
A Faster Practical Approximation Scheme for the Permanent

Juha Harviainen, Mikko Koivisto
University of Helsinki

juha.harviainen@helsinki.fi, mikko.koivisto@helsinki.fi

Abstract

The permanent of a matrix has numerous applications but
is notoriously hard to compute. While nonnegative matrices
admit polynomial approximation schemes based on rapidly
mixing Markov chains, the known practical estimators of the
permanent rely on importance or rejection sampling. We ad-
vance the rejection sampling approach, which provides prob-
abilistic accuracy guarantees, unlike importance sampling.
Specifically, we give a novel class of nesting upper bounds
and a simple preprocessing method that, in comparison to
previous works, enable faster sampling with better acceptance
rate; we demonstrate order-of-magnitude improvements with
both theoretical and empirical analyses. In addition, we dis-
play instances on which our approximation scheme is com-
petitive against state-of-the-art importance sampling based
estimators.

Introduction
The permanent of an n× n matrix A = (ai,j) is the sum

perA :=
∑
σ

n∏
i=1

ai,σ(i)

over all permutations σ of {1, 2, . . . , n}. Permanents ap-
pear in numerous and diverse applications, such as count-
ing perfect matchings in a bipartite graph, helping to ver-
ify a quantum-mechanical formula (Aaronson and Arkhipov
2011), heuristic counting under global cardinality con-
straints (Bianco et al. 2019), and multi-target tracking
(Uhlmann 2004), to name just a few.

For computing the permanent, the fastest known exact al-
gorithms run in time O(2nn) (Ryser 1963; Nijenhuis and
Wilf 1978), and no polynomial-time algorithm presumably
exists, for the problem is #P-hard (Valiant 1979). As even
deciding the sign of the permanent is #P-hard (Jerrum, Sin-
clair, and Vigoda 2004), research on approximation algo-
rithms has focused on nonnegative matrices, which suffice
for many applications. Nonnegative matrices admit fully
polynomial randomized approximation schemes based on
rapidly mixing Markov chains (Jerrum, Sinclair, and Vigoda
2004). However, the best known time complexity bounds are
impractical, within polylogarithmic factors of n7 (Bezáková

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2008), and there is also empirical evidence of infeasi-
bility (Newman and Vardi 2020).

The practical intractability of the problem calls for ap-
proaches developed mainly in the fields of AI and operations
research. Instead of requiring tractability in the worst case
(or average case over some simplistic baseline distribution),
the goal is to design methods that make use of heuristics so
as to perform well on various real-world and benchmark in-
stances. While this paradigm has generally been successful
for (weighted) model counting (see, e.g., Gomes, Sabharwal,
and Selman 2006, Soos and Meel 2019, Kuck et al. 2019b),
the available generic methods appear to be inefficient for ap-
proximating the permanent. Thus, estimating the permanent
of nonnegative matrices—in addition to being a fundamen-
tally important problem on its own—serves as a concrete
hard benchmark for heuristic-driven methods.

In this paper, we advance a rejection sampling approach
for estimating the permanent, put recently forward by Kuck
et al. (2019a) and Harviainen, Röyskö, and Koivisto (2021).
The approach stems from Huber’s (2006) scheme for binary
matrices. The idea is to sample a uniform random value be-
tween 0 and some upper bound U(A) of the permanent; if
the value falls in a range of size w(σ) :=

∏n
i=1 ai,σ(i) re-

served by some permutation σ, then the sample is accepted,
otherwise rejected. The acceptance rate is perA/U(A), and
after sufficiently many accepts, we obtain a high-confidence
estimate of perA. This approach relies on two key condi-
tions: (i) we can efficiently decide whether to accept or re-
ject a sample; (ii) we have a good bound U(A). To fullfill
the first condition, Huber utilized self-reducibility: a par-
tial permutation is incrementally extended until it gets ac-
cepted or rejected—crucially, this only works if the bound
U(A) is nesting, a kind of monotonicity property. This re-
quirement prevented using the well-known Minc–Brègman
bound (Minc 1963; Brègman 1973). As a remedy, Huber
crafted an approximate variant of that bound. Huber and
Law (2008) extended the idea to matrices with arbitrary non-
negative real entries.

Kuck et al. (2019a) circumvented the need for a nest-
ing bound. Their AdaPart scheme uses the tighter Minc–
Brègman bound, or its extension to nonbinary entries (Schri-
jver 1978; Soules 2005), and adaptively refines the partition
of the sampling space until the required monotonicity con-
dition is satisfied. A drawback is the larger computational

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12216

Name Domain Row bound Nesting References Comment

Minc–Brègman binary γ(ri) := (ri!)
1/ri No (Minc 1963; Brègman 1973) Tightest known

Brouwer–Schrijver real
∑n

k=1(γ(k)− γ(k − 1))a∗
i,k No (Schrijver 1978; Soules 2005) Extends Minc–Brègman

Huber binary h(ri) := g(ri)/e, Eq. (1) Yes (Huber 2006) Relaxes Minc–Brègman
Huber–Law real ℓ(ri)/e, Eq. (3) Yes (Huber and Law 2008) Similar to Huber

Extended Huber real
∑n

k=1(h(k)− h(k − 1))a∗
i,k Yes this paper Extends Huber

Table 1: Upper bounds for the permanent of a nonnegative n× n matrix (ai,j), the sum and kth largest entry of row i denoted
by ri and a∗i,k

cost per sample, traded for the higher acceptance rate, which
renders the scheme slower than the one by Huber and Law
(2008) for some classes of matrices (Harviainen et al. 2021).

The main contribution of the present work is a new nest-
ing upper bound for the permanent of nonnegative real ma-
trices. Our key observation is that the decomposition tech-
nique used for extending the Minc–Brègman bound pre-
serves the nesting property.1 Thus, by taking any nesting
bound for binary matrices and extending it using the tech-
nique, we obtain a nesting bound for nonnegative real matri-
ces. We do exactly this with Huber’s nesting bound; Table 1
summarizes the mentioned bounds. We give both analytical
and empirical results showing that the resulting scheme is
superior to the previous schemes by Huber and Law (2008)
and by Kuck et al. (2019a). Since our new bound—like the
other mentioned bounds—is a product of row bounds, the
deep rejection sampling method of Harviainen et al. (2021)
applies to our new bound as well and boosts the scheme fur-
ther. Another way to enhance performance is to appropri-
ately transform the input matrix as preprocessing. We revisit
sharpening, a simple transformation due to Soules (2005),
also mentioned but not used by Kuck et al. (2019a). We give
a heuristic implementation of the transformation and find
empirically that it usually significantly tightens the bound.

If one is ready to abandon accuracy guarantees, also other
Monte Carlo estimators become available. In particular, im-
portance sampling (IS) based estimators have appeared to
often perform well in practice (Smith and Dawkins 2001;
Alimohammadi et al. 2021). Even if the number of sam-
ples required for accuracy guarantees is generally too high
to be useful, recent advances in sample complexity analy-
sis (Chatterjee and Diaconis 2018) have enabled discovering
classes of matrices for which the complexity is provably fea-
sible (Alimohammadi et al. 2021). Could the state-of-the-art
IS estimators be systematically more efficient than the best
rejection sampling schemes (given in this paper), and we just
do not know how to prove good sample complexity bounds?
Or, does there exist (classes of) matrices on which IS esti-
mators actually perform worse than our rejection sampling
scheme, thus revealing a reason why proving good bounds
is, in fact, impossible? We conducted a small-scale empiri-
cal study of this question and found evidence for the latter
stand. It should be stressed that the comparison of IS and
rejection sampling schemes is, of course, not fair, since only

1Soules (2005) gives a generic treatment of this technique along
with historical notes, but he does not consider the nesting property.

the latter provide approximation guarantees—this partly ex-
plains why the two methods have not been compared against
each other in previous works.

While this work focuses on estimating the permanent, the
questions studied here should also be considered in a broader
context of approximate model counting. We will discuss this
aspect in the last section of this paper, for instance, view-
ing the technique to extend a bound from binary matrices
to nonnegative matrices as a way to “reduce” weighted to
unweighted model counting (Chakraborty et al. 2015).

Rejection Sampling for Estimating the
Permanent

We introduce Huber’s (2006) rejection sampling scheme and
necessary notation needed in the rest of the paper.

A map U from a set of matrices S to nonnegative reals is
a product upper bound in S , or just product bound, if for all
A ∈ S we have U(A) ≥ perA and

U(A) =
n∏

i=1

u

(n∑
j=1

ai,j

)
with some fixed function u that we call the row bound.

Denote by f(A, i, j) the matrix obtained from A by re-
moving the ith row and the jth column.

Definition 1. A map U from a set of matrices S to nonneg-
ative reals is nesting if

U(A) ≥
n∑

i=1

ai,1 · U(f(A, i, 1)) for all A ∈ S .

Observe that a nesting map is necessarily an upper bound
for the permanent. For generalized notions of nesting to ar-
bitrary recursive partitioning of sampling spaces, see Huber
(2006), Kuck et al. (2019a), and Harviainen et al. (2021).

Nesting bounds are desired as they enable exact sampling
of permutations σ proportionally to the weights w(σ) ob-
tained as the product of the corresponding entries. Algo-
rithm 1, due to Huber (2006), describes the O(n2)-time self-
reducible rejection sampling method for nesting bounds.
When a draw is accepted, the probability that the computa-
tion path corresponds to σ equals w(σ)/ perA, yielding the
total acceptance probability of perA/U(A): the tighter the
bound, the higher the acceptance rate. Acceptance can also
be understood as a Bernoulli-distributed random variable.

12217

Algorithm 1: Nesting rejection sampling
Input : A nonnegative n×n matrixA, an upper bound U.
Output : Either accept or reject.
if A is an 1× 1 matrix then

return accept;
bi ← ai,1U(f(A, i, 1)) for every i ∈ {1, 2, . . . , n};
s←

∑n
i=1 bi;

Define p(i) := bi/U(A) and p(reject) := 1− s/U(A);
Sample X by using p as a probability mass function;
if X = reject then

return reject;
Call Algorithm 1 with parameters f(A,X, 1) and U ;
return the result from recursion;

The ratio of the number of accepted draws and the total
number of draws multiplied by U(A) gives an approxima-
tion of perA. A result of Dagum et al. (2000) states that the
estimate is an (ϵ, δ)-approximation, that is, its relative error
is at most ϵ with probability at least 1−δ, as soon as the num-
ber of accepted draws exceeds 1+4(e−2)(1+ϵ)ϵ−2 ln(2/δ).
The number of required accepted draws can be slightly low-
ered by using Huber’s (2017) GBAS algorithm.

Two row bounds for binary matrices are given more focus
in the paper. The Minc–Brègman bound UMB (Minc 1963;
Brègman 1973) whose row bound is defined by γ(0) := 0
and γ(k) := (k!)1/k is the tightest possible product bound
for (0, 1)-matrices (Minc 1984). However, the bound is not
nesting so the previous algorithm cannot be employed with
it. The Huber bound UH (Huber 2006) is its tightest known
nesting relaxation. It uses h(k) := g(k)/e as its row bound,
with g(k) given by the recurrence g(0) := 0, g(1) := e, and

g(k + 1) := g(k) + 1 +
1

2g(k)
+

0.6

g(k)2
. (1)

The Minc–Brègman bound and its generalizations require
a more complicated procedure. The adaptive partitioning
scheme (AdaPart) (Kuck et al. 2019a) maintains a set of
matrices and a weighted sum of their upper bounds, and as
long as this sum exceeds the bound of the current matrix,
a random matrix A′ from the set is replaced by matrices
f(A′, 1, j), f(A′, 2, j), . . . , f(A′, n, j) for some j. When
the sum is at most the current bound, the bounds in the set
are used as a probability mass function in a similar manner
as in Algorithm 1. AdaPart requires O(n3) time assuming
that O(1) rounds of replacement always suffice.

New Nesting Product Bounds
We will show that when one takes Soules’s (2005) decom-
position extension of a nesting product bound in the set of
(0, 1)-matrices B, then the resulting bound is nesting in the
set of nonnegative matrices A. Furthermore, we show that
the extension of the Huber bound is competitive against
the tighest known (non-nesting) product bound in A and
tighter than the previous best nesting bound. We have de-
ferred proofs of some lemmas (marked by †) to the supple-
mental material2.

2https://github.com/Kalakuh/nesting

Decomposition Extensions
The permanent is a row-multilinear function, meaning that
if matrices A, B, and C differ only on the ith row such that
Ai = Bi +Ci, then perA = perB + perC. Soules (2005)
used this property to show that for any product bound U in
B, there is an extended product bound U∗ in A defined as

U∗(A) :=
n∏

i=1

n∑
k=1

(
u(k)− u(k − 1)

)
a∗i,k

where a∗i,k is the kth largest entry on the ith row. The
bound U∗ reduces to U for matrices in B. For example, the
extended Minc–Brègman bound is the Brouwer–Schrijver
bound, observed by Brouwer and described by Schrijver
(1978), which AdaPart uses. Extended bounds enable rejec-
tion sampling for nonnegative matrices and preprocessing
methods like Sinkhorn balancing (Sinkhorn 1964; Soules
1991) that alter the original matrix into a nonbinary one.

The bounds are based on decomposing A ∈ A into a con-
ical combination of binary matrices in B such that the per-
manent of A is obtained as

∑
B∈B θB perB with θB ≥ 0.

Then, applying an upper bound U on each B yields a new
upper bound for the permanent of A. This idea is at the heart
of our main result as well. Soules (2005) also showed that
U∗ is the tightest decomposition bound obtainable from U .

Extensions Preserve Nestedness
We start by proving our main result:
Theorem 1. If U is a nesting product bound in B, its de-
composition extension U∗ is a nesting product bound in A.

Proof. The idea is to write U∗ as a conical combination of
the bound U applied on (0, 1)-matrices, following Soules
(2005). Then, we argue that since U is nesting, so too is U∗.

Consider a single row vector Ai of matrix A. Letting bi,k
be an n-dimensional (0, 1)-vector with 1s only in the posi-
tions where Ai has its k largest entries, we can write Ai as

n∑
k=1

(a∗i,k − a∗i,k+1) bi,k

with a∗i,n+1 = 0. Applying the row bound u on each bi,k
yields, in a sense, a new row bound for the row vector:

n∑
k=1

(a∗i,k −a∗i,k+1)u(k) =
n∑

k=1

(
u(k)−u(k−1)

)
a∗i,k . (2)

Similarly, let Bk, with k = (k1, k2, . . . , kn), denote the
(0, 1)-matrix (bki,j) where the ith row has 1s in the positions
of ki largest entries on the ith row of A ∈ A. Also, let [n] :=
{1, 2, . . . , n}. By previous formulas and row-multilinearity,

U∗(A) =
∑

k∈[n]n

P (k)︷ ︸︸ ︷(n∏
t=1

a∗t,kt
− a∗t,kt+1

)
U(Bk) .

Since U is nesting, we have

U(Bk) ≥
n∑

i=1

bki,1 · U
(
f(Bk, i, 1)

)
.

12218

Combining and rearranging gives us that

U∗(A) ≥
n∑

i=1

∑
k∈[n]n

P (k) · bki,1 · U
(
f(Bk, i, 1)

)
.

To complete the proof, we fix i and show that

ai,1 · U∗(f(A, i, 1)) =
∑

k∈[n]n

P (k) · bki,1 · U
(
f(Bk, i, 1)

)
.

To this end, let si denote the rank of the first entry on row
i, i.e., a∗i,si = ai,1. Let [Q] equal 1 when Q is true, and 0
otherwise. Now the right-hand side can be written as∑

k∈[n]n

P (k) · [ki ≥ si] ·
n∏

t=1
t̸=i

u
(
kt − [kt ≥ st]

)
,

which can be rearranged to
n∑

ki=si

(a∗i,ki
− a∗i,ki+1)

n∏
t=1
t ̸=i

n∑
j=1

(a∗t,j− a∗t,j+1)u(j − [j ≥ st]).

By rearranging the summands like in Eq. (2), we see that the
product equals U∗(f(A, i, 1)) by the definition of extended
bounds, and thus the expression simplifies to

n∑
ki=si

(a∗i,ki
− a∗i,ki+1)U

∗(f(A, i, 1))

and further to a∗i,si U
∗(f(A, i, 1)) = ai,1 U

∗(f(A, i, 1)).
This completes the proof.

Extended Huber in the Worst Case
How bad can the extended Huber bound be in relation to
the Brouwer–Schrijver bound? To address this question, we
need the following lemma that follows from a bound for UH,
Stirling’s formula, and the inequality 1 + x < ex.
Lemma 2 (†). For all k > 0, h(k)− γ(k) < 0.264.

We remark the constant could probably be lowered;
namely, our calculations (omitted here) have shown that
h(k) − γ(k) < 0.194 for all k ≤ 108 and the value seems
to converge rather quickly. The current bound leads to the
following worst-case analysis:
Theorem 3. For any nonnegative n × n matrix A,
U∗

H(A)/U∗
MB(A) ≤ (h(3)/γ(3))n < 1.042n.

Proof. Consider a row with entries a1 ≥ a2 ≥ · · · ≥ an and
let an+1 = 0. By applying Lemma 2, we get that

h(k)

γ(k)
= 1 +

h(k)− γ(k)

γ(k)
< 1 +

0.264

γ(k)
.

As γ is an increasing function, we can show that
h(k)/γ(k) ≤ h(3)/γ(3) for all k > 0 by manually checking
its values until 1 + 0.264/γ(k) ≤ h(3)/γ(3).

We can now bound the ratio of the bounds for a row:∑n
k=1(ak − ak+1)h(k)∑n
k=1(ak − ak+1)γ(k)

≤ h(3)

γ(3)
,

and thus in the worst case U∗
H(A)/U

∗
MB(A) ≤ (h(3)/γ(3))n.

This bound is tight for matrices that have exactly three
identical entries on each row, the rest being zeros.

Extended Huber in the Average Case
We next show that the extended Huber bound performs well
with high probability for random n×n matrices A, in which
the entries are independent and uniformly distributed in the
interval [0, 1]. For simplicity, we write U∗ for U∗(A), un-
derstanding that U∗ is a random variable through A.

We start by analyzing the expected value and the variance
of U∗ under a very mild assumption regarding the underly-
ing row bound u: we assume that ∆k := u(k)−u(k−1) is at
most 1. All bounds in Table 1 satisfy this. We will only use
the notation ∆k when the bound is clear from the context.

The proofs of the following lemmas are based on the fact
that the order statistics for independent uniformly distributed
entries follow a Beta distribution.
Lemma 4 (†). We have

E[U∗] =

(∑n
k=1 u(k)

n+ 1

)n

≥
(n

2e

)n

.

Lemma 5 (†). Suppose ∆k ≤ 1 for all k ≥ 1. Then
Var[U∗] ≤ (n/4)n.

We get that the bound is arbitrarily close to the expected
value for random matrices with high probability as n grows:
Proposition 6. Suppose ∆k ≤ 1 for all k ≥ 1. Let ϵ > 0.
Then |U∗ −E[U∗]| ≤ ϵ ·E[U∗] with high probability.

Proof. By Chebyshev’s inequality and Lemmas 4 and 5,

Pr
(
|U∗ −E[U∗]| ≥ ϵ ·E[U∗]

)
≤ Var[U∗]

ϵ2E[U∗]2

≤ (2e)2nnn

ϵ2(2n)2n

= ϵ−2(e2/n)n ,

which tends to 0 as n tends to infinity.

We now apply the above general results to the extended
Huber bound and get that w.h.p. the bound is within a small
constant factor of the Brouwer–Schrijver bound U∗

MB:
Theorem 7. With high probability, U∗

H/U
∗
MB ≤ 4.201.

Proof. We begin by noting that U∗
H/U

∗
MB is close to

E[U∗
H]/E[U∗

MB] with high probability. This follows by ap-
plying Proposition 6 to both U∗

H and U∗
MB. (The verification

of the condition on ∆k for both bounds is left to the reader.)
It remains to bound E[U∗

H]/E[U∗
MB] from above. From

Lemma 4 we get

E[U∗
H]

E[U∗
MB]

=

(∑n
k=1 h(k)∑n
k=1 γ(k)

)n
=

(
1 +

∑n
k=1 h(k)− γ(k)∑n

k=1 γ(k)

)n
.

Lemma 2 and Stirling’s inequality yield a strict upper bound(
1 +

0.264n∑n
k=1(2πk)

1/(2k)k/e

)n

<

(
1 +

0.264en∑n
k=1 k

)n

≤
(
1 +

0.528e

n

)n

.

Using 1+x ≤ ex gives the bound exp(0.528e) < 4.201.

12219

Extended Huber is Tighter Than Huber–Law
Finally, we show that the extended Huber bound is tighter
than the Huber–Law bound UHL (Huber and Law 2008),
which is defined for matrices with entries from the interval
[0, 1] by a row bound ℓ(k)/e with

ℓ(k) :=

k + (1/2) ln k + e− 1 , k ≥ 1,

1 + (e− 1)k , k ∈ (0, 1),

0 , k = 0.

(3)

Any nonnegative matrix can be scaled so that its entries are
in [0, 1], so this requirement is not limiting the bound.
Lemma 8 (†). For all matrices B ∈ B, UH(B) ≤ UHL(B).
Theorem 9. For all matrices A with entries in [0, 1],
U∗
H(A) ≤ UHL(A).

Proof. We show first that U∗
HL(A) ≤ UHL(A) by proving

that
n∑

k=1

(ℓ(k)− ℓ(k − 1)) ak ≤ ℓ

(n∑
k=1

ak

)
for any decreasing sequence a1, a2, . . . , an ∈ [0, 1].

Denote sm :=
∑m

k=1 ak with s0 = 0. Start by rewriting
the right-hand side:

ℓ(sn) =
n∑

k=1

ℓ(sk)− ℓ(sk−1) .

Because ℓ is concave, ℓ(x) − ℓ(x − c) is decreasing in x
for any fixed c ∈ [0, 1], and thus

ℓ(sk)− ℓ(sk−1) = ℓ(sk−1 + ak)− ℓ(sk−1)

≥ ℓ(k − 1 + ak)− ℓ(k − 1) .

Using the concavity of ℓ again gives us

ℓ(k − 1 + ak)− ℓ(k − 1)

≥ ℓ(k − 1) + (ℓ(k)− ℓ(k − 1))ak − ℓ(k − 1)

= (ℓ(k)− ℓ(k − 1))ak,

and thus UHL(A) ≥ U∗
HL(A).

Any extended bound U∗(A) is a conical combination of
bounds U(B) for its decomposition, so the inequality of
Lemma 8 implies U∗

HL(A) ≥ U∗
H(A).

Deep Bounds
The deep rejection sampling method by Harviainen et al.
(2021) is applicable for the extended bounds. A depth-d vari-
ant of an upper bound U is the sum over all d× d submatri-
ces A′ of the first d columns of A where the summands are
products of the permanent of A′ and the bound U applied
on the remaining submatrix in the last n − d columns. The
bound can be computed somewhat efficiently with O(2ddn)
arithmetic operations for product bounds.

Deep rejection sampling starts by fixing entries in the first
d columns using stochastic backtracking on a precomputed
dynamic programming table, and then utilizes basic self-
reducible rejection sampling applicable for U on the remain-
ing rows and columns to complete the sample. The method
can improve the running time by several orders of magnitude
(Harviainen et al. 2021).

Preprocessing
Upper bounds for the permanent can sometimes be tightened
by performing operations on the matrix and analyzing how
they affect its permanent. For example, multiplying some
column of the matrix by x > 0 multiplies the permanent
by x as well, but the upper bound might increase by a factor
that is less than x. Soules (2005) gives an overview of similar
sharpening methods for the bounds.

Harviainen et al. (2021) experimented with the following
version of Huber and Law’s (2008) preprocessing method:
First, entries not part of any permutation of positive weight
are replaced by 0s with Tassa’s algorithm (2012). Then, the
matrix is transformed to nearly doubly stochastic by alter-
natingly dividing each row and each column by the sums of
their entries n2 times, as suggested by Sullivan and Beichl
(2014). Finally, each row vector is divided by its largest en-
try to make its largest entry equal 1. We will refer to schemes
that use this preprocessing by adding “-D” to their names.

Here, we propose a simple sharpening method for ex-
tended bounds: pick a random column n2 times, multiply
it by 2x with x ∼ Uniform[−1, 1], and check if the upper
bound increases by a factor less than x. If not, then revert
to the previous matrix. The choice of n2 iterations is some-
what arbitrary, but it gives n attempts per column on average
and requires relatively little preprocessing time. In addition,
we also try this sharpening on the nearly doubly stochastic
matrix, and pick the one with a tighter bound. We will refer
to schemes that use this sharpening method by adding “-S”
to their name. Note that while sharpening cannot worsen the
basic, depth-0 upper bound, it is a priori not obvious whether
this holds true also when taking deep bounds.

Empirical Results
We empirically compared the proposed upper bound and
preprocessing method against previous state of the art. We
also compared rejection sampling against importance sam-
pling. Our implementations as well as the details of the com-
puting infrastructure are included in the supplement.

Comparison of Rejection Samplers
We experimented with three rejection sampling schemes:

ADAPART: An adaptive partitioning scheme based on the
Brouwer–Schrijver bound.

EXTHUBER: A scheme using the extended Huber bound.
HL: A scheme based on the Huber–Law bound.
Each of the schemes uses the depth-20 variant of the cor-

responding bound. We also consider modifications of the
schemes that preprocess the matrix using either of the de-
scribed methods. Implementations of ADAPART and HL are
by Harviainen et al. (2021). We extended their source code
with EXTHUBER to enable deep bounds for it.

We experimented with three classes of matrices: Matri-
ces in Random Permutation were generated such that we
start with a matrix of zeros, choose 1 + ⌈log2 n⌉ permuta-
tions of {1, 2, . . . , n} uniformly at random, and then replace
the corresponding entries in the matrix by Uniform[0, 1] dis-
tributed values for each permutation. Block Diagonal con-
sists of n × n matrices with blocks of 5 × 5 matrices of

12220

Figure 1: Estimates of the running times for three classes of matrices with (first row) and without (second row) preprocessing.

Uniform[0, 1] distributed entries on the main diagonal and
the rest are zeros. Finally, Bernoulli contains matrices whose
each entry is 1 with probability 0.1 and 0 otherwise.

We followed the test setup of Harviainen et al. (2021) and
evaluated our implementations by estimating the running
time required for getting a (0.1, 0.05)-approximation, corre-
sponding to 388 accepted draws with the GBAS algorithm.
The estimate of the time was computed based on the time
required for 65 accepted draws to save computation time.
The running time was limited to 4825 seconds per instance,
which would be about 8 hours when scaled for 388 draws.
Figure 1 shows the running time estimates. The fluctuation
in Bernoulli is due to high variance on how much each entry
contributes to the value of the permanent. EXTHUBER beats
both other samplers on all instances, as suggested by our
theoretical results, and at best the improvements are of one
order of magnitude. While sharpening is helpful in nearly all
instances, taking deep bounds diminishes its effects—with
the basic depth-0 bounds, we observed sharpening to yield
improvements by up to a factor of 20. On the other hand, the
speedup often increases as n increases, suggesting further
potential for improvements on larger matrices.

In addition, we tested the schemes on real-world matrices
from Network Data Repository (Rossi and Ahmed 2015) li-
censed under CC-BY-SA. We included matrices, for which
the permanent can be approximated in reasonable time,
whereas Ryser’s exact algorithm would be infeasible. Using
publicly available instances for evaluating the performance
of exact and approximation algorithms for permanents has
been a common practice in recent works (Harviainen et al.
2021; Kuck et al. 2019a; Chakraborty et al. 2019). Our re-
sults are reported in Table 2. The running time was limited to
36 000 seconds per instance—computations exceeding this
are marked with “-”. Again, EXTHUBER achieves improve-
ments of an order of magnitude. In CAG-mat72, sharpening
leads to a significant boost in the results as well.

Comparison Against Importance Sampling
Importance sampling schemes for approximating the per-
manent generate some number of independent permuta-
tions σ1, σ2, . . . , σm from an appropriate proposal distri-
bution with a probability mass function q, and then es-
timate the permanent by the reweighted sample average
m−1

∑m
j=1 w(σj)/q(σj).

Similar to rejection samplers, sequential importance sam-
plers build the permutations iteratively by fixing one or more
entries and then drawing a sample from the remaining sub-
matrix. Most importance samplers in the literature appear to
be designed for (0, 1)-matrices, but there are also some that
have been developed for nonnegative matrices or that can
be easily adapted for them. Here, we will compare EXTHU-
BER-S against the following importance samplers:
SIS: A sequential importance sampler of Alimohammadi

et al. (2021) that takes advantage of Sinkhorn balancing
and always draws a permutation of positive weight.

PPS: A sequential importance sampler of Smith and
Dawkins (2001) that randomly orders rows based on
probabilities proportional to sums of their entries.

For SIS we modified the available source code slightly to
have it take the weights of the permutations into account.
For PPS we use our own implementation.

We analyzed the evolution of the estimates of the schemes
over time. We show selected results in Figure 2. In addition
to having an instance from Random Permutations, we exper-
imented with three kinds of matrices we observed to be em-
pirically hard: The first of them has many submatrices with
zero permanent, the second one has a single permutation of
high weight and many low-weight permutations, and the last
one is a mix of two hard matrices. More precisely, the in-
stance of Random Entries has 1+⌊log2 n⌋ Uniform[0.5, 1.0]
distributed entries on each row at positions that are sampled
uniformly at random with replacement and the rest are zeros.
The instance matrix A of Random Lines is a symmetric 50×
50 matrix with Uniform[0.5, 1.0] distributed entries on the

12221

Instance n EXTHUBER EXTHUBER-D EXTHUBER-S ADAPART ADAPART-D HL HL-D

ENZYMES-g283 52 - 1 · 102 5 · 101 - 3 · 102 - 6 · 102
ENZYMES-g501 66 - 3 · 101 2 · 101 - 5 · 101 - 5 · 101
ENZYMES-g575 51 5 · 103 1 · 104 3 · 103 1 · 104 3 · 104 2 · 104 -

CAG-mat72 72 - 1 · 104 2 · 103 - 3 · 104 - -
GD95-c 62 6 · 103 - 4 · 103 2 · 104 - 2 · 104 -

Table 2: Running times of the rejection samplers for getting (0.1, 0.05)-approximations of permanents of real-world instances.

main diagonal. In addition, 16 integers xi, yi, and zi are gen-
erated uniformly at random, and then the entries axi+j,yi+j

with j ∈ {0, 1, . . . , zi} are replaced by Uniform[0.00, 0.25]
distributed values. We also let ayi+j,xi+j be axi+j,yi+j for
each j. Again, the rest of the matrix is zeros. Finally, Mixed
is a 50× 50 matrix that starts with a 40× 40 Random Lines
instance, and its bottom right 10×10 submatrix has 2 entries
per row sampled with replacement and then assigned a value
between 0.5 and 1.0 uniformly at random.

On Random Permutations, EXTHUBER-S is less stable
than the importance samplers. On Random Entries, SIS
beats others clearly as EXTHUBER-S and PPS converge
rather slowly. This may be due to the dead-ends for both
self-reducible and sequential samplers. On Random Lines,
the rejection sampler is competitive against the importance
samplers, and samples from SIS have higher variance than
those from PPS. Finally, on Mixed EXTHUBER-S appears
much stabler than importance samplers. To confirm this is
not a fluke, we include additional evaluations for Mixed in
supplemental material. In our preliminary experiments SIS
tends to perform well in general; the purpose of our specific
instances is to show there exist hard instances for it, too.

Concluding Remarks
We presented a new randomized approximation scheme for
the permanent of nonnegative matrices. Our empirical re-
sults suggest that on hard instances our scheme is an order-
of-magnitude faster than the previous best schemes. This
improvement is explained by our new nesting upper bound
that we dubbed Extended Huber: this bound is, on the
one hand, faster to evaluate than the tighter (but generally
non-nesting) Brouwer–Schrijver bound employed in Ada-
Part (Kuck et al. 2019a), and on the other hand, tighter than
the equally fast Huber–Law bound (Huber and Law 2008).
As our bound preserves the row-product structure, it can be
boosted further, like the other mentioned bounds, using the
recent “deep rejection sampling” technique (Harviainen et
al. 2021). The shown improvements are also partly due to
our efficient, heuristic implementation of sharpening, a pre-
processing method for enhancing the upper bound.

We also compared our approximation scheme against two
state-of-the-art importance sampling (IS) based estimators
(Smith and Dawkins 2001; Alimohammadi et al. 2021).
While these estimators do not enjoy accuracy guarantees,
they performed relatively well in our selected tests, converg-
ing fast near the true permanent. However, we also exhib-
ited matrices, for which one or the other estimator, or both,
were inferior to our rejection sampling scheme, which does

Figure 2: Evolution of the estimates for four matrices.

provide accuracy guarantees. This observation highlights the
value of guarantees and suggests that it may be difficult,
or even impossible, to equip IS based estimators with good
sample complexity bounds or stopping rules.

The permanent is a special case of weighted model count-
ing, a problem extensively studied in the AI research com-
munity. While our technical constructions are specific to the
matrix permanent, we believe they may inspire similar con-
structions also for other concrete model counting problems.
In particular, the technique of extending a “counting bound”
to a “weighted counting bound” could be useful also in other
contexts where good bounds are easier to discover for the
unweighted, purely combinatorial objects—can we, for ex-
ample, develop such bounds for independent sets (Dyer et al.
2021) or DAGs (Talvitie, Vuoksenmaa, and Koivisto 2019),
and then generalize them to the weighted case?

12222

Acknowledgments
Research partially supported by the Academy of Finland,
Grant 316771.

References
Aaronson, S.; and Arkhipov, A. 2011. The computational
complexity of linear optics. In Proceedings of the 43rd
ACM Symposium on Theory of Computing (STOC), 333–
342. ACM.
Alimohammadi, Y.; Diaconis, P.; Roghani, M.; and Saberi,
A. 2021. Sequential importance sampling for estimating
expectations over the space of perfect matchings. CoRR,
abs/2107.00850.
Bezáková, I.; Štefankovič, D.; Vazirani, V. V.; and Vigoda,
E. 2008. Accelerating Simulated Annealing for the Perma-
nent and Combinatorial Counting Problems. SIAM J. Com-
put., 37(5): 1429–1454.
Bianco, G. L.; Lorca, X.; Truchet, C.; and Pesant, G. 2019.
Revisiting Counting Solutions for the Global Cardinality
Constraint. J. Artif. Intell. Res., 66: 411–441.
Brègman, L. M. 1973. Some properties of nonnegative ma-
trices and their permanents. Dokl. Akad. Nauk, 211(1): 27–
30.
Chakraborty, S.; Fried, D.; Meel, K. S.; and Vardi, M. Y.
2015. From Weighted to Unweighted Model Counting. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (IJCAI), 689–695. AAAI
Press.
Chakraborty, S.; Shrotri, A. A.; and Vardi, M. Y. 2019. On
Symbolic Approaches for Computing the Matrix Perma-
nent. In Schiex, T.; and de Givry, S., eds., Proceedings of
the Twenty-Fifth International Conference on Principles and
Practice of Constraint Programming, volume 11802 of Lec-
ture Notes in Computer Science, 71–90. Springer.
Chatterjee, S.; and Diaconis, P. 2018. The sample size re-
quired in importance sampling. The Annals of Applied Prob-
ability, 28(2): 1099 – 1135.
Dagum, P.; Karp, R. M.; Luby, M.; and Ross, S. M. 2000.
An Optimal Algorithm for Monte Carlo Estimation. SIAM
J. Comput., 29(5): 1484–1496.
Dyer, M. E.; Jerrum, M.; Müller, H.; and Vuskovic, K. 2021.
Counting Weighted Independent Sets beyond the Perma-
nent. SIAM J. Discret. Math., 35(2): 1503–1524.
Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model
Counting: A New Strategy for Obtaining Good Bounds. In
Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI), 54–61.
Harviainen, J.; Röyskö, A.; and Koivisto, M. 2021. Ap-
proximating the Permanent with Deep Rejection Sampling.
In Advances in Neural Information Processing Systems 34
(NeurIPS).
Huber, M. 2006. Exact Sampling from Perfect Matchings of
Dense Regular Bipartite Graphs. Algorithmica, 44(3): 183–
193.

Huber, M. 2017. A Bernoulli mean estimate with known rel-
ative error distribution. Random Struct. Algorithms, 50(2):
173–182.
Huber, M.; and Law, J. 2008. Fast Approximation of the
Permanent for Very Dense Problems. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, (SODA), 681–689. SIAM.
Jerrum, M.; Sinclair, A.; and Vigoda, E. 2004. A
polynomial-time approximation algorithm for the perma-
nent of a matrix with nonnegative entries. J. ACM, 51(4):
671–697.
Kuck, J.; Dao, T.; Rezatofighi, H.; Sabharwal, A.; and Er-
mon, S. 2019a. Approximating the Permanent by Sampling
from Adaptive Partitions. In Advances in Neural Informa-
tion Processing Systems 32 (NeurIPS), 8860–8871. Curran
Associates, Inc.
Kuck, J.; Dao, T.; Zhao, S.; Bartan, B.; Sabharwal, A.; and
Ermon, S. 2019b. Adaptive Hashing for Model Counting. In
Proceedings of the 35th Conference on Uncertainty in Arti-
ficial Intelligence (UAI).
Minc, H. 1963. Upper bounds for permanents of (0, 1)-
matrices. Bull. Amer. Math. Soc, 69(6): 789–791.
Minc, H. 1984. Permanents. Encyclopedia of Mathematics
and its Applications. Cambridge University Press.
Newman, J. E.; and Vardi, M. Y. 2020. FPRAS Ap-
proximation of the Matrix Permanent in Practice. CoRR,
abs/2012.03367.
Nijenhuis, A.; and Wilf, H. S. 1978. Combinatorial algo-
rithms: for computers and calculators. Academic Press.
Rossi, R. A.; and Ahmed, N. K. 2015. The Network Data
Repository with Interactive Graph Analytics and Visualiza-
tion. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 4292–4293. AAAI Press.
Ryser, H. J. 1963. Combinatorial mathematics, volume 14.
Mathematical Association of America.
Schrijver, A. 1978. A short proof of Minc’s conjecture. J.
Comb. Theory Ser. A, 25(1): 80–83.
Sinkhorn, R. 1964. A relationship between arbitrary positive
matrices and doubly stochastic matrices. Ann. Math. Stat.,
35(2): 876–879.
Smith, P.; and Dawkins, B. 2001. Estimating the permanent
by importance sampling from a finite population. Journal of
Statistical Computation and Simulation, 70(3): 197–214.
Soos, M.; and Meel, K. S. 2019. BIRD: Engineering an Effi-
cient CNF-XOR SAT Solver and its Applications to Approx-
imate Model Counting. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), 1592–1599.
Soules, G. W. 1991. The rate of convergence of Sinkhorn
balancing. Linear Algebra Appl., 150: 3–40.
Soules, G. W. 2005. Permanental bounds for nonnegative
matrices via decomposition. Linear Algebra Appl., 393: 73–
89.
Sullivan, F.; and Beichl, I. 2014. Permanents, α-permanents
and Sinkhorn balancing. Comput. Stat., 29(6): 1793–1798.

12223

Talvitie, T.; Vuoksenmaa, A.; and Koivisto, M. 2019. Exact
Sampling of Directed Acyclic Graphs from Modular Distri-
butions. In Globerson, A.; and Silva, R., eds., Proceedings
of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence (UAI), volume 115 of Proceedings of Machine
Learning Research, 965–974. AUAI Press.
Tassa, T. 2012. Finding all maximally-matchable edges in a
bipartite graph. Theor. Comput. Sci., 423: 50–58.
Uhlmann, J. K. 2004. Matrix permanent inequalities for ap-
proximating joint assignment matrices in tracking systems.
J. Frankl. Inst., 341(7): 569–593.
Valiant, L. G. 1979. The complexity of computing the per-
manent. Theor. Comput. Sci., 8(2): 189–201.

12224

