve effi-
ciency, we have proposed a bounded constrained augmented
Lagrangian method (Birgin and Martı́nez 2020) to derive
consistent estimators more efficiently than can the method
of moments. Although the asymptotic normality of the aug-
mented Lagrangian method in causal inference is discussed
in Shingaki and Kuroki (2021), it is necessary to develop a
more efficient estimation method based on singular models.
In addition, we have assumed that the observed variables of
interest are dichotomous in this paper. This assumption can
be relaxed by allowing these variables of interest to have
more than two categories; in such a situation, we can easily
extend our results to multicategorical variables, which makes
them applicable to a wider variety of situations. However, in
such cases, it may be difficult to obtain reliable statistics on
the recovered probabilities due to data sparseness. We leave
this topic to future work.
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