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Abstract

Graphical event models (GEMs) are representations of tem-
poral point process dynamics between different event types.
Many real-world applications however involve limited event
stream data, making it challenging to learn GEMs from data
alone. In this paper, we introduce approaches that can work
together in a score-based learning paradigm, to augment data
with potentially different types of background knowledge.
We propose novel scores for learning an important paramet-
ric class of GEMs; in particular, we propose a Bayesian score
for leveraging prior information as well as a more practical
simplification that involves fewer parameters, analogous to
Bayesian networks. We also introduce a framework for incor-
porating easily assessed qualitative background knowledge
from domain experts, in the form of statements such as ‘event
X depends on event Y’ or ‘event Y makes event X more
likely’. The proposed framework has Bayesian interpretations
and can be deployed by any score-based learner. Through an
extensive empirical investigation, we demonstrate the prac-
tical benefits of background knowledge augmentation while
learning GEMs for applications in the low-data regime.

1 Introduction & Related Work
Graphical event models (GEMs), also known as local inde-
pendence graphs, are probabilistic graphical models for tem-
poral point processes (TPPs) (Didelez 2008; Meek 2014).
Unlike graphical representations for discrete-time dynami-
cal models such as dynamic Bayesian networks and time se-
ries graphs (Dean and Kanazawa 1989; Murphy 2002; Eich-
ler 1999), GEMs represent continuous-time dynamics where
different types of events can occur irregularly over time.

Various types of GEMs have been proposed in prior work,
differing in the parametric assumptions of how conditional
intensity rates for each type of event vary as a function
of historical occurrences. The most popular categories are
those similar to Hawkes processes where intensities jump
and decay over time (Zhou, Zha, and Song 2013b; Luo
et al. 2015; Etesami et al. 2016; Xu, Luo, and Zha 2017),
and those where intensities are piece-wise constant over
time (Gunawardana, Meek, and Xu 2011; Bhattacharjya,
Subramanian, and Gao 2018; Bhattacharjya, Gao, and Sub-
ramanian 2020). Among the latter family, proximal graph-
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ical event models (PGEMs) are simple yet effective at fit-
ting many real world datasets (Bhattacharjya, Subramanian,
and Gao 2018). Piece-wise constant GEMs have been shown
to be a universal approximator for TPPs (Gunawardana and
Meek 2016). There is also a burgeoning stream of recent
work on neural architectures for learning TPP models when
one has access to substantial event data (Du et al. 2016; Xiao
et al. 2017; Mei and Eisner 2017; Omi, Ueda, and Aihara
2019; Shchur, Biloš, and Günnemann 2019; Gao et al. 2020;
Zuo et al. 2020). This line of work has primarily focused on
predicting the next type of event and its occurrence time.

We consider a separate but practically important research
thread: how to learn GEMs in the low-data regime. This
direction is currently understudied; a notable exception is
some recent work on a new parametric family for TPPs
based on expert-provided temporal logical rules (Li et al.
2020). In contrast, we propose a framework for learning a
specified parametric GEM (such as PGEM) through score-
based approaches while augmenting data with knowledge.
Furthermore, we enable incorporation of various forms of
knowledge, including simple qualitative statements that are
easy to assess or readily available, such as ‘event X depends
(or does not depend) on event Y’ or ‘event Y makes event
X more (or less) likely’. Note that the former statement can-
not be represented by first order temporal logic as in Li
et al. (2020). Other prior work considers knowledge as a
data-dependent measure and hence may be unsuitable for
low-data problems (Zhang, Sharma, and Liu 2021).

In this work, we are particularly interested in recovering
the underlying model from limited data, i.e. parameter esti-
mation and structure discovery. The latter task is notoriously
challenging in dynamical models due to time dependent con-
founding (Keiding 1999), and learning an underlying GEM
structure can require much more event data than i.i.d data re-
quirements for Bayesian networks. It is therefore important
in practical applications to enable current GEM learning ap-
proaches to effectively exploit any background knowledge
as an inductive bias whenever it is available. However, a
practical learner should ideally be able to override any initial
knowledge given enough data; this is particularly important
when the knowledge is inconsistent with the ground truth.

There is a long line of prior research on incorporating
qualitative knowledge in graphical models such as Bayesian
networks (Lucas 2005; Feelders 2007), mostly around pa-
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rameter estimation given the graph (Wittig and Jameson
2000; Liao and Ji 2009; Zhou, Fenton, and Neil 2014).
We extend some of these conceptual ideas from learning
joint probability distributions towards the more complex
endeavor of learning TPPs as represented by families of
GEMs. Specifically, we present a framework where back-
ground knowledge from qualitative statements in the form
of soft quantitative constraints about temporal dynamics can
augment data to guide a score-based learning approach.

Contributions. We make the following contributions:
• We propose a novel Bayesian score for the piecewise-

constant GEMs family, showing a simplification that
could be practical as it requires only 1 or 2 assessments.

• We describe a general incompatibility framework for in-
corporating background knowledge while learning GEMs
by deploying any score-based learner.

• In one instance of the framework, we show how to incor-
porate directional statements resulting in inequalities for
improving parameter estimation in PGEMs. In another in-
stance, we show how to incorporate underlying process
statements for enhancing structure discovery in GEMs.

• We conduct an extensive empirical investigation to
demonstrate the practical benefits of background knowl-
edge augmentation on various tasks while learning
PGEMs for low-data regime applications.

2 Background
Event Datasets. An event dataset has time-stamped
streams of events of different types. Formally, it is denoted
D = {Dk}Ki=1, where Dk = {(lki , tki )}

Nk
i=1 and event la-

bel (or type) lki belongs to a known label set (or alphabet),
lki ∈ L, such that the number of event labels |L| = M . Time
stamp tki is the occurrence time of the ith event in the kth

stream, tki ∈ R+, assumed temporally ordered between start
time tk0 = 0 and final time tkN+1 = T k which could differ
across event streams. There are K streams of events in the
dataset with a total event count of N =

∑K
k=1 Nk events,

and a total time horizon of T ∗ =
∑K

k=1 T
k.

Temporal Point Processes (TPPs). Event datasets can be
viewed as samples from a multivariate TPP associating each
label in L with a counting process (Aalen, Borgan, and
Gjessing 2008; Daley and Vere-Jones 2002). Prior work uses
a Doob-Meyer decomposition to show that a conditional in-
tensity function for measuring the rate at which an event
label occurs is sufficient to characterize TPPs under gen-
eral assumptions. The conditional intensity for an event la-
bel X at any time t is a function of historical event occur-
rences, i.e. λx(t|ht) where ht includes all events up to time
t, ht = {(li, ti) : ti < t}. Due to intractability in representa-
tion and learning, TPP models need to assume specific forms
for historical dependence of conditional intensity rates.

Graphical Event Models (GEMs). GEMs (Didelez 2008;
Meek 2014; Gunawardana and Meek 2016) are a graphi-
cal representation for TPPs that capture process indepen-
dence relationships among different types of events, which

Figure 1: Graphs of 3 example PGEMs, used later for ex-
periments with synthetic data. Green (red) arcs indicate am-
plification (inhibition) effects, i.e. when a parent increases
(decreases) a child’s conditional intensity rate.

is a notion of independence pertaining to temporal dynam-
ics (Schweder 1970; Didelez 2008), analogous to condi-
tional independence in Bayes nets (Pearl 1988). Informally,
for event labels X,Y,Z ⊂ L s.t. Y ∩Z = ∅, X is process in-
dependent of Y given Z, denoted Y ̸→ X|Z, when label X
has a conditional intensity such that if the historical occur-
rences of label set Z are known, then those of label Y do not
provide any further information. Every event label X is pro-
cess independent of its non-parents given its parents UX in
the GEM graph G. This implies that the dependence of X’s
conditional intensity on historical occurrences simplifies as
λx(t|ht) = λx(t|[h(UX)]t), where UX are X’s parents
and [h(UX)]t is the history restricted to labels in set UX .
One can identify process (in)dependence relations from a
directed and possibly cyclic GEM graph using a separation
criterion analogous to d-separation in Bayes nets (Didelez
2008; Mogensen, Malinsky, and Hansen 2018).

Proximal Graphical Event Models (PGEMs). PGEMs
belong to the afore-mentioned broad family of graphical
models that characterize relationships between various types
of events (Bhattacharjya, Subramanian, and Gao 2018).
Each node in a PGEM graph represents a point process for
an event type where the rate of its occurrence depends only
on whether or not its parents have occurred at least once in
the most recent history, which is represented in the form of
a set of learnable proximal windows corresponding to each
edge in the graph. Fig. 1 depicts 3 PGEM graphs, each with
5 nodes. As an illustrative example, the rate at which D oc-
curs at any time in model #1 depends on whether its par-
ents A and B occur at least once in their respective proxi-
mal time windows. Thus, the process for D has 4 intensity
rates: Λd = {λd|a,b, λd|ā,b, λd|a,b̄, λd|ā,b̄}, where λd|a,b̄ de-
notes the rate when A occurs at least once but B does not
occur in its proximal window. While learning a PGEM could
be entirely data-driven, we make the case in this paper that
knowledge augmentation could be particularly beneficial in
the situation where data is limited.

Score-based Learning. Learners for parametric GEMs
(mostly but not exclusively in the piece-wise constant fam-
ily) are typically score-based approaches using a forward-
backward graph search (Chickering 2002). The Bayesian
information criterion (BIC) is a popular score across dif-
ferent models (Bhattacharjya, Subramanian, and Gao 2018;
Bhattacharjya, Gao, and Subramanian 2020; Yu et al. 2020).
Although a Bayesian approach to parameter estimation has
been proposed previously for a piece-wise constant intensity
model (PCIM) learner (Gunawardana, Meek, and Xu 2011),
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the underlying assumptions are not formally stated and the
high number of required assessments are impractical. Here
we propose a new Bayesian score for more general GEMs,
including an important practical simplification.

3 The Bayesian Gamma Score
We consider a class of GEMs that we refer to as piece-
wise constant graphical event models (PCGEMs) and that
generalize prior models. In this class, the model M con-
sists of graph G and a known number of historical windows
W = {WX} as well as conditional intensity parameters
Λ = {ΛX} for every node X in the graph, whose parents in
G are denoted UX . Given the parents and windows, there is
a known mapping from any event history to a finite domain
ΣX for every node X , such that ΛX = {λx|s} for all his-
torical summaries s ∈ ΣX . (We hide the dependence of ΣX

on UX , WX to avoid clutter.) PGEM is a special case of
PCGEM with a single window and where mapping results
in binary instantiations of parent combinations, thus every
summary s is a parental instantiation u and |ΣX | = 2|UX |.

We wish to score a model M on how well it fits a dataset
D. The log of the joint distribution factorizes as:

logP (D,M) = logP (G) + logP (W|G) + logP (Λ|W,G) + LL,
(1)

where LL is the log likelihood of the data, i.e. log of
P (D|Λ,W,G), which for a PCGEM is:

LL =
∑

X∈L LLX =
∑

X,s∈ΣX

(
−λx|sD(s) +N(x,u) ln(λx|s)

)
,

(2)
where N(x, s) is the number of times that X is observed
and the history maps to state s of ΣX , D(s) is the duration
over which the history maps to state s, and ΛX = {λx|s} are
intensities for X .

Assuming non-informative priors on windows given any
graph G, independence of conditional intensity priors as well
as parent set priors, allows for two simplifications to Eq. (1):
(1) the score becomes decomposable, i.e. the total score is a
sum over all label-specific scores, and (2) it allows one to
disregard windows, since maximizing Eq. (1) is equivalent
to maximizing the sum of:

SX = logP (UX) + logP (ΛX |W,G) + LLX , (3)

over all nodes X . The following result generalizes the
Bayesian updating approach from (Gunawardana, Meek,
and Xu 2011) after recognizing that the Gamma distribution
is a conjugate prior for intensities:

Theorem 1 If conditional intensity priors are Gamma dis-
tributions and event dataset D is a complete TPP sample
from the underlying PCGEM, then maximizing Eq. (3) is
equivalent to maximizing the Bayesian Gamma (BG) score:

BGX = logP (UX) + LL∗
X , (4)

where LL∗
X is the log likelihood computed at the following

conditional intensity estimates:

λ̂x|s =
N(x, s) +N ′(x, s)− 1

D(s) +D′(s)
, ∀X, s, (5)

which includes counts of observing label X in summary
state s in the dataset, N(x, s), and durations over which that
state is true, D(s). N ′(x, s) and D′(s) are effective counts
and durations of the prior over conditional intensities.

The conditional intensity distributions are updated from
the prior λ0

x|s ∼ Gamma (N ′(x, s), D′(s)) to the posterior
λx|s ∼ Gamma (N ′(x, s) +N(x, s), D′(s) +D(s)).
Theorem 2 The BG score is score-equivalent, i.e. the scores
of two graphs with the same process independence state-
ments are identical.

We highlight that the general BG score is onerous to
assess, similar to the BD score (Heckerman, Geiger, and
Chickering 1994) in Bayesian networks since it requires as-
sessments for every label and summary state. One can re-
duce the burden significantly by making a strong simplifying
assumption about the prior parameters. We refer to this ver-
sion as the BGPi score due to additional assumptions (Pois-
son, identical) as specified next.
Theorem 3 If the prior TPP dynamics are modeled as a
multivariate Poisson process with identical intensity rates
for all labels, then the conditional intensity estimates in
Eq. (5) specialize as:

λ̂x|s =
N(x, s) + (N ′/|ΣX |)− 1

D(s) + (D′/|ΣX |)
, ∀X, s, (6)

where D′ is the a-priori effective duration of observing an
effective N ′ number of events of any particular type.

For our experimental investigation using BGPi, we make
a final simplification and set N ′ = 1, in which case one
need only assess a single number D′ representing the user’s
prior about the time to observe 1 event of a particular type.
Besides this parameter, we model the parent set prior using
a complexity term κ ∈ (0, 1] assuming P (UX) ∝ κ|UX |.
A lower κ controls complexity by penalizing larger parent
sets; κ = 1 implies a uniform prior over any parent set.

In summary, the BGPi score is a special case of the BG
score that can be deployed much more easily since it only
involves two parameters: effective single event duration D′

and optionally, complexity parameter κ. Furthermore, it can
be used for any model in the broad PCGEM family.

4 Qualitative Knowledge
The BG score requires background knowledge in a form that
some may find difficult to assess, due to its quantitative na-
ture, even when simplified to a few parameters. In this sec-
tion, we consider qualitative knowledge that might be easier
to assess or more readily available. For instance, it might be
possible in some applications to acquire qualitative knowl-
edge such as pairwise influences between types of events
from sources such as causal knowledge graphs (Sap et al.
2019; Heindorf et al. 2020; Hassanzadeh 2021).

We first provide a general framework for incorporat-
ing these forms of knowledge while learning event mod-
els, and then describe how the framework can be deployed
for specific types of qualitative statements while learning
PGEMs. For broader practical applicability, we assume that
the knowledge might be incompatible with the ground truth,
therefore we treat the knowledge as potentially fallible.
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Incompatibility Framework
Suppose an expert (or group of experts) or some other source
of knowledge provides a set of (potentially qualitative) state-
ments S that can be mapped to a set of soft quantitative con-
straints C pertaining to a GEM M. A function f(C,M) that
signifies the extent to which constraints C are incompatible
with respect to the model M can be used to modify the log
likelihood on data D:

LL′ = LL− w ∗ f(C,M), (7)

where w ∈ R captures the strengths of their belief about the
validity of constraints C.

If we choose f(C,M) = 0 whenever C is compati-
ble with M else otherwise positive, then the modified LL′

above retains a log likelihood semantic. This is because the
augmented knowledge can be seen as an additional observa-
tion whose likelihood is given by the probability that the ex-
pert says that the statements corresponding to constraints C
are compatible with model M (Wittig and Jameson 2000).
This probability is exp(−w ∗ f(C,M)); it is 1 when there
is compatibility, and the weight w determines how quickly
it goes to 0 with increasing violation f(·). This results in a
Bayesian interpretation of Eq. (7) where a system with a uni-
form prior over models has a posterior that is proportional to
LL′, after observing data and the knowledge. We highlight
another Bayesian interpretation of Eq. (7) in Appendix A1

where the background knowledge can be considered incor-
porated in the prior, but the choice of interpretation does not
affect computations in any way.

The weight in Eq. (7) can be treated as a model hyper-
parameter and therefore estimated from a validation set.
Since a separate dataset may not be available in the low-
data regime, the Bayesian interpretations could potentially
inform a user about how to assess these weights. We discuss
some guidelines briefly in Appendix B.

We refer to any objective function where f(·) is in R+

as penalized log likelihood since the log likelihood LL can
only be decreased (and not increased) with the additional
constraints. Note that any score-based approach can be used
for learning by replacing LL with LL′ from Eq. (7), for in-
stance, the BIC score for a node X is:

BICX = LLX − w ∗ f(CX ,MX)− |ΛX | log T ∗, (8)

where LLX is the log likelihood for X , CX are constraints
involving X , MX includes all model components for X ,
|ΛX | is the # of parameters of X and T ∗ is the total time
horizon. We propose specific types of constraints and incom-
patibility functions f(·) in subsequent sub-sections.

Parameter Inequalities
The proposed framework can be applied to inequality state-
ments on conditional intensities for the same node X given
its parents UX and any other parameters involved in the
GEM (such as windows for PGEMs). Consider a set of in-
equality statements IX (indexed by i), each over a set of
intensities denoted Λi

x: gi(Λi
x) =

∑
λx|u∈Λi

x
aiuλx|u + ci ≥

1Appendices can be found in the arXiv version of the paper.

0, where coefficients aiu, c
i are real-valued constants. The

following function can be used to measure incompatibil-
ity with a set of such inequality constraints: f(IX ,ΛX) =(∑

i∈IX
−gi(Λ

i
x))

)+
, where f(·)+ denotes max (0, f(·)).

A net larger sum of differences in the intensities as provided
by the inequalities results in more incompatibility.

While the above function allows for any such inequal-
ities over X , we are particularly interested in qualitative
statements of the form ‘Y makes X more (or less) likely’,
which can easily be mapped to inequalities for a PGEM.
We interpret such a statement to mean that when X has Y
as a parent and when optionally there are other parents Z,
λx|y,z ≥ (or ≤)λx|ȳ,z, ∀ binary instantiations z of Z. Re-
call that y (ȳ) in the subscript refers to when the label Y does
(does not) occur in the recent history.

A learner for maximizing the score, like BIC in Eq. (8),
requires a subroutine to compute conditional intensities that
maximize the penalized log likelihood LL′

X using the in-
compatibility function f(IX ,ΛX). In general, one can use
any gradient-based approach to find the local optima. Note
that it is possible to write a closed form expression for the
gradient with respect to any intensity parameter.

The maximum likelihood estimates of the penalized log
likelihood LL′

X have an intuitive interpretation, which we
highlight using the following important case of a single in-
equality regarding two intensities. In the following, we de-
note λ̂x|u = N(x,u)

D(u) as the un-penalized maximum log like-
lihood estimates, where as usual N(·) and D(·) are the rele-
vant summary statistics from data.

Theorem 4 If a statement implies λx|u ≥ λx|u′ and this
pair of intensities is not involved in any other constraint,
then the optimal intensities are as follows (subject to further
non-negativity constraints):

λ∗
x|u, λ

∗
x|u′ =


λ̂x|u, λ̂x|u′ , if λ̂x|u ≥ λ̂x|u′

N(x,u)
D(u)−w , N(x,u)

D(u)+w , else if w < w∗

N(x,u)
D(u)−w∗ ,

N(x,u)
D(u)+w∗ , otherwise

(9)
where w is the provided weight and w∗ is the weight at which
intensity estimates in the second case are identical.

The above result shows that the knowledge through the
inequality has no effect when the estimated intensities from
the data are consistent with the knowledge, otherwise the
weight acts as an effective duration change that brings the
pair of intensities closer together in the desired direction.
In the general case, the optimal estimate for a region of the
intensity space, as defined by the inequalities, modifies the
un-penalized (knowledge free) maximum log likelihood es-
timates by effectively modifying the duration through an in-
crement or decrement that multiplies the weight by the num-
ber of inequalities violated (when the weight w applies uni-
formly over all inequalities in IX ).

In this work, we assume there are no inequalities in-
volving conditional intensities across different event labels,
leaving more general cases such as this one or the case of
statement-specific confidence (or weights) to future work.
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Process (In)dependence Statements
The proposed framework can also be applied to soft con-
straints involving the graphical structure of a GEM. Con-
sider a set of process dependence or independence related
constraints PX for a node X (indexed by i), i.e. either
of the form Y → X|Z or Y ̸→ X|Z. Consider bi-
nary function hi(P

i
X ,UX) which is 1 or −1 depending

on whether the constraint is consistent or inconsistent with
X’s parents UX . The following function can then be used
to measure the extent of incompatibility: f(PX ,UX) =(∑

i −hi(P
i
X ,UX)

)+
.

An important special case of this type of constraint is a
qualitative statement such as ‘X depends on Y ’, which can
be mapped to the process dependence constraint Y → X|∅;
this is equivalent to stating that Y is a parent of X in a GEM.
We note that these constraints depend only on the graph and
not on the parameters, and therefore apply to any GEM.

It is straightforward to incorporate the incompatibility
function f(PX ,UX) using any graph search approach (such
as forward-backward search) for optimizing any score (such
as BIC) as shown in Eq. (8). As mentioned previously, prior
work has shown how to gauge process (in)dependence in
GEMs using a graphical separation criterion.

5 Experiments
We conduct an extensive empirical investigation to study the
advantages of our proposed methods, referring the reader to
Appendices D and E for details about datasets and experi-
mental settings respectively. We consider 3 synthetic PGEM
datasets and 4 popular real-world event datasets: Diabetes,
LinkedIn, Mimic and Stack Overflow.

Score Comparison. We compare various scores for the
task of structure discovery using synthetic datasets gener-
ated from the 3 PGEMs with graphs as shown in Fig. 1.
We generate K = {5, 10} streams, each up to horizon
T = 1000 and involving ∼ 1K to 1.5K events, and use a
forward-backward search to compare the PGEM learner us-
ing the typical BIC score with the Akaike information crite-
rion (AIC) as well as the Bayesian score BGPi. PGEM with
the AIC score has not been empirically studied previously.
We also include the following models:
• An implementation of CPCIM, a the piece-wise constant

TPP (Parikh, Gunawardana, and Meek 2012).
• Additional baselines from the multi-dimensional Hawkes

process literature (Eichler, Dahlhaus, and Dueck 2017),
namely Hawkes with an exponential kernel (Hawkes-Exp)
and ADM4 (Zhou, Zha, and Song 2013a) which learns an
infectivity matrix where each entry i, j denotes the influ-
ence from event j to i. We threshold to obtain a binary ma-
trix to compare with ground truth (Zhang and Yan 2021).

• CAUSE: A recent Granger causal inspired approach to re-
cover the structure of a GEM (Zhang et al. 2020); we use
the default settings in publicly available code. 2

Table 1 compares F1 scores. Results for BGPi are
shown at the optimal setting for hyper-parameters for
each model, over the grid D′ = {1, 3, 5, 10} and κ =

2https://github.com/razhangwei/CAUSE

{0.01, 0.02, 0.03, 0.05, 0.1}. Let us first compare the three
PGEM score-based learners with different scores. We see
that BIC has high F1 scores for sparse graphs (like model #1)
since it has excellent precision but fails to identify some par-
ents for dense graphs. In contrast, AIC chooses more parents
and has better F1 for denser graphs even though precision
is often lower. However, it exhibits some undesirable behav-
ior such as occasionally poorer performance with more data.
Although BGPi’s F1 scores are favorable here, we stress
that Bayesian scores depend heavily on the choice of pri-
ors for small datasets, therefore hyper-parameter choices can
be important. This is typical with all Bayesian scores, such
as those for learning Bayesian networks (Silander, Kontka-
nen, and Myllymaki 2007). For example, a smaller κ such
as 0.01 leads to better performance for sparser graphs since
it adds inductive bias towards the ground truth structure. An
advantage of scores such as BIC and AIC is that they do not
require additional hyper-parameters. Further details around
BGPi’s sensitivity to D′ and κ are provided in Appendix E.

Table 1 also reveals that the performance of non-PGEM
learners is generally worse here. CPCIM learns graphs that
are too sparse. The Hawkes models are clearly at a disad-
vantage since the synthetic data is generated from a PGEM.
F1 scores for the neural-based CAUSE are also much lower
than the top performing PGEM learners – but they do not
vary at all with the chosen dataset sizes, indicating that these
may be smaller datasets than such methods expect.

In subsequent experiments pertaining to the effects of in-
corporating qualitative knowledge, we use the BIC score ex-
clusively for score-based learning of PGEMs, for simplicity
of exposition. We note that the trends described also gener-
ally hold for other scores, as illustrated by recreating some
of the figures using AIC and BGPi scores in Appendix E.

Directional Statements (Inequalities): Correct vs. Incor-
rect Statements. We consider the task of parameter esti-
mation given a known structure, and study the effect of cor-
rect vs. incorrect directional statements about pairs of event
labels. K = {1, 2, 5, 10} event streams of horizon T = 100
were generated using model #3 from Fig. 1, and one direc-
tional statement (such as A makes A more likely to happen)
was provided per node as qualitative knowledge.

Fig. 2 shows mean square error (MSE) between the esti-
mated and true conditional intensities, averaged over the 5
labels, for both the case of correct and incorrect statements
as gauged by whether the knowledge is consistent with the
ground truth. A confidence level of w = 0 is equivalent to
having no additional knowledge. We observe that although
the statements could be helpful to reduce MSE for the very
low data case (K = 1), they do not carry much information
for parameter estimation as our choice of objective function
prevents drastic changes in conditional intensity estimates.

Parental Statements (Process Dependence): Correct
vs. Incorrect Statements. We revisit the synthetic data
streams from the previous experiment with the same hori-
zon and choices of # of streams K. Here we consider the
structure discovery task using one parental statement (such
as label A depends on A) per node as qualitative knowledge.

Fig. 3 shows F1 scores for the task of structure learn-
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Model # 1 Model # 2 Model # 3
K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

CAUSE 0.28± 0 0.28± 0 0.39± 0 0.39± 0 0.48± 0 0.48± 0
CPCIM 0.30± 0.40 0.16± 0.40 0.65± 0.10 0.72± 0.21 0.60± 0.13 0.74± 0.10

Hawkes-ADM4 0.69± 0.16 0.75± 0.10 0.58± 0.16 0.59± 0.12 0.55± 0.08 0.51± 0.05
Hawkes-Exp 0.61± 0.13 0.63± 0.13 0.58± 0.16 0.59± 0.13 0.51± 0.09 0.49± 0.09
PGEM-AIC 0.66± 0.06 0.65± 0.08 0.67± 0.17 0.73± 0.09 0.93± 0.07 0.90± 0.05

PGEM-BGPi 0.97± 0.06 0.98± 0.06 0.70± 0.12 0.78± 0.10 0.85± 0.08 0.90± 0.04
PGEM-BIC 0.89± 0.07 0.98± 0.01 0.58± 0.08 0.66± 0.15 0.66± 0.12 0.75± 0.06

Table 1: Mean F1 scores with error bars over 10 samples from learning the 3 PGEM graphs in Fig. 1 using K = {5, 10}
generated streams. We compare a PGEM learner with 3 scores (BIC, AIC and BGPi) as well as CAUSE, CPCIM and two
versions of the multivariate Hawkes process (Hawkes-Exp and Hawkes-ADM4). Best mean results are shown in bold.

Figure 2: Avg. mean square error (MSE) over event labels as a function of confidence (w) about directional statements for
model #3 in Fig 1, shown for number of data streams K ∈ {1, 2, 5, 10}. Left: Correct statements. Right: Incorrect statements.

ing, for both the case of correct as well as incorrect state-
ments. From the left plot, we see that correct parental state-
ments can greatly improve performance on structure discov-
ery. For instance, for K = 2 streams, a high confidence
in the statements can improve the F1 score from around
0.2 to almost 0.8. The potential improvement plateaus af-
ter a certain confidence level is attained since the knowl-
edge is limited. As anticipated and desirable, the influence
of the knowledge is reduced when more data is available.
On the flip side, highly confident incorrect statements can
hamper performance. However, since the knowledge isn’t a
hard constraint, more data allows one to regain performance.

Parental Statements (Process Dependence): Effect of
Number of Statements. In this experiment, we study how
confident correct parental statements can affect structure dis-
covery performance when there is access to only limited
data. We leverage the following 3 real-world datasets:
• LinkedIn (Xu, Luo, and Zha 2017): Employment related

events such as joining a new role for 1000 LinkedIn users.
• Mimic-II (Saeed et al. 2011): Events corresponding to

electronic health records from Intensive Care Unit patient
visits over 7 years.

• Stack Overflow (Grant and Betts 2013): Events for en-
gagement of 1000 users (chosen from Du et al. (2016))
around receipt of badges in a question answering website.
Although we do not know the true underlying structures

for these datasets, we can estimate them since we have ac-
cess to substantial data. We assume that a PGEM learned
from all the data returns graphs that are reasonably close

to the ground truth. To mimic the situation where we only
have access to limited data, we sample a smaller dataset
with K streams from the full dataset. We also sample |S| =
{0, 5, 10, 20} correct parental statements from the ground
truth (0 statements implies no qualitative knowledge). We
fix weight w = 10 and study the impact of the number of
statements provided by the user and limited dataset size.

Figure 4 shows mean F1 scores for structure learning over
50 sampled subsets of 3 real-world datasets. We observe that
the datasets vary in how qualitative statements aid the task,
as gauged by the vertical distance between curves. Mimic
has 75 labels and short event streams with a diverse set of
labels, making it challenging to learn the structure even with
additional soft knowledge. This is a case where hard con-
straints would improve performance, with the risk of over-
riding data given incorrect knowledge. On the other hand,
LinkedIn has only 10 labels and shows knowledge having a
substantial impact on structure discovery performance.

Parental Statements (Process Dependence): Expert As-
sessed Causal Pairs. We consider a real-world Diabetes
dataset, with information about blood glucose levels, insulin
dosage, eating and exercise routines of 70 diabetes patients
(Frank and Asuncion 2010). We convert data for each patient
into an event dataset, and use pairwise causal relation expert
assessments from Acharya (2014) as qualitative knowledge
in the form of parental statements. These include relations
such as ‘blood glucose measurement increase leads to less
meal ingestion’. We study the effect of 11 such statements
on structure discovery with limited data.
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Figure 3: F1 score as a function of confidence (w) about parental statements for model #3 in Fig 1, shown for number of data
streams K ∈ {1, 2, 5, 10}. Left: Correct statements. Right: Incorrect statements.

Figure 4: Comparing mean F1 scores from learning the structure of the temporal dynamics in 3 real world datasets using
K = {5, 10, 20} data streams for Linkedin and Mimic, and K = {2, 5, 10} data streams for Stack Overflow. We also vary the
number of correct parental statements sampled from the full dataset, |S| = {0, 5, 10, 20}.

Figure 5: Mean F1 score from learning the structure in the
Diabetes dataset using K = {1, 2, 5, 10} data streams, po-
tentially augmented with 11 pairwise causal relations.

Figure 5 shows mean F1 scores for structure learning over
50 sampled subsets of a varying number of event streams
(patients), K = {1, 2, 5, 10}. On average, a stream includes
∼ 2 months of events for a patient. Weight w = 0 implies
there is no qualitative knowledge. We see further evidence
here that pairwise statements can help a score-based learner
enhance its performance through such augmented knowl-
edge when data is limited. As a point of comparison, note
that if the structure is recovered using only the 11 pairwise
statements, the F1 score is only 0.27 (for any K). This would

be the case if the statements were written as temporal logical
rules as in Li et al. (2020), illustrating the advantage of our
knowledge augmentation approach.

6 Conclusions
We have pursued an important research question: how to
learn GEMs in the low-data regime through incorporating
background knowledge in different forms, seeking motiva-
tion from many real-world applications with limited data but
access to high-level knowledge about event dynamics. For a
broad class of GEMs that are expressible as piece-wise con-
stant graphical event models, we proposed a novel Bayesian
Gamma score including simplifying assumptions for mak-
ing such prior assessments practically feasible. Simplifying
such a score to 2 or 3 parameters however implies strong
prior assumptions about process homogeneity.

In addition and complementary to any score, we there-
fore also consider other more practical forms of knowl-
edge, proposing a general ‘incompatibility’ framework that
allows augmenting limited data with qualitative background
knowledge for score-based learning of GEMs. We presented
techniques to incorporate qualitative statements pertaining
to parameters for the special case of PGEMs, as well as
more general structural statements made concrete via pro-
cess (in)dependence. Potential future research directions in-
clude expanding the scope of forms/sources of knowledge
and pursuing novel algorithms for knowledge augmentation.
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