
Principled and Efficient Motif Finding for
Structure Learning of Lifted Graphical Models

Jonathan Feldstein*1,2, Dominic Phillips*1, Efthymia Tsamoura3

1 University of Edinburgh, Edinburgh, United Kingdom
2 BENNU.AI, Edinburgh, United Kingdom

3 Samsung AI, Cambridge, United Kingdom
jonathan.feldstein@bennu.ai, dominic.phillips@ed.ac.uk, efi.tsamoura@samsung.com

Abstract
Structure learning is a core problem in AI central to the fields
of neuro-symbolic AI and statistical relational learning. It
consists in automatically learning a logical theory from data.
The basis for structure learning is mining repeating patterns
in the data, known as structural motifs. Finding these patterns
reduces the exponential search space and therefore guides the
learning of formulas. Despite the importance of motif learn-
ing, it is still not well understood. We present the first princi-
pled approach for mining structural motifs in lifted graphical
models, languages that blend first-order logic with probabilis-
tic models, which uses a stochastic process to measure the
similarity of entities in the data.
Our first contribution is an algorithm, which depends on two
intuitive hyperparameters: one controlling the uncertainty in
the entity similarity measure, and one controlling the softness
of the resulting rules. Our second contribution is a prepro-
cessing step where we perform hierarchical clustering on the
data to reduce the search space to the most relevant data. Our
third contribution is to introduce an O(n lnn) (in the size of
the entities in the data) algorithm for clustering structurally-
related data. We evaluate our approach using standard bench-
marks and show that we outperform state-of-the-art structure
learning approaches by up to 6% in terms of accuracy and up
to 80% in terms of runtime.

1 Introduction
Motivation In artificial intelligence, combining statistical
and logical representations is a long-standing and chal-
lenging aim. The motivation behind combining the two is
that logical models can represent heterogenous data and
capture causality, while statistical models handle uncer-
tainty (Getoor and Taskar 2007; Russell 2015). General
approaches to represent structural information are lifted
graphical models (LGMs), such as Markov logic networks
(MLNs) (Richardson and Domingos 2006) and probabilistic
soft logic (PSL) (Bach et al. 2017). These are languages that
define Markov random fields in a declarative fashion and are
represented as theories of weighted formulas in first-order
logic. The versatility of LGMs is reflected in their variety
of applications, including bioinformatics (Lippi and Fras-
coni 2009), natural language understanding(Wu and Weld

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008), entity linking (Singla and Domingos 2006) and oth-
ers (Chen and Wang 2014; Ha et al. 2011; Riedel and Meza-
Ruiz 2008; Crane and Mcdowell 2012). Recently, they have
also been adopted in neurosymbolic frameworks (Wang and
Poon 2018; Hu et al. 2016).

Unsurprisingly, the quality of a logical theory, that is, the
extent to which it models the task it is supposed to solve,
has a strong impact on the performance of the downstream
applications. Manually optimising formulae to boost perfor-
mance is a costly, time-consuming and error-prone process
that restricts the scope of application. This can raise funda-
mental criticism against frameworks that require such theo-
ries as part of their input (Manhaeve et al. 2018; Yang, Ishay,
and Lee 2020). An alternative is the automated learning of
LGMs from data, a problem known as structure learning.
The ultimate goal is to design a general framework that can
efficiently learn high-quality models on large datasets in a
principled fashion. Several pioneering structure learning al-
gorithms have been developed for MLNs (Kok and Domin-
gos 2005; Mihalkova and Mooney 2007; Kok and Domingos
2010).

Problem Generally, structure learning consists in search-
ing for formulae in an exponential search space. The naive
approach would consist in trying every possible combination
of predicates and logical connectives, which is computation-
ally expensive (Kok and Domingos 2005). Therefore, to re-
duce computational complexity, every sophisticated struc-
ture learner proceeds by searching for formulae within tem-
plates. These templates can be user-defined or learnt auto-
matically (Mihalkova and Mooney 2007; Kok et al. 2007).
Every sophisticated learner can thus be summarized in three
main steps: S1 - Apply heuristics to abstract-out common,
recurrent patterns within the data to be used as templates.
S2 - Iteratively generate formulae based on the previously
found patterns and evaluate candidate formulae based on
how well they generalize to the training data. S3 - Learn
the collective weights of the optimal formulae. Remark that
finding good templates is the basis for successful structural
learning, as it not only reduces the search space but also
forms the starting point of the structure learning algorithm
and constrains the shape of logical formulae generated in
later stages.

For example, the state-of-the-art structure learning al-
gorithm, Learning using Structural Motifs (LSM), reduces

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12205



the search space for formulae by focusing within recurring
patterns of commonly connected entities in the relational
database (Kok and Domingos 2010). The task of mining
these patterns involves repeatedly partitioning the entities
of a database into symmetrically-equivalent sets relative to
a reference entity. These sets are called (structural) motifs.
Since the entities in a structural motif are symmetric, for-
mula learning only needs to be performed on one entity in-
stead of each separately. Therefore, structural motifs guide
the groundings of potential logical formulas of the LGM
(S1).

The key difference between structure learners that do not
require user input is how the templates are found. Still, the
state-of-the-art suffers from several shortcomings that have
a negative impact on the scalability and effectiveness of the
full pipeline (S1-S3). Firstly, the symmetry-partitioning al-
gorithm has six unintuitive hyperparameters that need to be
calibrated to each dataset. The difficulty of finding these pa-
rameters can lead to inaccurate partitioning. Secondly, the
main clustering algorithm, a core step to obtain symmet-
ric partitions, has O(n3) complexity in the number of en-
tities to partition. This can result in significant slowdowns
on databases that are densely connected.

Contributions In this work, we design a more princi-
pled and scalable algorithm for extracting motifs through
symmetry-partitioning (stage S1 of structure learning). In
our algorithm, we make three key contributions that over-
come the limitations of prior art. In Section 3, we address
the first limitation and propose a principled algorithm us-
ing the theoretic properties of hypergraphs to design an ap-
proach that uses just two, intuitive hyperparameters: one
that controls the uncertainty of the similarity measure of
entities in the data and one that controls the softness of
the resulting formulae. In Section 4, we tackle the issue
of efficiency. Firstly, we design an alternative O(n lnn)
symmetry-partitioning algorithm. Secondly, we propose a
pre-processing step where we hierarchically cluster the rela-
tional database to reduce the required computation and fur-
ther improve the guiding of the formulae finding. Beyond the
above contributions, we present PRISM (PRincipled Iden-
tification of Structural Motifs) a parallelized, flexible, and
optimized C++ implementation of the entire algorithm1. In
Section 6, we assess the performance of the developed tech-
niques against LSM and BOOSTR on datasets used as stan-
dard benchmarks in the literature.

2 Preliminaries
A hypergraph H = (V,E) is a pair of sets of nodes
V = {vi}|V |

i=0 and hyperedges E = {ei}|E|
i=0. A hyperedge

ei ∈ E is a non-empty subset of the nodes in H. A hyper-
graph H is labelled, if each hyperedge in H is labelled with
a categorical value. We use label(ei) to denote the label of
the hyperedge ei. A path π of length L in H is an alter-
nating sequence of nodes vi and hyperedges ei, such that
vi, vi+1 ∈ ei, of the form (v0, e0, v1, . . . , vL−1, eL−1, vL)
for 0 ≤ i ≤ L− 1. The diameter of H is the maximum
length of the shortest path between any two nodes vi, vj in

1https://github.com/jonathanfeldstein/PRISM

H. The signature of a path π is the sequence of the labels of
the edges occurring in π, i.e., (label(e0), . . . , label(eL−1)).

A relational database D can be represented by a hyper-
graph H = (V,E) by defining V to be the union of the
constants in D, and defining E such that every k-ary ground
atom R(c1, . . . , ck) in D becomes a hyperedge e ∈ E, with
label R, whose elements are the nodes corresponding to the
constants c1, . . . , cn.

A random walk on H is a stochastic process that gener-
ates paths by traversing edges inH. The length of a random
walk is defined as the number of edges traversed in the path.
Let vi and vj be two nodes inH. The hitting time hi,j from
vi to vj is the average number of steps required to reach vj
for the first time with random walks starting from vi.

The L-truncated hitting time hL
ij (THT) is the hitting time

where the length of the random walk is limited to at most L
steps. It is defined recursively as hL

ij = 1 +
∑

k pikh
L−1
kj ,

where pij is the transition matrix of the random walk, with
hL
ij = 0 if i = j, and hL

ij = L if j is not reached in L
steps. The more short paths that exist between vi and vj ,
the shorter the THT. The THT is therefore a measure of the
connectedness of nodes.

We denote by SLi,j the set of path signatures of lengths
up to L that start at vi and end at vj . The L-path signa-
ture distribution PL

i,j is then the probability distribution over
the elements of SLi,j under a given random walk process.
The marginal L-path signature distribution PL

i,j |l is the
marginal probability distribution when only paths of length
exactly l ∈ {1, 2, . . . , L} are considered. The quantities
PL
i,j(σ) and PL

i,j |l(σ) respectively denote the probability and
marginal probability of path signature σ. With this, we now
introduce the important notion of path-symmetry.

Definition 1 (Path-Symmetry) Nodes vj and vk are order-
L path symmetric with respect to vi if PL

i,j = PL
i,k and are

exact order-l path symmetric w.r.t. vi if PL
i,j |l = PL

i,k|l. A set
of nodes is (exact) path-symmetric w.r.t vi if each node in the
set is (exact) path-symmetric w.r.t. vi.

Within the context of structure learning, path-symmetric
sets of nodes correspond to what we denote as abstract con-
cepts and correspond to collections of entities that have sim-
ilar neighbourhoods in the hypergraph.

Remark 1 A necessary condition for nodes vj and vk to
be order-L path-symmetric w.r.t. vi is that they are order-L
distance symmetric w.r.t. vi, i.e. hL

i,j = hL
i,k.

It is computationally infeasible to compute hL
i,j and PL

i,j
exactly for large hypergraphs. However, they can both
be well-approximated by sampling by running N random
walks of length L from node vi and recording the number
of times vj is hit (Sarkar, Moore, and Prakash 2008). We de-
note by ĥL,N

i,j , and by P̂L,N
i,j , the obtained estimates and refer

to them as (L,N) estimates. Finally, we denote by ĈL,N
i,j (σ)

the function from a signature σ in SLi,j to the number of oc-
currences of σ in the paths from vi to vj that are encoun-
tered while running N random walks of length L. We refer
to ĈL,N

i,j (σ) as the L-path signature counts.

12206



P4 P5 P6P3

P1 P2

Y

X

Abstract Concepts Motifs

B1 B2 B3 Z

Person

Person

Book

Paths

TEACHES(X,Y ) ∨ READS(Y,Z)

TEACHES(X,Y ) ∨ ¬READS(Y, Z)

¬TEACHES(X,Y ) ∨ READS(Y, Z)

Candidate Clauses

(i) (ii) (iii) (iv)

X ′ Person

Person

Person

(a) (b)

TEACHES(X,Y ) ∨ TEACHES(X ′, Y )
...

(a)

(b)

Figure 1: Example Structure-Learning Pipeline: The above shows a dataset about a university class. Nodes Pi are entities of type
person, while Bi are entities of type book. Black edges represent TEACHES(person,person), and red edges represent
READS(person,book): (i) The resulting abstract concepts when random walks are run from source node P1. Dashed boxes
represent concepts, which intuitively are teachers, {P1}, colleagues {P2}, students {P3,P4,P5,P6} and books {B1,B2,B3} (ii)
the resulting structural motif, (iii) paths found in the motif (iv) mined candidate clauses.

We denote by ĈL,N
i,j |l(σ) the marginal count when only

contributions from paths of length exactly l ∈ {1, 2, . . . , L}
are considered. For readability purposes, we will drop the
term signature and refer simply to L-path distributions and
to L-path counts. By path, we will refer to a path signature,
unless stated otherwise.

2.1 Example of a Structure Learner: LSM
To illustrate structure learning, we present an overview of
the LSM algorithm (Kok and Domingos 2010). The algo-
rithm proceeds in three main steps (denoted S1, S2 and S3
below). The resulting pipeline is summarised in Fig 1.

S1: Finding Structural Motifs Nodes with similar envi-
ronments in the database hypergraph are first clustered to-
gether into abstract concepts. Clustering is achieved by run-
ning many random walks from each node in the hypergraph.
Nodes are then partitioned into sets of path-symmetric nodes
based on the similarity of their L-path counts. Each path-
symmetric sets then corresponds to an abstract concept.

Example 1 (Abstract Concepts) In Fig 1, we see that P1

and P2 are both teaching P3, P4, P5 and P6. Furthermore,
P3, P4, P5 and P6 are all reading B1, B2 and B3. Even
though we have not explicitly defined the notion of stu-
dent, teacher, and book we have that P3, P4, P5 and P6

are all path-symmetric w.r.t to P1 and w.r.t P2, as are B1,
B2 and B3. The abstract concepts that we obtain are thus
{P3,P4,P5,P6}, {P1,P2}, and {B1,B2,B3}, which intu-
itively represent the idea of students, teachers and books,
respectively.

Once abstract concepts are found, they are then joined by
the edges that connect them to form structural motifs, see
Fig 1 (ii). It is the identification of these structural mo-
tifs that effectively speeds up the subsequent rule-finding
by reducing the search for candidate clauses (c.f. S2). In
LSM, computing motifs requires setting six independent
hyper-parameters: N the number of random walks ran, L
the length of each random walk, θhit a threshold to select
only ‘nearby’ nodes to the source node of the random walk
(those with ĥL,N

i,j ≤ θhit), θsym a threshold for merging

nodes based on the similarity of their THTs (all nodes vj
and vk with |ĥL,N

i,j − ĥL,N
i,k | < θsym are merged), θJS a

threshold for merging nodes by path similarity based on the
Jensen-Shannon divergence of their path distributions, and
ntop the number of paths to consider (in order of descend-
ing frequency) when computing the Jensen-Shannon diver-
gence.

S2a: Finding Paths in Motifs Based on the found mo-
tifs, sequences (paths) of ground literals that often appear
together in the data are generated, see Fig 1 (iii). The fact
that the literals appear often together points to the fact that
they are likely to be logically dependent on one another.

S2b: Evaluating Candidate Clauses The sequences of
ground literals are used to generate candidate clauses. Each
clause is evaluated using a likelihood function. The best
clauses are then added to the structure-learnt MLN.

S3: Learning the Weights of Candidate Clauses Fi-
nally, the algorithm finds the weights of the chosen clauses
by maximum-likelihood estimation. This yields a set of
formula-weight pairs which define the final MLN.

3 Principled Motif-Finding
Hyperparameter tuning can be one of the most time-costly
stages when applying algorithms to real problems. This
holds particularly in the case of LSM, where we have six
heuristic hyperparameters, as detailed in Section 2.1. In
our work, we devise an alternative motif-finding algorithm
(PRISM) that depends on only two intuitive hyperparame-
ters, thus greatly speeding up the workflow.

3.1 Introducing PRISM
In overview, the steps taken by PRISM are:

For each node vi in H: (i) run an optimal number of
random walks originating from vi and compute, for each
vj ̸= vi, the THT estimate ĥL,N

i,j and path distribution es-
timate P̂L,N

i,j ; (ii) partition the nodes V ∈ H into sets
A1, A2, . . . , AM , that are statistically significant order-L
distance-symmetric w.r.t. vi, by merging nodes if the dif-
ference in their THTs is below a statistical threshold θsym.

12207



We describe how to set θsym in Section 3.3; (iii) further par-
tition the nodes within each Am into statistically significant
order-L path-symmetric sets. An algorithm achieving this in
O(n lnn) (vsO(n3) in SOTA) is presented later. Notice that
step (ii) serves to reduce the computational cost of step (iii)
by applying heuristics that classify the nodes into sets that
are most likely to be path-symmetric.

The question remains how to define ‘optimal’ and ‘statis-
tically significant’ in the above pipeline. To this end, we in-
troduce two independent parameters, ε to optimise the num-
ber of random walks, and α to control the statistical signifi-
cance threshold of the similarity measure.

3.2 ε-uncertainty: Controlled Path Sampling
Motivation To find good motifs we need to identify ab-
stract concepts. To do this, we compare the path distributions
of nodes in the hypergraph representation of the database.
However, in real-world applications, computing these distri-
butions exactly is infeasible, so we resort to approximating
them through sampling by running random walks. The un-
certainty in these approximations will depend on the length
L, and number N of random walks. Here we formally define
a measure of uncertainty and show how it can be used to set
an optimal number of random walks.
Definition 2 (ε-uncertainty) The uncertainty of the
(L,N)-estimate of hi,j is defined by |hL

i,j − ĥL,N
i,j |/hL

i,j .
The uncertainty of the (L,N)-estimate of PL

i,j is defined as
the maximum of |PL

i,j(σ)− P̂L,N
i,j (σ)|/PL

i,j(σ) among all
paths σ in the domain of PL

i,j .
ε-uncertainty is of major importance to the overall theory-
induction pipeline as it determines the confidence in the
similarity measure between nodes and, ultimately, of the in-
duced theories; the lower the ε, the higher the confidence in
the relatedness of nodes. However, naturally, there is a trade-
off, as we show below (Thm. 1), as lower uncertainty implies
a polynomially higher computational cost. For a given ε we
thus seek to find the least number of random walks N that
guarantees this uncertainty level. We say that such an N is
ε-optimal:
Definition 3 (ε-optimality) N is ε-optimal onH under L if
it is the smallest integer so that for any pair of nodes vi, vj in
H, the expectation of the uncertainties of (L,N)-estimates
of hi,j and Pi,j are upper bounded by ε.

Minimising N is crucial as running random walks is com-
putationally intensive, especially in large hypergraphs.

Usage In Theorem 1 below, we state how to set N to
guarantee ε-optimality (for all theorem proofs, see the Ap-
pendix on arXiv2).
Theorem 1 An upper bound on the ε-optimal number of
random walks N onH under L is given by

max{(L− 1)2/4ε2, P ∗ (γ + lnP ∗)/ε2} (1)

where P ∗ = 1 + e
(
eL − 1

)
/(e− 1)≫ 1, e is the number

of unique edge labels in H, and γ ≈ 0.577 is the Euler-
Mascheroni constant.

2https://arxiv.org/pdf/2302.04599

In PRISM, N is automatically computed according to Theo-
rem 1 based on a user-specified ε. In the above, we assumed
a fixed L. A good value for L is the diameter of the hyper-
graph to guarantee that every node can be hit during random
walks. In Section 4.2 we revise this assumption and show
how L can be reduced based on the properties ofH.

3.3 α-significance: Controlled Softness of
Formulae

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

(low α) (medium α)

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

(high α)

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

Figure 2: Influence of α: As α increases, the criterion
for clustering nodes by path similarity becomes stricter.
The source node, B1, is shaded in grey. Nodes that
were previously clustered become partitioned. For example:
{P1, P2, P3} −→ {P1, P2}{P3} −→ {P1}{P2}{P3}.

Motivation Theorem 1 allows us to run the minimum
number of walks needed to compute good enough estimates
of the truncated hitting times and the path distributions.
Based on these estimates, the next step is to partition our data
into path-symmetric sets. If we choose very strict standards
for clustering nodes together, i.e. only clustering if they have
identical truncated hitting times and path distributions, the
formulae we find will be very stringent and will not general-
ize well on unseen data (overfitting). However, if we are too
loose on the criteria to merge nodes, the rules we obtain will
be too soft and not informative enough (underfitting).

Our approach to controlling rule softness is to introduce
statistical tests to decide when two nodes are distance- and
path-symmetric and a user-specified parameter 0 < α < 1.
α is the statistical significance level at which two nodes are
considered distance- and path-symmetric. α, therefore, mea-
sures how lenient we are in merging entities into abstract
concepts and by extension an indirect measure of the soft-
ness of rules. The effect of changing α for path-symmetry
clustering on an example hypergraph is shown in Fig 2.

This approach results in three major benefits:
(i) α is the only clustering parameter compared to the four

parameters in SOTA. (ii) α is by construction dataset inde-
pendent, thus simplifying hyperparameter tuning compared
to SOTA. (iii) the α parameter has a direct and intuitive ef-
fect on the size of the path-symmetric clusters, with smaller
α leading to less-strict statistical tests that ultimately favour
finding fewer, but larger path-symmetric sets and thus fewer,
more-approximate abstract concepts.

12208



Usage Given truncated hitting times ĥL,N
i,j , we merge

nodes if the difference between their THTs is below a thresh-
old θsym(α). Next, given path distributions P̂L,N

i,j , we pro-
pose a hypothesis test to validate whether a set of sampled
distributions are statistically similar. We show that both tests
can be performed to a specified level of statistical signifi-
cance given by just one parameter: α.

First, we consider the null hypothesis that nodes vj
and vk are order-L distance-symmetric w.r.t. vi, using
|ĥL,N

i,j − ĥL,N
i,k | as a test statistic:

Theorem 2 (Distance-Symmetric Hypothesis Test) The
null hypothesis is rejected at significance level α, i.e.
nodes vj and vk are not order-L distance-symmetric,
if |ĥL,N

i,j − ĥL,N
i,k | > ((L− 1)/

√
2N)tα/2,N−1, where

tα/2,N−1 is the inverse-survival function of an N − 1
degrees of freedom student-t distribution evaluated at α/2.

Theorem 2 allows us to set parameter θsym dynamically
for each pair of nodes whose hitting times are being com-
pared, such that nodes are merged only if they are distance-
symmetric at significance level α:

θsym =
L− 1√
2N

tα/2,N−1. (2)

To measure the degree of path symmetry (as opposed to
distance symmetry), a threshold can be set using a different
hypothesis test but based on the same α used to set θsym
above. In the next section, we detail this hypothesis test.

4 Efficient Structural Motif Finding
Above we have discussed how to set our parameters in a
principled fashion. In this section, we discuss how to use
these parameters in an efficient algorithm (Sec. 4.1), and
then further improve speed by reducing the required length
(Sec. 4.2) and number of random walks (Sec. 4.3).

4.1 An Improved Path-Symmetry Clustering
Algorithm

In this section, we outline an efficient algorithm, which we
refer to as PathSymmetricClustering, for partitioning nodes
into sets that are path-symmetric at significance level α. This
algorithm has O(n lnn) complexity in the number of nodes
to cluster, which offers a significant improvement over the
O(n3) complexity of SOTA.

Using the notation introduced in Section 3, we
partition each distance-symmetric node set Am ∈
{A1, . . . , AM} into path-symmetric sets w.r.t. a node
vi. PathSymmetricClustering treats the path counts of
the nodes within each Am as points in a multi-
dimensional space of the path signatures. For each Am,
PathSymmetricClustering then clusters nodes into path-
symmetric sets as follows: First, we run a hypothesis test
(Thm. 3, discussed below) on Am to check whether the en-
tire set of nodes is path-symmetric at significance level α.
If the test passes, all nodes are clustered together. If the test
fails, we proceed with recursive clustering (see Alg. 1):

Algorithm 1: PathSymmetricClustering

1 Input:A, nodes to partition into order-L
path-symmetric sets w.r.t. vi, where vi ̸∈ A

2 Output:B1, . . . , BK , path-symmetric sets
3 Parameters:α, δ = 2 (parameters N,L are implicit)
4 if A is path symmetric at significance level α for each

l ∈ {L,L− 1, . . . , 1} then
5 return {A} ; // Thm. 3
6 else
7 for each vℓ′ ∈ A compute & standardise ĈL,N

i,ℓ′

8 reduce all the Ĉl,N
i,ℓ′ ’s into δ-dimensional feature

vectors using PCA
9 Partition←− ∅

10 RemainingSets←− {A}
11 while RemainingSets not empty do
12 S ←− RemainingSets.pop
13 partition S into {B1, B2} via unsupervised

clustering of the Ĉl,N
i,ℓ′ ’s

14 for Bi ∈ {B1, B2} do
15 if Bi is path symmetric at significance

level α for each l ∈ {L,L− 1, . . . , 1}
then

16 Parition.append(Bi)
17 else
18 RemainingSets.append(Bi)

19 return Partition

1. Standardize (zero mean, unit variance) the path counts
and use PCA to map these standardized counts to a two-
dimensional space.

2. Cluster nodes in the reduced space into two sets using
unsupervised BIRCH clustering (Zhang, Ramakrishnan,
and Livny 1996) .

3. Perform a path-symmetry hypothesis test (Thm. 3) sepa-
rately on the two identified sets.

4. Clusters failing the test have their nodes repeatedly repar-
titioned into two new clusters using steps 2 and 3 until all
sets of clusters pass the hypothesis test. The output is a
set of clusters {B1, B2, ..., Bk} partitioning the set Am.
Similar to Section 3.3, the partitioning process in

PathSymmetricClustering is driven by a statistical hypothe-
sis test. This time, the desired null hypothesis is that all the
nodes in a cluster Bk are order-L path-symmetric. Specif-
ically, we test for each cluster the following: that for each
l ∈ {L,L − 1, . . . , 1} the cluster Bk is exact order-l path-
symmetric w.r.t. vi at significance level α. We denote this
null hypothesis H0.

If H0 is true, then at significance level α there exists a
multinomial distribution, common to all nodes in Bk, from
which the empirical exact path counts ĈL,N

i,j |l are drawn.
Extending a version of the χ2 test, we show the following:

Theorem 3 (Path-Symmetric Hypothesis Test) Let Λl be
the total number of different paths of length l over all SLi,j’s.

12209



The null hypothesis that the nodes Bk are order-l exact path
symmetric is rejected at significance level α if the statistic

Q(Bk) :=

Λl∑
λ=0

∑
vj∈Bk

(
cλ − c

(j)
λ

)2

(3)

exceeds χ2
w,ν(α), where

c
(j)
λ := ĈL,N

i,j (λ), c
(j)
0 := N −

Λl∑
λ=1

c
(j)
λ , (4)

cλ :=
1

|Bk|
∑

vj∈Bk

c
(j)
λ ,

and χ2
w,ν(α) is a generalised chi-squared distribution,

weight parameters w and degree of freedom parameters
ν = (1, 1, ..., 1), evaluated at significance level α. Above w

are the eigenvalues of the block matrix Σ̃ with components

Σ̃
(b,b′)
λ,λ′ = N

(
δb,b′ −

1

|Bk|

)
·(

δλ,λ′
cλ
N

(
1− cλ

N

)
−
(
1− δλ,λ′

)cλ
N

c′λ
N

)
,

where b, b′ ∈ (1, . . . , |Bk|) index blocks, λ, λ′ ∈ (0, . . . ,Λl)
index within blocks and δλ,λ′ is the Kronecker delta.

Remark 2 By requiring knowledge of the eigenvalues w,
Theorem 3 suggests that an eigendecomposition of Σ̃ is nec-
essary. However, we show in the Appendix how this calcu-
lation can be avoided by approximating the generalised chi-
squared distribution by a gamma distribution.

4.2 Running Shorter Random Walks
We now show how to set a minimal L needed for the random
walks to span areas of interest in the hypergraph. We do this
by hierarchical clustering.

Motivation We implement hierarchical clustering by it-
eratively cutting the hypergraph along sparse cuts until no
sparse cuts remain. This algorithm results in three bene-
fits: (i) Splitting the hypergraph into smaller sub-graphs
leads to smaller diameters and therefore smaller L. This,
by extension, also reduces N (Thm. 1). (ii) Having fewer
nearby nodes means that the subsequent partitioning in
PathSymmetricClustering is faster. (iii) Hierarchical clus-
tering identifies groups of densely-connected nodes, which
helps us to ignore spurious links. Spuriously-connected
nodes appear rarely in the path signatures and therefore only
add noise to the path signature counts. By focusing ran-
dom walks on areas of interest, we are hitting nodes that
are densely connected more often and gaining more accu-
rate statistics of truncated hitting times and empirical path
distributions.

Hierarchical Clustering Algorithm The algorithm
HClustering is based on spectral clustering, a standard ap-
proach for cutting graphs along sparse cuts. A discussion of
spectral clustering is beyond the scope of this paper. Note
that the is no equivalent approach for hypergraphs, so we

Algorithm 2: PRISM
1 Input:H, the hypergraph representation of the input

relational database
2 Output:Path-symmetric sets (abstract concepts C) of

nodes w.r.t. each vi inH
3 Parameters:ε, α
4 H1, . . . ,HK := HClustering(H) ; // Sec. 4.2
5 Let Vk denote the set of nodes inHk

6 for 1 ≤ k ≤ K do
7 set L to the diameter ofHk

8 compute ε-optimal N onHk under L ; // Th.1
9 for each node vi inHk do

10 for each vj ̸= vi inHk compute P̂L,N
i,j and

ĥL,N
i,j ; // Sec. 2

11 partition Vk into distance-symmetric sets
{A1, A2, ..., AM} using α-significance ;
// Th. 2, Sec. 2

12 for 1 ≤ m ≤M do
13 Cm :=

PathSymmetricClustering(Am, α) ;
// Th. 3, Sec. 4

14 return all Cm’s

propose to translate a hypergraph into a graph and then per-
form spectral clustering as follows:

In overview, HClustering begins by converting a hyper-
graph H = (V,E) into a weighted graph G by expanding
cliques over each hyperedge. Next, G is recursively biparti-
tioned using the sweep set approximation algorithm for the
Cheeger-cut (Chang, Shao, and Zhang 2017). The result of
the partitioning is a set of subgraphs G := {G1,G2, ...,Gk}.
The partitioning terminates whenever the second-smallest
eigenvalue of the symmetric Laplacian matrix λ2 exceeds
a threshold value λmax

2 . λmax
2 is dataset independent and

thus fixed in our implementation. Finally, each subgraph Gi
is then converted into a hypergraph Hi = (Vi, Ei) such that
the vertex set Vi of the hypergraph is initialised to be the ver-
tex set of Gi. The edge set Ei is then constructed by adding
all hyperedges e ∈ E whose strict majority of element ver-
tices appear in Vi, i.e. Ei := {e ∈ E | |e ∩ Vi| > |e|/2}.
As a consequence, no nodes nor edges are lost during
clustering. HClustering returns the set of sub-hypergraphs
{H1,H2, ...,Hk}. After partitioning, we run the rest of the
pipeline with L set to the diameter of eachHi.

Our entire pipeline for learning abstract concepts from a
relational database is summarised in Algorithm 2.

4.3 Running Fewer Random Walks
As a final optimization step, we comment on how the num-
ber of random walks can be further reduced. The number
of walks as implied by Theorem 1 can be very large since
P ∗ grows exponentially with L. Therefore in practice, rather
than running enough walks to guarantee ε-boundedness for
all path signatures, we only run enough walks to guarantee
ε-boundedness for the top k most common path signatures.

12210



P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

Distance Symmetric

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

Path Symmetric

(ii) (iii)

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

P12 P13 P14

B4

P10 P11

P7 P8 P9

B3

Physics History

(i)

Hierarchical Clustering Symmetry Clustering

Figure 3: PRISM Pipeline: A visual example of the PRISM algorithm applied to an academic departments toy dataset. Nodes Pi

are entities of type person, while Bi are entities of type book. Black edges represent TEACHES(person,person), and red
edges represent READS(person,book) predicates. Although not explicitly annotated in the data, entities {P4,P5,P10,P11}
are in fact professors and the remaining person entities are students. Hierarchical Clustering Preprocessing: The physics and
history departments are connected by a single spurious link. In this example, hierarchical clustering therefore stops after one
iteration, cutting along the departments (dotted line). To avoid information loss, the spurious link between P8 and B4 will be
preserved in one of the clusters (Sec. 4.2). Symmetry Clustering: Here we focus on the left sub-graph obtained from hierarchical
clustering in (i). Running random walks from B1, we show examples of the distance-symmetric and path-symmetric clusters
that we obtain in (ii) and (iii), respectively. Note how {P1,P2,P3} in (ii) is partitioned into {P1,P2} and {P3} in (iii) since
path-symmetry is more stringent than distance symmetry.

Theorem 4 (Fewer Random Walks) An upper bound on
N sufficient for the kth most probable path to have uncer-
tainty less than or equal to ε is

N =
(k + 1) (γ + lnP ∗)− 1

ε2
.

In our implementation, we use k = 3 since we deem it
to be the smallest value (and therefore requiring the fewest
random walks) that still allows for meaningful comparison
between path distributions.

5 Extended Example
We now illustrate the entire PRISM pipeline through
an extended example, shown in Fig 3. In the figure,
we consider the hypergraph representation of a dataset
describing a physics and history department in a uni-
versity, containing two types of entities (person and
book) and two relations (TEACHES(person,person)
and READS(person,book)).

The first stage of PRISM applies hierarchical clustering
to the dataset to identify densely-connected nodes. In this
example, the physics and history departments are only con-
nected by a single, spurious link, and the hierarchical clus-
tering stops after one iteration, cutting along the depart-
ments. In addition, we can verify here that the hierarchi-
cal clustering results in an almost two-fold computational
speed-up: The original hypergraph in Fig 3(i) has diameter
9. If we set ε = 0.1, then Theorem 4 gives an upper bound
on the ε-optimal number of random walks for accurate path

P4 P5

P1 P2 P3

B1

P6 P7 P8

B2

Figure 4: Changing the Source Node: In this case, the
source node is P4 (a professor) and we obtain a differ-
ent, although intuitive partitioning: P5 is a colleague of P4,
{P1,P2,P6,P7,P8} are P4’s students, P3 is a student that P4

is not teaching and {B1,B2} are the academic books of the
department. Note how it is possible to extract these abstract
concepts, even though the only explicit information we ini-
tially provided was that entities are either books or people.

distributions of N = 3.0 × 103. After hierarchical cluster-
ing, the hypergraphs have diameter 4, and Theorem 4 for the
same ε gives an upper bound of N = 1.6× 103.

After hierarchical clustering, PRISM applies symme-
try clustering in two stages: first by identifying distance-
symmetric sets based on their truncated hitting times, then
by identifying path-symmetric nodes within these sets based

12211



Algorithm AUC CLL ACC MF TIME (s) SL TIME (s)

IMDB
PRISM 0.141 ± 0.027 -0.18 ± 0.03 0.84 ± 0.02 0.086 ± 0.018 320 ± 40
LSM 0.12 ± 0.03 -0.25 ± 0.06 0.78 ± 0.04 1.25 ± 0.10 430 ± 20
BOOSTR 0.062 ± 0.013 -0.69 ± 0.006 0.504 ± 0.004 N/A 165.7 ± 129

UWCSE
PRISM 0.402 ± 0.028 -0.0098 ± 0.0009 0.993 ± 0.002 0.40 ± 0.06 640 ± 350
LSM 0.392 ± 0.023 -0.0098 ± 0.0009 0.992 ± 0.002 4.23 ± 0.80 3140 ± 270
BOOSTR 0.0098 ± 0.003 -2.114 ± 0.004 0.121 ± 0.001 N/A 30.5 ± 3.9

WEBKB
PRISM 0.57 ± 0.04 -0.0092 ± 0.0011 0.991 ± 0.002 0.118 ± 0.038 102 ± 5
LSM 0.57 ± 0.04 -0.0092 ± 0.0011 0.991 ± 0.002 2.5 ± 0.4 220 ± 10
BOOSTR 0.0335 ± 0.0021 -2.14 ± 0.09 0.118 ± 0.010 N/A 9.3 ± 0.4

Table 1: Area Under the Precision Recall Curve (AUC), Conditional Log Likelihood (CLL), Accuracy (ACC), Motif Finding
(MF) time, and Structure Learning (SL) time comparisons of PRISM, LSM and BOOSTR on three datasets.

on path distributions. The first stage only serves to speed
up the subsequent path-symmetric clustering since path-
symmetry implies distance symmetry (Rmk. 1), but check-
ing distance symmetry is quicker (O(n) vs O(n lnn) for
PathSymmetricClustering). Note that, in this example, the
source node was chosen as B1 and the hypergraph has a high
degree of symmetry relative to the source node, which ex-
plains why the distance-symmetric and path-symmetric sets
are almost identical (Fig. 3 (ii) and (iii)). For more realis-
tic datasets, where global symmetries in a hypergraph are
rare, the differences between distance-symmetric and path-
symmetric clustering will be more pronounced.

We finish this section by illustrating the effect of changing
the source node of the random walks. Recall that sets of sym-
metric nodes, i.e., the abstract concepts, are always found
with respect to a specific source node. Changing the source
node, therefore, changes the learnt concepts. This idea is il-
lustrated in Fig 4, where the source node is changed from
B1 to P4, resulting in different clusterings. When random
walks were run from B1 we obtained the familiar concepts
of teachers, colleagues, students and books. However, Fig 4
illustrates how abstract concepts can often be less intuitive,
but still illustrate subtle relationships in the data. In PRISM
we run random walks from each node in the hypergraph in
turn. This helps to identify a wide range of abstract concepts.

6 Experiments
We compare our motif-finding algorithm, PRISM, against
the current state-of-the-art, LSM (Kok and Domingos 2010)
and BOOSTR (Khot et al. 2015), in terms of speed and accu-
racy of the mined MLNs.

Datasets We used benchmark datasets adopted by the
structure learning literature: UW-CSE (Richardson and
Domingos 2006), IMDB, and WEBKB. The IMDB dataset
is subsampled from the IMDB.com database and describes
relationships among movies, actors and directors. The
UW-CSE dataset describes an academic department and the
relationships between professors, students and courses. The
WEBKB consists of Web pages and hyperlinks collected from
four computer science departments. Each dataset has five
splits. Each time we used one split to test accuracy and the
remaining splits for training. The reported results are the av-

erage over all five permutations.
Problem Given a dataset with partial observations, we

want to predict the truth values for unobserved data. For ex-
ample, for the IMDB dataset we might not know every actor
who starred in a movie. We then predict, for each actor in
the database, the likelihood of an actor to have starred in
a given movie. We remark that our unobserved data spans
across every possible predicate in the database, e.g. for
IMDB this would include STARRINGIN(movie,person),
ACTOR(person). . . This problem thus reduces to predict-
ing missing edges in the hypergraph.

Baseline and Evaluation We used the entire LSM
pipeline (Kok and Domingos 2010) as a baseline. We used
the lifted belief propagation inference tool of Alchemy
(Kok et al. 2007) to calculate the averaged conditional log-
likelihood on each entity (ground atom) in the test split.
For LSM, we used the same hyperparameters as originally
adopted by the authors (Kok and Domingos 2010). In addi-
tion, we compared our work to the authors’ publically avail-
able implementation of BOOSTR (Khot et al. 2015).

Experiment Setup Firstly, we ran PRISM and then, the
remainder of the unmodified LSM pipeline. We used ε = 0.1
and α = 0.01 throughout, as both are dataset-independent.
We ran all experiments on a desktop with 32Gb of RAM and
a 12-core 2.60GHz i7-10750H CPU.

Metrics We used standard measures from the structure
learning literature. In particular, we measured accuracy and
conditional log-likelihood for all datasets, as well as the area
under the precision-recall curve (AUC) as it provides a more
robust measure. The runtimes of the motif-finding step and
the overall structure learning time are also reported.

Results In Table 1, we see that compared to LSM, we
improve in accuracy on the IMDB dataset by 6%, while on
UW-CSE and WEBKB the improvement is negligible. This is
because LSM already found rules that generalized the data
extremely well. However, as expected, the runtime of our
algorithm is significantly reduced for all datasets. For mo-
tif finding, we see that our optimised algorithm is 10x-20x
faster than LSM’s motif-finding time. The overall structure
learning computation is up to 5x faster than LSM. This is de-
spite the main computational bottleneck for structure learn-
ing occurring during rule induction and evaluation - parts of

12212



the pipeline that were left unmodified. This suggests that our
algorithm more tightly constrains the subsequent rule induc-
tion by finding more accurate motifs, thereby giving a speed
improvement in these areas of the pipeline too.

We are slower compared to BOOSTR. However, PRISM’s
accuracy drastically improves over BOOSTR. We believe
the differences in time and accuracy between datasets for
BOOSTR stem from the quality of the background knowl-
edge: while on IMDB and UW-CSE background knowledge
was given, on WEBKB it was not. No background knowledge
was provided to LSM or PRISM.

7 Related Work
In this section, we will review prior art in structure learning
across a variety of logical languages. As we show below,
every one of these approaches is based on learnt or user-
defined templates to restrict the search space of candidate
formulae. These templates are exactly the motifs that we
are finding automatically and efficiently with the proposed
framework.

ILP To alleviate the need to manually provide logical the-
ories, several communities have developed techniques for
inducing logical theories. One of the most influential fam-
ily techniques for mining Horn clauses is that of Induc-
tive Logic Programming (ILP), e.g., FOIL (Quinlan 1990),
MDIE (Muggleton 1995) and Inspire (Schüller and Benz
2018). Recently, Evans and Grefenstette proposed a differ-
entiable variant of ILP (Evans and Grefenstette 2018) to sup-
port the mining of theories in noisy settings. ILP techniques
require users to provide in advance the patterns of the for-
mulas to mine, as well as to provide both positive and neg-
ative examples. The above requirements, along with issues
regarding scalability (Evans and Grefenstette 2018), restrict
the application of ILP techniques in large and complex sce-
narios. Our work specifically focuses on finding these pat-
terns automatically and are not restricted to Horn clauses.

Recently, several techniques aim to mine rules in a differ-
entiable fashion. One of them is Neural LP (Yang, Yang,
and Cohen 2017), a differentiable rule mining technique
based on TensorLog (Cohen, Yang, and Mazaitis 2020).
The authors in (Guu, Miller, and Liang 2015) presented a
RESCAL-based model to learn from paths in knowledge
graphs, while Sadeghian et al. proposed DRUM, a differ-
entiable technique for learning uncertain rules in first-order
logic (Sadeghian et al. 2019). A limitation of the above line
of research is that they mainly focus on rules of a specific
transitive form only. Other techniques for differentiable rule
mining have been proposed in (Das et al. 2017; Minervini
et al. 2018; Rocktäschel and Riedel 2017). In contrast to this
line of work, our motif-finding algorithm helps in pipelines
that can find more general first-order logic rules.

MLN The first and somewhat naive structure learning al-
gorithm proposed for MLNs is called top-down structure
learning (TDSL) (Kok and Domingos 2005). The idea is to
perform a near-exhaustive search for candidate logical rules
and then construct an MLN by recursively retaining rules
that lead to the best improvement in the pseudo-likelihood
approximation. That means that the algorithm starts with

S2 directly. Due to the exponential search space, the algo-
rithm is not able to find long rules in large datasets and fails
to find rules that truly generalize and capture the underly-
ing data. The following approaches in this line of research
all prepended the rule generation with a pattern-finding step
(S1) - the core of our research. The first paper that proposed
such an approach was bottom-up structure learning (BUSL)
(Mihalkova and Mooney 2007), where the idea was to pre-
specify template networks akin to our motifs, that would be
good candidates for potential rules and iteratively build on
these templates to find more complex rules.

To tackle the high computational overhead of structure
learning, (Khot et al. 2015) introduce BOOSTR, a technique
that simultaneously learns the weights and the clauses of an
MLN. The key idea is to transform the problem of learning
MLNs by translating MLNs into regression trees and then
uses functional gradient boosting (Friedman 2000) along
those trees to find clauses. Further, it tries to learn under
unobserved data. To this end, they introduced an EM-based
boosting algorithm for MLNs. This approach also requires
templates, however, they must be user-defined, which re-
quires additional effort and can restrict applications. While
showing promising results in terms of runtime, the technique
supports only Horn clauses, and its performance drastically
decreases in the absence of background knowledge, as we
later show in our empirical results (Sec. 6).

The current SOTA in this line of research is learning
through structural motifs (LSM) (Kok and Domingos 2010),
where similar to the template-networks, motifs are identi-
fied in the hypergraph representation of the data, by run-
ning random walks on the graph and identify symmetric pat-
terns through path signature symmetry of the random walks.
The finding of good motifs or templates is the differentiating
point between the different algorithms and has been shown
to have the most significant impact on the quality of the ul-
timate rules. A principled, robust and efficient algorithm for
finding such motifs could therefore improve these and future
algorithms. We believe that we are the first to propose such
a principled and efficient algorithm for finding motifs.

8 Conclusion
We made a key step toward learning the structure of logical
theories - mining structural motifs. We presented the first
principled mining motif technique in which users can con-
trol the uncertainty of mined motifs and the softness of the
resulting rules. Furthermore, we reduced the overall com-
plexity of motif mining through a novel O(n lnn) cluster-
ing algorithm. Our empirical results against the state-of-the-
art show improvements in runtime and accuracy by up to
80% and 6%, respectively, on standard benchmarks. While
we focused on lifted graphical models, our work can be
used to learn the formulas of other types of logical theories
as well. One interesting direction of future work is to inte-
grate our motif-mining technique with differential rule min-
ing approaches as our empirical analysis shows that purely-
symbolic based approaches for that task can sometimes be
the bottleneck. A second direction is to integrate our motif-
mining approach with Graph Neural Networks and provide
a similar formal analysis.

12213



References
Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L.
2017. Hinge-loss markov random fields and probabilistic
soft logic. Journal of Machine Learning Research.
Chang, K.; Shao, S.; and Zhang, D. 2017. Cheeger’s cut,
maxcut and the spectral theory of 1-Laplacian on graphs.
Science China Mathematics, 60(11): 1963–1980.
Chen, Y.; and Wang, D. Z. 2014. Knowledge expansion over
probabilistic knowledge bases. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of
Data, 649–660. New York, NY, USA: Association for Com-
puting Machinery. ISBN 978-1-4503-2376-5.
Cohen, W. W.; Yang, F.; and Mazaitis, K. 2020. Tensor-
Log: A Probabilistic Database Implemented Using Deep-
Learning Infrastructure. J. Artif. Intell. Res., 67: 285–325.
Crane, R.; and Mcdowell, L. K. 2012. Investigating markov
logic networks for collective classification. Proceedings of
the 4th International Conference on Agents and Artificial In-
telligence, 1: 5–15.
Das, R.; Dhuliawala, S.; Zaheer, M.; Vilnis, L.; Durugkar, I.;
Krishnamurthy, A.; Smola, A. J.; and McCallum, A. 2017.
Go for a Walk and Arrive at the Answer: Reasoning Over
Paths in Knowledge Bases using Reinforcement Learning.
CoRR, abs/1711.05851.
Evans, R.; and Grefenstette, E. 2018. Learning Explanatory
Rules from Noisy Data. J. Artif. Intell. Res., 61: 1–64.
Friedman, J. H. 2000. Greedy Function Approximation: A
Gradient Boosting Machine. Annals of Statistics, 29: 1189–
1232.
Getoor, L.; and Taskar, B. 2007. Introduction to Statistical
Relational Learning (Adaptive Computation and Machine
Learning). The MIT Press.
Guu, K.; Miller, J.; and Liang, P. 2015. Traversing Knowl-
edge Graphs in Vector Space. In Proceedings of the
2015 Conference on Empirical Methods in Natural Lan-
guage Processing, 318–327. Lisbon, Portugal: Association
for Computational Linguistics.
Ha; Rowe; Mott; and Lester. 2011. Goal Recognition with
Markov Logic Networks for Player-Adaptive Games. Pro-
ceedings of the Seventh AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE-11).
Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Har-
nessing Deep Neural Networks with Logic Rules. In ACL,
2410–2420.
Khot, T.; Natarajan, S.; Kersting, K.; and Shavlik, J. 2015.
Gradient-based boosting for statistical relational learning:
the Markov logic network and missing data cases. Machine
Learning, 100(1): 75–100.
Kok, S.; and Domingos, P. 2005. Learning the structure of
Markov logic networks. In Proceedings of the 22nd inter-
national conference on Machine learning - ICML ’05, 441–
448. Bonn, Germany: ACM Press. ISBN 978-1-59593-180-
1.
Kok, S.; and Domingos, P. 2010. Learning Markov Logic
Networks Using Structural Motifs. AAAIWS: Proceedings of

the 6th AAAI Conference on Statistical Relational Artificial
Intelligence.
Kok, S.; Singla, P.; Richardson, M.; Domingos, P.; Sumner,
M.; and Poon, H. 2007. The alchemy system for statistical
relational AI: User Manual. Technical report, Department of
Computer Science and Engineering, University of Washing-
ton, Seattle, WA.
Lippi, M.; and Frasconi, P. 2009. Prediction of protein β-
residue contacts by Markov logic networks with grounding-
specific weights. Bioinformatics, 25(18): 2326–2333.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. DeepProbLog: Neural Probabilistic
Logic Programming. In NeurIPS, 3749–3759.
Mihalkova, L.; and Mooney, R. J. 2007. Bottom-up learning
of Markov logic network structure. In Proceedings of the
24th international conference on Machine learning - ICML
’07, 625–632. Corvalis, Oregon: ACM Press. ISBN 978-1-
59593-793-3.
Minervini, P.; Bosnjak, M.; Rocktäschel, T.; and Riedel, S.
2018. Towards Neural Theorem Proving at Scale. CoRR,
abs/1807.08204.
Muggleton, S. H. 1995. Inverse Entailment and Progol. New
Gener. Comput., 13(3&4): 245–286.
Quinlan, J. R. 1990. Learning Logical Definitions from Re-
lations. Mach. Learn., 5(3): 239–266.
Richardson, M.; and Domingos, P. 2006. Markov logic net-
works. Machine Learning, 62(1-2): 107–136.
Riedel, S.; and Meza-Ruiz, I. 2008. Collective semantic role
labelling with Markov logic. In Proceedings of the Twelfth
Conference on Computational Natural Language Learning,
CoNLL ’08, 193–197. USA: Association for Computational
Linguistics. ISBN 978-1-905593-48-4.
Rocktäschel, T.; and Riedel, S. 2017. End-to-end Differen-
tiable Proving. In Guyon, I.; Luxburg, U. V.; Bengio, S.;
Wallach, H.; Fergus, R.; Vishwanathan, S.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Russell, S. 2015. Unifying logic and probability. Communi-
cations of the ACM, 58(7): 88–97.
Sadeghian, A.; Armandpour, M.; Ding, P.; and Wang, D. Z.
2019. DRUM: End-To-End Differentiable Rule Mining On
Knowledge Graphs. In Wallach, H. M.; Larochelle, H.;
Beygelzimer, A.; d’Alché-Buc, F.; Fox, E. B.; and Garnett,
R., eds., Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, 15321–15331.
Sarkar, P.; Moore, A. W.; and Prakash, A. 2008. Fast In-
cremental Proximity Search in Large Graphs. Proceedings
of the 25th International Conference on Machine Learning,
896–903.
Schüller, P.; and Benz, M. 2018. Best-effort inductive logic
programming via fine-grained cost-based hypothesis gener-
ation - The inspire system at the inductive logic program-
ming competition. Mach. Learn., 107(7): 1141–1169.

12214



Singla, P.; and Domingos, P. 2006. Entity Resolution with
Markov Logic. In Proceedings of the Sixth International
Conference on Data Mining, ICDM ’06, 572–582. USA:
IEEE Computer Society. ISBN 978-0-7695-2701-7.
Wang, H.; and Poon, H. 2018. Deep Probabilistic Logic: A
Unifying Framework for Indirect Supervision. In EMNLP,
1891–1902.
Wu, F.; and Weld, D. S. 2008. Automatically refining the
wikipedia infobox ontology. In Proceedings of the 17th
international conference on World Wide Web, WWW ’08,
635–644. New York, NY, USA: Association for Computing
Machinery. ISBN 978-1-60558-085-2.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differen-
tiable Learning of Logical Rules for Knowledge Base Rea-
soning. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17,
2316–2325. Red Hook, NY, USA: Curran Associates Inc.
ISBN 9781510860964.
Yang, Z.; Ishay, A.; and Lee, J. 2020. NeurASP: Embracing
Neural Networks into Answer Set Programming. In IJCAI,
1755–1762.
Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. BIRCH:
an efficient data clustering method for very large databases.
ACM SIGMOD Record, 25(2): 103–114.

12215


