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Abstract

Normalizing flows have been successfully modeling a com-
plex probability distribution as an invertible transformation
of a simple base distribution. However, there are often appli-
cations that require more than invertibility. For instance, the
computation of energies and forces in physics requires the
second derivatives of the transformation to be well-defined
and continuous. Smooth normalizing flows employ infinitely
differentiable transformation, but with the price of slow non-
analytic inverse transforms. In this work, we propose dif-
feomorphic non-uniform B-spline flows that are at least
twice continuously differentiable while bi-Lipschitz contin-
uous, enabling efficient parametrization while retaining an-
alytic inverse transforms based on a sufficient condition for
diffeomorphism. Firstly, we investigate the sufficient condi-
tion for Ck−2-diffeomorphic non-uniform kth-order B-spline
transformations. Then, we derive an analytic inverse trans-
formation of the non-uniform cubic B-spline transformation
for neural diffeomorphic non-uniform B-spline flows. Lastly,
we performed experiments on solving the force matching
problem in Boltzmann generators, demonstrating that our
C2-diffeomorphic non-uniform B-spline flows yielded solu-
tions better than previous spline flows and faster than smooth
normalizing flows. Our source code is publicly available at
https://github.com/smhongok/Non-uniform-B-spline-Flow.

Introduction
Normalizing flows (Rezende and Mohamed 2015; Papa-
makarios et al. 2021) model complex probability distribu-
tions. Normalizing flows are not only performing the proba-
bility density estimation but also sampling from the learned
probability distribution. Let X be a dataset from the true
target probability distribution p⋆x. Constructing normalizing
flows fits a flow-based model px to the true target distribu-
tion p⋆x using a simple base probability distribution pu and
a diffeomorphic (i.e., invertible and differentiable) mapping
T : Ω → Ω where Ω is a compact subset of RD with the
following density transformation:

px(x) = pu(T
−1(x))

∣∣∣∣det∂T−1

∂x
(x)

∣∣∣∣ . (1)

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For X = {x(n)}Nn=1 where x(1), . . . ,x(N) are i.i.d. samples
from p⋆x, normalizing flows are trained on X by minimizing
the following negative log-likelihood (NLL):

LNLL = − 1

N

N∑
n=1

log px(x
(n)) ≈ −Ex∼p⋆

x
[log px(x)] (2)

where the above approximation becomes true as N → ∞.
Density estimation corresponds to obtaining T from x and
sampling is referred to getting x = T (u) from u ∼ pu(u).

Normalizing flows are often used to model physical sys-
tems. For example, one can model the probability density
of a molecular system (Köhler, Klein, and Noé 2020; Wu,
Köhler, and Noé 2020; Garcia Satorras et al. 2021; Xu
et al. 2021), sample a lattice model (Li and Wang 2018;
Albergo, Kanwar, and Shanahan 2019; Nicoli et al. 2020,
2021; Boyda et al. 2021), or estimate free energies (Wirns-
berger et al. 2020; Ding and Zhang 2021). While a C1-
diffeomorphic T may be sufficient in a typical normalizing
flow for generating images or texts, modeling physical sys-
tems requires more conditions such as a normalizing flow
being a Ck-diffeomorphism. For example, Boltzmann gen-
erator (Noé et al. 2019; Köhler, Krämer, and Noé 2021; Liu
et al. 2022; Ahmad and Cai 2022; Jing et al. 2022) requires
the condition that T is a C2-diffeomorphism.

Boltzmann generators are generative models for sampling
molecular structures whose existence probability distribu-
tions follow the Boltzmann distributions. Without loss of
generality, the true target distribution can be expressed as
p⋆x(x) ∝ exp (−v(x)) where v is the potential energy of a
molecular system and its force components are

f(x) = −∂xv(x) = ∂x log p
⋆
x(x) = ∂xp

⋆
x(x)/p

⋆
x(x). (3)

Since valid molecular systems have well-defined and con-
tinuous force components, p⋆x must be at least once con-
tinuously differentiable (for continuous f ) and nonzero (for
well-defined f ).

When the Boltzmann generators are constructed using the
normalizing flows, Equation (1) implies that T−1 must be
at least twice continuously differentiable (for continuously
differentiable px) and its derivative must have positive lower
bound (for px to have positive lower-bound). In other words,
T should be at least C2-diffeomorphic. In this case, it is pos-
sible to train through force matching (FM) by minimizing
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the mean squared error of the force components, which can
improve the performance of Boltzmann generators. How-
ever, most existing normalizing flow models (Dinh, Sohl-
Dickstein, and Bengio 2017; Müller et al. 2019; Durkan
et al. 2019b; Dolatabadi, Erfani, and Leckie 2020; Durkan
et al. 2019a) can not be used for this problem since they are
only C1-diffeomorphic. They can not be trained using FM
and can produce physically invalid samples. Smooth nor-
malizing flows (Köhler, Krämer, and Noé 2021) addressed
this problem by employing an ensemble of smooth (C∞)
bump functions (Tu 2008). However, since those functions
do not admit analytic inverses, either density estimation or
sampling should be conducted in a time-consuming black
box root finding method. To the best of the authors’ knowl-
edge, there is no known normalizing flow to meet the condi-
tions of both being at least C2-diffeomorphic and admitting
analytic inverses.

In this paper, we propose Ck-diffeomorphic non-uniform
B-spline flows where k can be controlled so that they can
be applicable to physics problems such as Boltzmann gener-
ators that require both at least C2-diffeomorphism and ana-
lytic inverses. We firstly investigate the sufficient condition
for obtaining global invertibility. To ensure that the probabil-
ity density is continuously differentiable and has a positive
lower bound, we state and prove the sufficient conditions for
non-uniform B-spline transformations of any order to be bi-
Lipschitz. Then, we propose a parameterization method that
is applicable in periodic and aperiodic domains as a build-
ing block of our non-uniform B-spline flows to ensure sur-
jectivity and sufficient expressive power. Bi-Lipschitz con-
tinuity, surjectivity, and the nature of the non-uniform B-
splines ensure that the proposed normalizing flow is a Ck−2-
diffeomorphism for the order k non-uniform B-splines (us-
ing polynomials with degree k−1). Our experiments demon-
strate that the proposed non-uniform B-spline flow is capa-
ble of solving the FM problems in Boltzmann generators that
can not be done with most existing normalizing flows and is
able to solving the same problems quickly using analytic in-
verses for the low-order B-splines (i.e., polynomial root for-
mula) that smooth normalizing flows can not admit. Here is
the summary on the contributions of this paper:
• Investigating the sufficient conditions for the any order

non-uniform B-spline transformation to be diffeomor-
phic on a compact domain.

• Proposing a parametrization method for the non-uniform
B-spline transformation in normalizing flows to maintain
expressive power on periodic / aperiodic domains.

• Showing that our non-uniform B-spline flows with FM
yielded much better experimental results than RQ-spline
flows and are as good as the state-of-the-art smooth nor-
malizing flows in density estimation and sampling.

• Demonstrating that sampling with non-uniform low-
order B-spline flows is much faster than that of smooth
flows due to the admissibility of analytic inverses.

Related Works
Coupling transformations. A coupling transform (Dinh,
Krueger, and Bengio 2015; Dinh, Sohl-Dickstein, and Ben-

gio 2017) ϕ : Ω→ Ω ⊆ RD is defined as

ϕ(x)i =

{
fθi(xi), θi = NN(x1:d−1) if d ≤ i ≤ D,

xi if 1 ≤ i < d,
(4)

where NN is an arbitrary neural network and fθi : Ω′ →
Ω′ ⊆ R is an invertible function parameterized by θi.
The Jacobian determinant of this transform is easily ob-
tained by the derivatives of f , expressed as det (∂ϕ/∂x) =
ΠD

i=d∂fθi/∂xi. The inverse of ϕ is obtained as

ϕ−1(x)i =

{
f−1
θi

(xi), θi = NN(x1:d−1) if d ≤ i ≤ D,

xi if 1 ≤ i < d.

Coupling transformations have the computational advan-
tages for Jacobian and inverse as well as have sufficient ex-
pressive power; hence many normalizing flows employ mul-
tiple coupling layers. However, various invertible f func-
tions have been proposed.

Affine coupling flows. Many studies employ affine trans-
formations as f , i.e., fθi(xi) = aixi + bi where θi =
{ai, bi}, for computational advantages. Since affine trans-
formations are easy to compute their Jacobian and inverse
transformations (Kingma and Welling 2014; Dinh, Sohl-
Dickstein, and Bengio 2017), they are suitable for gener-
ating images (Kingma and Dhariwal 2018; Ho et al. 2019;
Lugmayr et al. 2020; Sukthanker et al. 2022) or speeches
(Prenger, Valle, and Catanzaro 2019; He et al. 2022) with
relatively large dimensions D.

Spline-based flows. Affine coupling flows have difficulty
in learning discontinuous distributions even with small di-
mension D. To tackle this problem, some studies use more
complex transformations such as splines, which are piece-
wise polynomials or rational functions (parameterized with
θi), such as linear and quadratic splines (Müller et al.
2019), cubic splines (Durkan et al. 2019b), linear-rational
splines (Dolatabadi, Erfani, and Leckie 2020), and rational-
quadratic (RQ) splines (Durkan et al. 2019a). For the low-
order splines with proper invertibility conditions, the inverse
can be analytically obtained through the root formula, which
is slower than inverse affine transformations.

Smooth normalizing flows. Smooth normalizing
flows (Köhler, Krämer, and Noé 2021) generate C∞-
diffeomorphism using smooth compact bump functions (Tu
2008) as follows:

fθi(xi) =
∑
j

ρθij (xi)

ρθij (xi) + ρθij (1− xi)
,

ρθij (x) = exp
(
−1/(αijx

βij )
)
,

(5)

where θi =
⋃

j θij =
⋃

j{αij , βij}. Even though ρ(x) is
a low-order polynomial such as x3 (which should have an
analytic inverse), this function does not have an analytic in-
verse because f is an ensemble (i.e., linear combination) of
rational functions.

12226



Diffeomorphic Non-uniform B-spline Flows
Non-uniform B-splines (Curry and Schoenberg 1947;
De Boor 1978) are highly attractive methods for compro-
mising the trade-offs between spline spline-based flows and
smooth normalizing flows. Non-uniform B-splines have sev-
eral nice properties: continuously differentiable with any
degrees, compact support, and locally analytic invertibility
for low-orders. However, for constructing Ck-diffeomorphic
normalizing flows using non-uniform B-splines, the follow-
ing conditions should be satisfied: global invertibility, sur-
jectivity on various domains, and appropriate parameteriza-
tion for sufficient expressive power.

Definition for Flow Models
We utilize the definition of a non-uniform B-spline in (Curry
and Schoenberg 1947) with some modifications on normal-
ization suggested by (De Boor 1978). Let t := {tj} be an
increasing sequence. The j-th non-uniform B-spline of or-
der k (using polynomials with degree k − 1) for the knot
sequence t is denoted by Bj,k,t and is defined recursively
as:

Bj,1,t = 1[tj ,tj+1), (6)
Bj,k,t = ωjkBj,k−1,t + (1− ωj+1,k)Bj+1,k−1,t, (7)

with
ωjk(x) := (x− tj)/(tj+k−1 − tj). (8)

For simplicity, we often drop t so that Bj,k,t = Bjkt = Bjk.
Then, for the flow model in Equation (4), we propose to

construct the transformation f : R → R using the non-
uniform B-splines of order k (i.e., Bjkt) as follows:

f(x;α, t) =
s−1∑

j=r−k+1

αjBjkt(x), ∀x ∈ [tr, ts] (9)

where r, s ∈ Z, α = {αj}s−1
j=r−k+1 ∈ Rs−r+k−1 and

t = {tj}s+k−2
j=r−k+2 ∈ Rs−r+k−3 are designed to be the out-

puts of an arbitrary neural network (NN) with some con-
straints that we further discuss later. The function f is a sur-
jective mapping from [tr, ts] to [tr, ts] and this transforma-
tion is defined to be an identity mapping when the input is
outside this range. Note that f(·;α, t) ∈ Ck−2, but there is
no guarantee that it is diffeomorphic.

A differentiable transformation f is diffeomorphic if it is
bijective and the inverse f−1 is differentiable. If these func-
tions are n times continuously differentiable, f is called a
Cn-diffeomorphism. For a diffeomorphic f , (f−1)′ should
exist (i.e., bounded and nonzero) and thus, there should be
a positive lower bound for f ′(x;α, t). Since (f−1(x))′ =
1/f ′(f−1(x)), both the lower and upper bounds for f ′ and
(f−1)′ should exist, respectively. Therefore, to enforce f
to be diffeomorphic, NN should generate α and t so that
f ′(·;α, t) is bounded on both sides. Let {tj}s+k−2

j=r−k+2 be an
increasing sequence and u, l ∈ R, u > 1 > l > 0. Let
S(t, l, u) ⊂ Rs−r+k−1 be the set of α that makes the deriva-
tive of f(·;α, t) has an upper bound u and a lower bound l,
which can be written as
S(t, l, u) = {α ∈ Rs−r+k−1 : l < f ′(x;α, t) < u, ∀x ∈ R}.
Since f ′(x;α, t) is linear in α, S(t, l, u) is (open) convex.

Sufficient Conditions for Diffeomorphism
We investigate the sufficient condition for non-uniform B-
spline transformations of any order to be diffeomorphic.
There have been studies on sufficient conditions for dif-
feomorphic uniform B-spline transformations (Chun and
Fessler 2009; Sdika 2013). We leverage these studies to fur-
ther investigate the sufficient condition for diffeomorphic
non-uniform B-spline transformations.

Theorem 1 (Sufficient condition for diffeomorphic trans-
formations). Let k ∈ N \ {1, 2}, r, s ∈ Z, r + k ≤
s. Let α = {αj}s−1

j=r−k+1 ∈ Rs−r+k−1 and t =

{tj}s+k−1
j=r−k+1 ∈ Rs−r+2k−1 be (strictly) increasing se-

quences. Let f(x;α, t) =
∑s−1

j=r−k+1 αjBjkt(x), where
Bjkt is the jth non-uniform B-spline of order k (from poly-
nomials with degree k − 1) for the knot sequence t. For
u > 1, 0 < l < 1 and j = r − k + 2, . . . , s− 1,

l

k − 1
<

αj − αj−1

tj+k−1 − tj
<

u

k − 1
(10)

leads to l < f ′(·;α, t) < u on [tr, ts].

Proof. See the supplementary material.

Theorem 1 suggests that we can generate bi-Lipschitz
non-uniform B-spline transformations by constraining the
parameters α = {αj}s−1

j=r−k+1and t = {tj}s+k−1
j=r−k+1 to sat-

isfy (10). Then, by the nature of non-uniform B-splines, we
can guarantee that these bi-Lipschitz kth-order non-uniform
B-spline transformations are in fact Ck−2-diffeomorphic.

Existence of an Analytic Inverse
Smooth normalizing flows exhibit good expressive power
but with the price of slow non-analytic inverse transforma-
tions. In contrast, the non-uniform B-splines of order k have
analytic inverses if k < 5 since they are piecewise (k−1)th-
order polynomials. Inverse non-uniform B-spline transfor-
mation has been partially studied in (Tristán and Arribas
2007), which ensured its exactness only on the knots t, not
on the entire continuous domain. Here, we propose an ana-
lytic inverse non-uniform B-spline transformation for Equa-
tion (9) on a compact domain in our normalizing flows with
k < 5.

The map f : [tr, ts] → [tr, ts] in Equation (9) with α ∈
Rs−r+k−1 satisfying the sufficient condition (10) in The-
orem 1 is Ck−2-diffeomorphic. Like prior works (Durkan
et al. 2019a,b), computing the inverse of a non-uniform
B-spline at any location y requires finding the bin index
j ∈ [r, s] where x lies with f(tj ;α, t) ≤ y < f(tj+1;α, t).
The following equation can easily identify such bin j:

f(tj ;α, t) =
s−1∑

i=r−k+1

αiBik(tj) =

j−1∑
i=j−k+1

αiBik(tj).

This bin search does not increase computational burden due
to strictly increasing (i.e., sorted) {f(tj ;α, t)}j sequence.
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After finding the bin j, {i|supp(Bik)∩ (tj , tj+1) ̸= ∅} =
{j − k + 1, j − k + 2, . . . , j}. Thus, for the given y, the
following equation holds for x ∈ [tj , tj+1),

y =

j∑
i=j−k+1

αiBik(x). (11)

Equation (11) is a (k − 1)th-order polynomial, so the root
formulas of the polynomial equations can be used if k ≤ 5.
In case of k = 4 (i.e., cubic B-spline), the root finding algo-
rithm by (Peters 2016) can be used, which is a modification
of the algorithm of (Blinn 2007). We used the code of cubic-
root computation by (Durkan et al. 2019b).

Definitions on Various Domains
For the applications to physics problems, non-uniform B-
spline transformation must be well-defined on domains such
as closed interval and circle (i.e., periodic interval). With-
out loss of generality, we construct transformations on I
(unit interval) and S1 (unit circle), which can be extended
to arbitrary closed intervals and circles through affine trans-
forms. The following subsections discuss how to construct
well-defined diffeomorphic non-uniform B-spline transfor-
mations on I and S1.

On I. Two constraints f(0) = 0 and f(1) = 1 must hold
to make f be surjective from I to I. One trivial solution
for a surjective f (i.e., f(0) = 0 and f(1) = 1) is to set
αj = 0 for all j such that tj < 0 and αj = 1 for all j
such that tj+k > 1. However, this naı̈ve solution severely
decreases the expressive power of the non-uniform B-spline
transformation near both endpoints (i.e., 0 and 1). This is
because the kth-order non-uniform B-spline transformations
are Ck−2, which results in f (m)(0) = 0 and f (m)(1) = 0 for
m = 1, . . . , k−2 where f (m)(x) denotes the mth derivative
of f(x). Therefore, we propose Algorithm 1 to generate pa-
rameters (i.e., t and α) to maintain the expressive power of
the non-uniform B-spline transformation at both endpoints.
This proposed algorithm consists of three main steps as fol-
lows:
• Line 1-7 : Generating an increasing sequence
{tj}s+k−2

j=r−k+2 such that tr = 0, ts = 1 and
∆tj := tj+1 − tj having a positive infimum for
j = r − k + 2, . . . , s + k − 3. Such a sequence can be
obtained by applying the softmax (line 1), cumulative
summation (line 4-7), and the affine transform (line 2-3)
to the output of an arbitrary neural network. Note that ϵt
is set to a small positive constant (e.g., 10−6) to ensure
∆tj has a positive infimum.

• Line 8-12 : Similar to the first step, generating another
increasing sequence {αj}s−2

j=r−k+2 such that αr−k+2 >
0, αs−2 < 1 and ∆αj := αj+1 − αj having a positive
infimum for j = r − k + 2, . . . , s − 3. ϵα is set to a
small positive constant (e.g., 10−6) to ensure ∆αj has a
positive infimum.

• Line 13-17 : Computing αr−k+1 and αs−1 such that
f(0) = 0 and f(1) = 1, respectively. This step ensures
surjectivity.

Algorithm 1: Non-uniform B-spline parameter generation

Input: ∆t̃ =
{
∆t̃j

}s+k−3

j=r−k+2
,∆α̃ = {∆α̃j}s−2

j=r−k+1

Parameter: ϵt, ϵα
Output: t = {tj}s+k−2

j=r−k+2 , α = {αj}s−1
j=r−k+1

1: ∆t← softmax(∆t̃)
2: ∆t← ϵt + (1− (s− r + 2k − 4)ϵt)∆t

3: ∆t← ∆t/
∑s−1

j=r(∆t)j

4: tr−k+2 = −
∑r−1

j=r−k+2 ∆tj
5: for i = r − k + 3, . . . , s+ k − 2 do
6: ti = tr−k+2 +

∑i−1
j=r−k+2 ∆tj

7: end for
8: ∆α← softmax(∆α̃)
9: ∆α← ϵα + (1− (s− r + k − 2)ϵα)∆α

10: for i = r − k + 2, . . . , s− 2 do
11: α̃i =

∑i−1
j=r−k+1 ∆αj

12: end for
13: α̃r−k+1 = 0
14: α̃s−1 = 1

15: f̃r =
∑r−1

j=r−k+1 α̃jBjkt(tr)

16: f̃s =
∑s−1

j=s−k+1 α̃jBjkt(ts)

17: α = (α̃− f̃r)/(f̃s − f̃r)
18: return t, α

On S1. Smooth normalizing flows implemented periodic
transformations with non-zero derivatives in interval bound-
aries. Since the vanishing gradient at the endpoint makes
the universal approximation of arbitrary periodic transfor-
mations impossible, it is important to implement periodic
transformations. Similar to RQ circular spline flows (Durkan
et al. 2019a), we propose to control the parameters to match
all 1st to (k− 2)th-order derivatives on both interval bound-
aries using the following theorem.

Theorem 2. Let k ∈ N \ {1, 2}, r, s ∈ Z, r + k ≤
s. Let α = {αj}s−1

j=r−k+1 ∈ Rs−r+k−1 and t =

{tj}s+k−1
j=r−k+1 ∈ Rs−r+2k−1 be (strictly) increasing se-

quences. Let f(x;α, t) =
∑s−1

j=r−k+1 αjBjkt(x), where
Bjkt is the jth non-uniform B-spline of order k for the knot
sequence t. If αs−i = 1 + αr−i for i = 1, 2, . . . , k − 1 and
ts+j = 1+ tr+j for j = −k + 2,−k + 3, . . . , k − 3, k − 2,
then f (m)(tr) = f (m)(ts) for m = 1, . . . , k − 2.

Proof. See the supplementary material.

Theorem 2 suggests that by taking additional condi-
tions on some of the parameters, Ck−2-diffeomorphic non-
uniform B-spline transformations can be constructed on the
unit circle. Therefore, when we generate diffeomorphic non-
uniform B-spline transformations on S1, we use the Algo-
rithm 1, but with αs−i = 1 + αr−i for i = 1, 2, . . . , k − 1
and ts+j = 1+tr+j for j = −k+2,−k+3, . . . , k−3, k−2.
These additional conditions can be implemented by setting
∆α̃s−i = 1 + ∆α̃r−i for i = 2, . . . , k − 1 and ∆t̃s+j =
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(a) Ground
Truth

(b) RQ-
spline

(c) Smooth

(d) Non-
uniform
B-spline

(ours)

Figure 1: Probability density (left) and its corresponding
force field (right) of (a) ground truth, and their approxima-
tions by (b) RQ-spline flows, (c) Smooth flows, and (d) Non-
uniform (cubic) B-spline flows (ours).

1 + ∆t̃r+j for j = −k + 2,−k + 3, . . . , k − 3 in the Algo-
rithm 1.

Experiments
Illustrative Toy Example
A simple toy example in this section shows that the pro-
posed non-uniform B-spline flows generate feasible continu-
ous forces. All flow models used NLL as a loss function. We
provide full experimental details in the supplementary mate-
rial. Figure 1 (a) shows energy and force by two-dimensional
ground-truth distribution. In Figure 1 (b), RQ-spline flow
shows an unstable force field with many singularities (i.e.,
unrealistic) because it is only a C1-diffeomorphism. On
the other hand, since smooth normalizing flow is a C∞-
diffeomorphism, the force field is well-defined (i.e., not di-
verging) and continuous in Figure 1 (c). In Figure 1 (d), non-
uniform cubic B-spline flow, which is a C2-diffeomorphism,
shows that the force field is well-defined and continuous,
which is comparable to the smooth normalizing flow.

We also depict some non-uniform B-spline transforma-
tions generated by our models in this toy example exper-
iment in Figure 2. Figure 2 (a) shows the transformation
in the aperiodic domain (I), and Figure 2 (b) illustrates the
transformation in the periodic domain (S1). Note that Figure
2 (a) is extracted from the flow that models aperiodic prob-

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Aperiodic (I)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Periodic (S1)

Figure 2: Accumulation of non-uniform B-spline transfor-
mations on (a) I and (b) S1 generated by the flow model
used in the illustrative toy example experiment ((a) from
Figure 1(d) and (b) from the periodic case in supplemental,
respectively). The displayed transformations were randomly
selected. Note that learned transformations in (b) have con-
tinuous derivatives at both ends, demonstrating Theorem 2.

ability density as in Figure 1, while Figure 2 (b) is obtained
from the flow that models periodic probability density as in
the periodic toy example in supplemental. We can observe
that our diffeomorphic non-uniform B-spline transformation
is surjective, differentiable, and diversely expressive. In par-
ticular, in Figure 2 (b), it can be observed that it also has the
same slope at both endpoints as Theorem 2 guarantees while
having diverse diffeomorphic transformations.

Boltzmann Generator Training by Force Matching
This section demonstrates that the proposed non-uniform
B-spline flows can be applied to physical system model-
ing such asa Boltzmann generator, trained with FM, just
like smooth normalizing flows, but unlike other prior nor-
malizing flows such as RQ spline flows. The output of the
Boltzmann generator is a 60-dimensional vector represent-
ing the structure (including bond length and angle) of a
molecular system, alanine dipeptide. Alanine dipeptide is
a typical example of molecular system structure sampling
problems. Because alanine dipeptide has a highly nonlin-
ear potential energy surface and singular points, common
C1-diffeomorphic normalizing flows may have difficulty in
learning its distribution model.

We trained three normalizing flow models: RQ-spline
flow, smooth normalizing flow, and our non-uniform B-
spline flow. Two loss functions were used: NLL loss LNLL
or NLL + FM loss (1− λFM)LNLL + λFMLFM where

LFM =
1

N

N∑
n=1

∥∥∥f(x(n))− ∂x log px(x
(n))

∥∥∥2
2

≈ Ex∼p⋆
x

[
∥f(x)− ∂x log px(x)∥22

]
,

(12)

and we set λFM = 0.001. In density estimation, each
transformation is performed in a forward direction, and in
sampling, it is performed in a reverse direction (i.e., root-
finding). However, NLL + FM loss was not able to be used
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Method NLL
FME
×104

KLD

RQ-spline -210.28
(± 0.05)

79.95
(± 92.80)

385.22
(± 8.05)

Smooth -210.87
(± 0.05)

1.34
(± 0.07)

192.57
(± 0.22)

Smooth+FM -210.25
(± 0.09)

0.909
(± 0.002)

196.85
(± 1.02)

Non-uniform
B-spline (ours)

-211.03
(± 0.03)

4.59
(± 5.11)

192.62
(± 0.31)

Non-uniform B-
spline+FM (ours)

-209.45
(± 1.78)

0.812
(± 0.345)

228.09
(± 54.6)

Table 1: Negative log-likelihoods (NLLs), force matching
errors (FMEs), and reverse Kullback-Leibler divergences
(KLDs) of alanine dipeptide training with different meth-
ods. The +FM indication means that it is trained with NLL
and FME; otherwise, it is trained with NLL only. The statis-
tical values are the mean and twice the standard error for ten
replication experiments.

for RQ-spline flows since it diverged. So we trained Boltz-
mann generators in a total of five scenarios. Each experimen-
tal scenario was repeated ten times. Experimental details are
described in the supplementary material.

Table 1 shows NLLs, force matching errors (FMEs), and
reverse Kullback-Leibler divergences (KLDs) on the test set
after ten training epochs for five different scenarios, with
standard error for ten replication experiments. RQ-spline
flow yielded the worst FME and KLD. It seems obvious
that RQ-spline yielded the largest FME because LFM can
not be used. RQ-spline also yielded the largest KLD, which
suggests that if the normalized flow model itself is not C2-
diffeomorphism, it may not be appropriate for Boltzmann
generator even if LFM is not used. Smooth normalizing flow
achieves great performance regardless of using LFM. Unlike
RQ-spline flow, non-uniform B-spline flow achieved perfor-
mance similar to smooth normalizing flow. One difference
is that non-uniform B-spline flow yielded larger standard er-
rors than smooth normalizing flow for some metrics. This
is because non-uniform B-spline flow reaches similar met-
rics to smooth normalizing flow in most trials (about 9/10
trials) but has an outlier (about 1/10 trials). We discuss this
phenomenon in the following section.

Figure 3 depicts the scatterplot of the forces estimated
by the flow model in five different scenarios. The top row
shows the results of density estimation, and the bottom
row shows the results of sampling. There was no signifi-
cant difference between the two rows except for RQ-spline
flows, which showed the worst performance. The other four
scenarios showed similar performance, but each achieved
slightly better performance when using FM. Therefore, both
smooth normalizing flow and non-uniform spline flow seem
to model the force well.

Dynamics Simulation by Density Estimation
In the previous experiment, our non-uniform B-spline flow
seemed to model force well. However, simulating molecu-
lar dynamics through density estimation using normalizing

Architecture #params Runtime
(Reverse)

Runtime
(Forward)

RQ-spline 285,497 0.59
(± 0.01)

0.49
(± 0.01)

Smooth 314,456 19.8
(± 0.26)

0.64
(± 0.01)

Non-uniform
B-spline (ours) 380,982 1.12

(± 0.02)
0.72

(± 0.01)

Table 2: Runtimes per sample (in ms) of RQ-spline flows,
smooth flows and non-uniform B-spline flows. The runtime
is averaged over 10,000 samples each. The statistical values
are the mean and twice the standard error for ten replication
experiments. All computations were conducted on NVIDIA
GeForce RTX3090.

flows is much more challenging. Since the flow model does
not have any internal algorithm that can suppress numeri-
cal errors, it quickly breaks the molecular structure unless
it is very well-trained. Therefore, here we further verify our
non-uniform B-spline flow thoroughly through the molecu-
lar dynamics simulation.

We used three models for molecular dynamics simulation;
RQ-spline flow, smooth normalizing flow with FM, and non-
uniform B-spline flow with FM. Each model is identical to
the one used in Figure 3.

Figure 4 shows the potential energies during the molec-
ular dynamics simulation. As in Figure 4 (a) and (b), RQ-
spline flow failed to maintain the initial state for all ten dif-
ferent initial values. On the other hand, in Figure 4 (c) and
(d), both non-uniform B-spline flow and smooth normaliz-
ing flow well-maintained all initial values.

Runtime Comparison
We compared the runtime of forward and reverse operations
for the models used in the previous experiment. The forward
operation performs density estimation, and the reverse op-
eration performs sampling. Table 2 shows the average run-
time for 10,000 samples. The table also shows the model’s
total number of parameters, indicating no significant differ-
ence in the size of the flow models. Because all three models
performed forward operations analytically, they had similar
runtimes (proportional to the number of parameters).

In reverse operation, since only smooth normalizing flow
was non-analytic (black-box root-finding), smooth normal-
izing flow was the slowest. Non-uniform B-spline flow,
whose reverse operates analytically, was about 17 times
faster than smooth normalizing flow. This demonstrates that
the proposed non-uniform B-spline flow has a great advan-
tage in runtime over smooth normalizing flow. We also ob-
served that RQ-spline flow had an increased runtime in re-
verse operation since RQ-spline flow and non-uniform B-
spline flow solve the quadratic and cubic equations, respec-
tively.

Discussion
Outlier issue in non-uniform cubic B-spline flows In
the Boltzmann generator experiment, our non-uniform cu-
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Figure 3: Scatterplot (10,000 samples) of forces estimated by each normalizing flow model (RQ-spline, smooth, and our non-
uniform B-spline). The upper row is obtained by density estimation for test set samples, and the lower row is obtained by
sampling with a flow model. The +FM indication means that it is trained with NLL + FM; otherwise, it is trained with NLL.
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Figure 4: Potential energies during the molecular dynamics
simulation, estimated by (a) RQ-spline flow ((b) rescaled),
(c) non-uniform B-spline flow, and (d) smooth normalizing
flow, respectively. The simulation started with ten stable ran-
dom initial configurations.

bic B-spline flow model showed an outlier with a large re-
verse KLD, about once in ten times. One possible expla-
nation for this phenomenon can be the numerical instabil-
ity of the cubic equation root-finding formula (Durkan et al.
2019b). Since the implementation of the model uses a float-

ing point operation, it is impossible to guarantee whether the
root-finding formula will actually find the root correctly be-
yond machine precision. This problem has also been raised
in cubic spline flows (Durkan et al. 2019b), a study using
the same root-finding formula as ours. Considering 32-bit
floating-point precision, cubic spline flows clipped the in-
put of every cubic-spline transformation to [10−6, 1−10−6]
instead of [0, 1]. Similar trick of clipping the inputs or the
increasement of the floating-point precision (e.g., 64-bit or
128-bit) may suppress outliers from the instability of the
equation root formula for much more accurate physics sys-
tem modeling.

Limitations Spline-based normalizing flows, including
our non-uniform B-spline flows, are much more computa-
tionally burdensome than affine coupling flows. For this rea-
son, normalization flows dealing with images mainly em-
ploy affine transformations. Researchers in various fields
such as medical imaging have studied invertibillity (Chun
and Fessler 2009; Sdika 2013) and fast transformation
(Unser, Aldroubi, and Eden 1993a,b) of uniform B-splines.
Using uniform B-splines rather than non-uniform B-splines,
it may be possible to construct normalizing flows as fast as
affine coupling flows.

Conclusion
We proposed non-uniform B-spline flows based on the
sufficient conditions that kth-order non-uniform B-spline
transformation is a Ck−2-diffeomorphism, by proving bi-
Lipschitz continuity and surjectivity on various compact do-
mains. Experiments demonstrated that our non-uniform B-
spline flows can solve the force matching problem in Boltz-
mann generators better than previous spline-based flows and
as good as smooth flows. Our method can admit analytic in-
verses so that it is much faster than smooth flows.
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