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Abstract

Conditional independence (CI) tests underlie many approaches
to model testing and structure learning in causal inference.
Most existing CI tests for categorical and ordinal data strat-
ify the sample by the conditioning variables, perform simple
independence tests in each stratum, and combine the results.
Unfortunately, the statistical power of this approach degrades
rapidly as the number of conditioning variables increases. Here
we propose a simple unified CI test for ordinal and categorical
data that maintains reasonable calibration and power in high
dimensions. We show that our test outperforms existing base-
lines in model testing and structure learning for dense directed
graphical models while being comparable for sparse models.
Our approach could be attractive for causal model testing be-
cause it is easy to implement, can be used with non-parametric
or parametric probability models, has the symmetry property,
and has reasonable computational requirements.

Introduction
Scientific claims should be falsifiable. In causal inference, fal-
sifiable claims can be read off graphical causal models using
graphical criteria. Many types of graphical models includ-
ing DAGs, MAGs, undirected graphical models, and chain
graphs imply conditional independences (CIs). Therefore,
statistical CI tests play an important role in model testing and
structure learning – which itself can be seen as a sequence of
iterative model tests and post-hoc modifications performed
by an algorithm.

Unfortunately, compared to simple (unconditional) inde-
pendence testing, CI testing is much harder; for example, a
non-parametric CI test for continuous data that is both cali-
brated and has power does not exist (Bergsma 2004; Shah,
Peters et al. 2020). Some assumptions therefore need to be
imposed on the relationships between the involved variables.
A large amount of work has been done on quantifying condi-
tional dependence using measures such as mutual information
(Cover 1999), the Hilbert-Schmidt independence criterion
(Gretton et al. 2005), and distance covariance (Székely et al.
2007); see also Josse and Holmes (2014) for an overview.
A wide variety of CI tests has been proposed based on con-
cepts such as ranks (Weihs, Drton, and Meinshausen 2018),
kernel methods (Pfister et al. 2018), copulas (Kojadinovic
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and Holmes 2009), knock-off sampling (Watson and Wright
2021), nearest neighbors (Berrett and Samworth 2019), and
generalized covariance measures (Shah, Peters et al. 2020).

Due to the prominent role of the structure learning problem
in the causal inference literature, CI tests are often developed
and evaluated with structure learning in mind. In applied
literature, however, structure learning is not yet widely used
and graphical causal models are often constructed by hand.
For example, a recent review of the use of DAGs in health
research (Tennant et al. 2020) found hundreds of papers in
which DAGs were constructed, mainly to inform covariate
adjustment strategies. Perhaps surprisingly, none of these
DAG models was tested against the dataset it was supposed
to represent, posing a severe risk for inferences based on
these models – it seems unlikely that researchers can come
up with a correct graphical structure based on their intuition
and domain knowledge alone.

We suspect that perceived or real issues with existing CI
tests are part of the reason that DAG model testing and struc-
ture learning aren’t more widely used. We argue that a CI test
for practical use should have the following properties:
1. it should be simple in the sense that it is based on elemen-

tary statistical concepts that most researchers are familiar
with;

2. it should be symmetric – tests of X ⊥⊥ Y | Z and Y ⊥
⊥ X | Z should deliver the same result;

3. it should be computationally efficient since even for hand-
constructed models, it can be necessary to perform hun-
dreds of tests (at least one per missing edge); and

4. it should have reasonable calibration and power in real-
world data.

For continuous data, one could argue that all these condi-
tions are fulfilled by a simple test where we perform two
regressions (not necessarily linear ones) E[X | Z] and
E[Y | Z], and determine the correlation between their residu-
als, which should be 0 under CI if our regressions accurately
model the conditional expectation (Thoemmes, Rosseel, and
Textor 2018). Unfortunately, many important datasets do not
consist of only continuous variables. CI testing for categori-
cal and ordinal data has received considerably less attention
in the literature, perhaps because from a theoretical point of
view, it appears to be a much simpler problem: CI testing for
such data can be done by essentially stratifying the sample
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Z=Age, Sex

X Y p df
Edct Wrkc 1.00 1050
Occp Wrkc 1.00 840
Rltn HrPW .99 210
Incm Occp .08 168
Incm Wrkc .50 70
Incm HrPW .003 42

(b)

Figure 1: (a) Skeleton estimated by the stable PC algorithm
(Colombo and Maathuis 2014) from 1000 samples of the
adult income data using the default CI test in the R package
‘bnlearn’, a stratified mutual information test. Almost no
variables are connected even though there are substantial
pairwise relationships between most variables in the data. (b)
A closer inspection of test results reveals high degrees of
freedom that sometimes exceed the sample size. Such tests
are strongly biased towards independence because very little
information is used per stratum.

according to Z, performing separate CI tests in each stratum,
and combining the results (see also Remark 4 in Shah, Pe-
ters et al. (2020)). Since there are only finitely many strata,
such tests can be non-parametric, calibrated, and have power
against meaningful alternatives at the same time.

To our knowledge, there currently exists no CI test for
discrete and ordinal data that meets the above criteria. For
illustration, consider the widely known “adult income” or
“US census income” data (Kohavi 1996) that contains rich cat-
egorical variables such as “Native Country” (41 categories),
“Education” (16), and “Occupation“ (14), along with ordinal
variables such as “HoursPerWeek” and “Income” (binarized
at cutoff $50K/year). Like for many sociological datasets,
most pairs of variables are substantially but not strongly de-
pendent, and these dependences are not easily “explained
away” by conditioning on other variables. In other words,
although there is no “true structure” known for this dataset,
any reasonable structure should be dense. Yet, structure learn-
ing based on stratification-based CI tests typically returns
very sparse graphs (Figure 1a). This happens because as
low-dimensional CI tests rightly fail to identify any indepen-
dences, higher dimensions will be considered and at some
point the tests will become unreliable (Figure 1b). Thus,
for high-dimensional data, the mutual information test and
related tests such as chi-square and G2 fulfill our first 3
desiderata but not the 4th.

In our experience, such issues are not pathological edge
cases, but are routinely obtained when applying “default”

constraint-based structure learning algorithms to real-world
datasets containing discrete variables (as many do); indeed,
this is a frequent source of confusion and frustration for first-
time users or students trying to get acquainted with causal
inference methodology.

This paper proposes a simple CI testing approach for cate-
gorical and ordinal data that fulfills our desiderata and outper-
forms calibration and power of state-of-the-art methods for
high-dimensional conditioning sets. Our approach combines
a residual for ordinal data (Li and Shepherd 2012) with a
multidimensional location test, Hotelling’s T 2 test. We can
use any suitable estimator of conditional probabilities; here,
we show results using logistic regression and random forests.

Background & Related Work
We consider one-dimensional discrete or ordinal variables
X,Y and a possibly multi-dimensional discrete or ordinal
variable Z = Z1, . . . , Zk with joint probability density
p(x, y, z), and write x = (x1, . . . , xn) for a sample from
X of size n. We write the expectation of a variable X as
E[X], conditional expectations as E[X | Z], the covari-
ance between X and Y as cov(X,Y ), the variance of X
as var(X), and the covariance estimated from samples x,y
as cov(x,y). We say that X and Y are conditionally inde-
pendent given Z, or X ⊥⊥ Y | Z, if for all z with p(z) > 0,
p(x, y | Z = z) = p(x | Z = z)p(y | Z = z) (Dawid
1979).

We can roughly categorize CI tests into three groups. First,
stratification tests split the data into subsets according to Z,
perform a marginal independence test X ⊥⊥ Y within each
subset, and combine the results. This approach is natural for
discrete Z, but can also be applied to continuous Z upon bin-
ning. Such tests are relatively simple and usually symmetric
by construction, but they rapidly lose power when Z becomes
high-dimensional, even if irrelevant variables are added to Z.
Some such tests like chi-square also lose validity altogether
for smaller datasets with high-dimensional Z because they
are based on asymptotic statistics and stratification can lead
to only a few samples available for each individual marginal
test. This issue can be addressed by using exact tests instead
(Tsamardinos and Borboudakis 2010), improving calibration
but not necessarily power.

Second, variable importance tests compare a probability
model p̂(x | y, z) to a simpler model p̂(x | z) based on
some goodness-of-fit metric. If the simpler model does not fit
substantially worse, one accepts the claim X ⊥⊥ Y | Z. This
approach is attractive because it can leverage any statistical
model with a reasonable goodness of fit metric or nested
model test; e.g., we could perform such a test for binary
data simply by fitting logistic regressions X ∼ Y + Z1 +
. . .+Zk and examining the coefficient of Y and its sampling
error. A downside of this approach is its inherent asymmetry:
depending on the probability model used, a test of X ⊥⊥ Y |
Z could yield a different result than a test of Y ⊥⊥ X | Z,
which could be confusing because CI is a symmetric property.

Third, residualization tests fit two models E[X | Z] and
E[Y | Z], and examine the relationships between the residu-
als Rxi

= xi−E[X | Z = zi] and Ryi
= yi−E[Y | Z = zi].

The validity of these tests rests on a theorem by Daudin
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(1980), which implies that when X ⊥⊥ Y | Z and residu-
als are valid (E[RX ] = E[RY ] = 0), then E[RXRY ] = 0.
Therefore, we can test CI by examining a multiplicative as-
sociation measure between RX and RY , which should be 0
under CI. Such measures include correlation or the gener-
alized covariance measure (Shah, Peters et al. 2020). This
approach has the attractive feature that it is symmetric by con-
struction. Instead, we can also conduct CI tests by attempting
to predict RX from RY or vice versa (Shah and Bühlmann
2017; Heinze-Deml, Peters, and Meinshausen 2018); such
tests are not necessarily symmetric.

Most existing CI tests for categorical data are based on
stratification. This includes chi-square and G2/mutual infor-
mation based tests such as those implemented in the R pack-
ages ‘bnlearn’ (Scutari and Denis 2014) and ‘pcalg’ (Kalisch
et al. 2012). Tsamardinos and Borboudakis (2010) show how
the calibration and power of such tests can be improved by
using exact versions or their Monte Carlo approximations.
More recently, Marx and Vreeken (2019) proposed a variable
importance test called SCCI that uses an approximation to
Kolmogorov complexity. We will use SCCI as a modern base-
line for comparison, although that comparison is not always
straightforward because SCCI only provides a pseudo p-value
without calibration guarantees. We are not aware of existing
dedicated residualization tests for categorical or ordinal data
– for example, at present, none of the tests implemented in
the R package ‘CondIndTests’ (Heinze-Deml, Peters, and
Meinshausen 2018) will run on fully categorical data where
every variable has more than 2 levels. We could of course
leverage existing residualization tests by dummy-coding all
categorical and binary data, performing multiple compar-
isons, and somehow combining the results; however, this
procedure would result in information loss for ordinal data,
and it is not necessarily obvious how the individual results
would have to be combined to maintain calibration under the
null and to obtain meaningful effect sizes. We therefore leave
this comparison for future work.

Test Development
Here we propose a CI test for categorical and ordinal data
that is based on the residualization approach. The main issue
with developing such a test is that there is no straightforward
definition of a residual for categorical or ordinal data, since
subtraction is meaningless for such variables. Throughout we
consider a CI test between an ordinal or categorical variable
X with k levels, an ordinal or categorical variable Y with r
levels, and a set of ordinal or categorical conditional variables
Z.

Residual
We will use a uniform residual for all tests. For an observation
y of an ordinal (possibly binary), we use the residual for
ordinal data by Li and Shepherd (2012). Given a sample
y of Y and an estimate p̂(y) of the distribution p(y), this
Li-Shepherd-residual (LS-residual) is defined as

Ryi
= p̂(Y < yi)− p̂(Y > yi) .

Although LS-residuals generally do not (and cannot) have
the observed-minus-expected (OME) form that is typically

associated with a residual, they do share important properties
with OME residuals Li and Shepherd (2012). The exception
is binary Y ∈ {0, 1}, in which the LS-residual does have
the OME form and reduces to the standard OLS residual for
binomial variables, i.e.,

Ryi
= yi − p̂(Y = 1) .

Similarly, the conditional residual for samples (y, z) is de-
fined as

Ryi|zi = p̂(Y < yi|Z = zi)− p̂(Y > yi|Z = zi)

Test Statistic
We now define test statistics for each possible combination
of ordinal and categorical variables that we can encounter.
These test statistics are closely related to each other. In each
case, we assume that residuals are formed with respect to the
test in question; for example, if we test X ⊥⊥ Y | Z, then Rx

is based on p̂(x | z). Here we will define the test statistics
and derive their asymptotic distributions; throughout, our
proofs are adapted/generalized versions of the proof in Li and
Shepherd (2010), which is based on M-estimation theory and
the delta method. Therefore, our asymptotic results require
the assumption that an M-estimator is used to estimate the
conditional probabilities p̂(x | z) and p̂(y | z).

We begin with the simplest case. If both variables are ordi-
nal, we use the following test statistic, which is the squared
generalized covariance measure (GCM) (Shah, Peters et al.
2020):

Q1(x,y) =
1

n

(Rx ·Ry)
2

var(RxRy)
.

Proposition 1. If X ⊥⊥ Y | Z, then asymptotically
Q1(x,y) ∼ χ2(1).

Proof. Shah, Peters et al. (2020) prove that the non-squared
version of Q1 is asymptotically standard normal. However,
here we show this instead by slightly adapting the proof in Li
and Shepherd (2010), which is simpler and generalizable to
higher dimensions in an intuitive and straightforward manner.
See Appendix for details. One important difference is that the
proof by Shah, Peters et al. (2020) is based on an assumption
that the estimator p̂ converges “quickly enough”, whereas
ours is based on M-estimation theory.

Next, consider categorical X with k indexed categories and
ordinal Y . For the sample x we define the binary indicator
variables (also known as “dummy variables”) I(xi = j), 1 ≤
j ≤ k where I(xi = j) = 1 if xi = j and I(xi = j) = 0
otherwise. We now consider all dot products between the
ordinal residuals Ry and the residuals for the first k − 1
dummy variables of X ,

d = (RI(x=1) ·Ry, . . . , RI(x=k−1) ·Ry)

and use it to define our test statistic analogously to a
Hotelling’s test:

Q2(x,y) =
1

n

(
d× Σ̂−1

d × dT
)

,
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where the matrix Σ̂d contains the estimated covariances be-
tween the components of (RI(x=1) ⊙Ry, . . . , RI(x=k−1) ⊙
Ry) (here, ⊙ denotes the element-wise product). Note that
we drop one of the dummy variables (without information
loss) because otherwise, Σ̂d would not be full rank.
Proposition 2. If X ⊥⊥ Y | Z, then asymptotically
Q2(x,y) ∼ χ2(k − 1).

Proof. A multidemensional analogue of Proposition 1. See
Appendix for details.

Finally, consider categorical X and Y with k > 1 and
r > 1 categories, respectively. Then we define our vector d
as the pairwise dot products between the residuals for the
indicator variables of X and Y

d = (RI(x=1) ·RI(y=1), . . . , RI(x=k−1)RI(y=1), . . . ,

RI(x=1) ·RI(y=r−1), . . . , RI(x=k−1)RI(y=r−1))

and define our test statistic in the same way as for the previous
case:

Q3(x,y) =
1

n

(
d× Σ̂−1

d × dT
)

Analogously to the previous case, we then obtain
Proposition 3. If X ⊥⊥ Y | Z, then asymptotically
Q3(x,y) ∼ χ2((k − 1)(r − 1)).

Proof. Very similar to Proposition 2. See Appendix for de-
tails.

Conditional Probability Model
The above simple combination of LS residuals with a
Hotelling’s test provides us with a generic framework for
CI testing for categorical and ordinal data. To conduct such
tests, we need to choose an estimator of the involved condi-
tional probabilities. Ideally, this should be a statistical model
that is able to naturally incorporate both ordinal and cate-
gorical variables, and provides a simple way to compute the
LS residuals. In this paper, we consider two estimators: 1)
Generalized Linear Model (GLM), and 2) Random Forest
with probability prediction (Malley et al. 2012). We chose
GLM because it is an M-estimator and therefore covered by
our proofs in the previous section. The random forest is not
an M-estimator but we hypothesized that it might neverthe-
less work well in practice and could be good at discarding
irrelevant information from high-dimensional conditioning
sets, which we hoped would benefit the power and robustness
of the resulting CI test.

Relationship to the Partial Copula Approach
Petersen and Hansen (2021) use partial copulas to construct
a CI test for continuous data. We note that this approach is
closely related to ours. For continuous Y , the partial copula
of Y given Z is defined as

Cyi|zi = p̂(Y ≤ yi | Z = zi)

Therefore,

Cyi|zi =
1

2
((p̂(Y ≤ yi | Z = zi)−p̂(Y > yi | Z = zi))+1)

where the difference p̂(Y ≤ yi | Z = zi) − p̂(Y > yi |
Z = zi) is similar to the LS residual. Specifically, in the
LS residual, the left term is p̂(Y < yi | Z = zi) rather
than p̂(Y ≤ yi | Z = zi). In a certain sense, the partial
copula could be seen as a “limit” of LS residuals: Consider a
continuous variable Y defined on some interval [a, b], and an
ordinal version Ŷ (n) generated from Y by binning using n
equidistant cutoffs. Then as n → ∞, the LS residual R

ŷ
(n)
i |zi

converges to 2C
y
(n)
i |zi

− 1.

Empirical Analysis
We now show empirical results comparing our method to
some of the other state-of-the-art CI tests. We compare our
Generalized Linear Models based test (GLM) and Random
Forest based test (RFT) to 3 other tests: 1) Mutual Informa-
tion based test (MI) (Edwards 2012), 2) Monte Carlo Permu-
tation test (MC-MI) (Edwards 2012), and 3) SCCI (Marx and
Vreeken 2019). For ordinal data, we also compare it to the
Jonckheere-Terpstra test (JT) (Jonckheere 1954). We use the
implementation of MI, MC-MI, and JT from the R package
‘bnlearn’ (ver. 4.7) (Scutari and Denis 2014), and SCCI from
the R package ‘SCCI’ (ver. 1.2) (Marx and Vreeken 2019).
For GLM, we use a multinomial logistic regression (bino-
mial logistic regression for binary data) from the R package
‘nnet’ (ver. 7.3.17) (Venables and Ripley 2002) to compute
the prediction probabilities required for computing residu-
als. In the case of ordinal data, we use a proportional odds
logistic regression model from the R package ‘VGAM’ (ver.
1.1.7) (Yee 2015) that takes the order of the categories into
account. For RFT, we use the implementation of probabil-
ity forests (Malley et al. 2012) from the R package ‘ranger’
(ver. 0.13.1) (Wright and Ziegler 2017) to compute predic-
tion probabilities. We use the default hyperparameter values
except reducing the number of trees to 50 to reduce compu-
tational cost with no loss in performance. All analyses were
run on an Intel i5-10600k CPU with 32 GBs of RAM.

Calibration
To determine calibration, we analyzed the Type I error rate
of the tests at varying significance levels. Under the null
X ⊥⊥ Y | Z, for a perfectly calibrated test, we expect the p-
value to be uniformly distributed, hence a plot of significance
level versus fraction of rejected null hypotheses should be
a straight diagonal line. For this analysis, we generated 500
datasets with all binary variables satisfying the null X ⊥⊥ Y |
Z according to the following structure:

X YZ1 Z2
. . . Zk

We started by generating uniformly random binary samples zi
for the conditional variables. Then we sampled x and y from
the binomial distribution B(2, z1/3). Finally, we computed
500 p-values by testing X ⊥⊥ Y | Z on each generated dataset
using all the tests while varying the number of conditional
variables and sample sizes.

Figure 2 shows the results of our analysis on a log-log
scale that emphasizes the values in the common range for
p-value cutoffs. GLM and RFT are better calibrated in most
cases except when the number of conditional variables is
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Figure 2: Type I error vs significance level for sample sizes
(top to bottom): [20, 40, 80] and number of conditional vari-
ables (left to right): [1, 3, 5] on conditionally independent
simulated binary datasets.

low with a relatively high sample size (bottom left plot in
Figure 2), where MC-MI is better calibrated. Especially for
high-dimensional CI tests in small samples, GLM and RFT
are much better calibrated compared to the other tests. SCCI
is not calibrated at all; this is because it only gives pseudo
p-values which are all around 0.01, with values greater than
0.01 representing independence.

Discrimination
Having addressed calibration under null, we now show a
discrimination analysis to compare the accuracy of tests on
correctly accepting or rejecting the null. We conducted this
analysis on both categorical and ordinal data. For deciding
between dependence and independence we used a p-value
threshold of 0.05 for all tests except SCCI for which we use
its designated threshold of 0.01.

Categorical Data. Our analysis is similar to the one per-
formed by Tsamardinos and Borboudakis (2010). We gener-
ated data according to the following general DAG structure:

X Y

Z1 Z2
. . . Zk

?

The Z≥2 act as irrelevant “nuisance variables”. Our task is to
determine whether the edge X → Y is present (dependent)
or absent (independent). We generated binary data using the
logistic model

p(yi = 1) = λ(
∑

X is a parent of Y

βxi) (1)

where λ(x) = ex/(ex + 1) is the logistic function and β
is the “effect” (which we fixed to the same value for all
edges). Varying the effect and the number of k of conditional
variables, we simulated 100 dependent and 100 independent
datasets consisting of 1000 samples for each combination.
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Figure 3: Accuracy (shading: mean ± standard error, N =
200) of classifying simulated binary datasets (sample size:
1000) as conditionally dependent or independent.
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Figure 4: Accuracy (shading: mean ± standard error, N=200)
of classifying simulated ordinal data (8 levels per variable)
as conditionally dependent or independent.

Figure 3 shows the accuracy of classifying the simulated
datasets. All tests perform poorly for tiny effects and strongly
for huge effects, but we find that GLM and RFT outperforms
the other tests in the “switch regime” in between, with the
difference becoming more pronounced when adding nuisance
variables. Thus, our test appears to be more robust to noise.

Ordinal Data. We next simulated ordinal data from the
same DAG structure as follows: we first generated samples
zi, 1 ≤ i ≤ k from the binomial distribution B(8, 0.5). To
generate independent data, we independently sampled x and
y from B(8, z1

9 ). To generate dependent data, we then ran-
domly permuted z1. Figure 4 shows the accuracy of the tests
computed on 100 conditionally dependent and independent
datasets. In this setup, we varied the sample size rather than
an effect size. For k = 1, GLM, RFT, and JT performed
equally well and better than the other tests, which do not take
the order of the categories into account. But for k = 3, GLM
and RFT were more accurate than JT in small samples.
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Figure 5: Precision and recall of testing implied versus non-
implied CIs in binary data (N=1000) simulated from random
DAGs on 20 variables. Shading: mean ± standard error.

Applications
We evaluated our test on two important applications of CI
tests: (1) model testing and (2) structure learning. We used
the same baselines as in the previous section for comparison.

Model Testing
The CIs implied by a DAG should hold in the dataset(s) it is
supposed to represent. Therefore, we can scrutinize a DAG
by testing implied CIs. In our analysis, we simulated datasets
from randomly generated DAGs and compared how well the
tests can correctly detect the implied CIs of the DAG in the
simulated dataset. We started by generating random DAGs on
20 variables. We connected each pair of variables at a fixed
probability, with all edges oriented according to a pre-defined
topological ordering. We then simulated binary datasets with
1000 samples using our logistic model (Equation 1) setting
β = 0.15. Then we used the CI tests to test one implied CI per
missing edge and an equal number of randomly generated
CIs in the dataset. For generating a random CI X ⊥⊥ Y |
Z, we first selected X and Y variables randomly and then
selected a random number of conditional variables Z from
the remaining variables. Using d-separation, we determined
which randomly generated CIs truly hold in the DAG. All CIs
were then tested in the simulated data and precision and recall
were computed (Figure 5). The precision of all methods was
comparable in sparse DAGs, as the implied CIs had relatively
few conditional variables. But in denser DAGs, GLM and
RFT had better precision. Recall was comparable for all tests
except SCCI, which did not perform well.

Structure Learning
CI tests also play an important role in constraint-based struc-
ture learning, where algorithms iteratively perform CI tests to
determine whether two variables in the model are connected
by an edge or not. For learning the network structures in this
section, we use the implementation of fast “stable” variant
(Colombo and Maathuis 2014) of PC algorithm (Spirtes et al.
2000) from the R package ’pcalg‘ (Kalisch et al. 2012).

Simulated Data. We first show empirical results of struc-
ture learning on simulated datasets. We randomly generated
DAGs with varying densities as in the previous section. For
each DAG, we generated 1000 samples using our logistic
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Figure 6: Structure learning on simulated data: Mean F1
scores (10 simulated binary datasets per point) for varying
graph densities. Each dataset contains 1000 samples and is
simulated from a randomly generated DAG with 20 variables.
Shading: mean ± standard error.

GLM RFT MI MC-MI SCCI

0.4

0.6

0.8

0 1000 2000 3000

0.4

0.6

0.8

0 1000 2000 3000

No. of samples
S

ke
le

to
n 

F
1 

S
co

re

Figure 7: Structure learning on datasets “alarm” (left) and
“insurance” (right): Mean F1 scores (10 subsampled datasets
per sample size) of the learned model skeletons. Presence
of an edge is considered the “positive” case for F1 scores.
Shading: mean ± standard error.

model (Equation 1) using β = 0.15. We used the PC algo-
rithm to learn the model skeleton for each simulated dataset
and compared it to the true skeleton using the F1 score (Fig-
ure 6). All tests performed comparably for sparse DAGs. For
denser DAGs, the stratification tests MI and MC-MI per-
formed the worst, whereas the variable importance test SCCI
performed better. Yet GLM and RFT substantially outper-
formed SCCI, as expected given the results in Figure 3.

Synthetic Benchmark Data. We next evaluated the per-
formance of the tests on two commonly used datasets in
structure learning benchmarks, the “alarm” (Beinlich et al.
1989) and “insurance” (Binder et al. 1997) datasets, which
again are simulated data from known ground truth. We used
the PC algorithm to learn the skeleton using subsampled
datasets of varying sizes, and determined F1 scores (Fig-
ure 7). SCCI and MC-MI perform best for the alarm model
whereas GLM, RFT, and MC-MI perform equally well for
the insurance model (except for very low sample size). Impor-
tantly, both these models are very sparse. The alarm model
has 37 variables and 46 edges, hence the edge probability is

46
(37∗36)/2 = 0.069. The insurance model is slightly denser
with 27 variables and 52 edges and an edge probability of

52
(27∗26)/2 = 0.15. As PC algorithm removes most of the
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Figure 8: Structure learning on adult income data. (a) Skele-
ton estimated by the stable PC algorithm from the data in
Figure 1 when using our Random-Forest based test (RFT).
(b) Mean F1 score (10 adult income data subsamples per
point) when comparing d-connected variable pairs in the
CPDAG to correlated variable pairs in the dataset. Presence
of d-connection is used as the positive case for the F1 score.
Shading: mean ± standard error.

edges in early iterations (i.e. low conditioning variables) for
sparse models, when tests perform poorly in these initial iter-
ations, it can lead to a cascading effect where the algorithm
ends up doing many more tests and may reach a higher num-
ber of conditioning variables. We saw this happening with
GLM and RFT in these datasets as it is slightly less well cali-
brated than MC-MI for low number of conditional variables
and high sample size (Figure 2). Moreover, MC-MI’s bias
towards classifying a CI as independent (Figure 2) helps in
learning sparser models.

Real Data. Finally, we return to the adult income data. Us-
ing PC structure learning with our RFT, a more connected
skeleton was generated (Figure 8a) compared to the earlier
baseline (Figure 1). For systematic quantitative evaluation,
we discretized the variable “Age” into the categories < 21,
21-30, . . ., 61-70, > 70 and the variable “HoursPerWeek”
into the categories <= 20, 21-30, 30-40, > 40. We then
tested whether pairwise dependence in the data corresponded
to d-connectedness in learned structures – a reasonable re-
quirement that is evaluable even in the absence of a ground
truth structure. To determine pairwise dependences, we per-
formed chi-square independence tests for each variable pair
and considered the variables dependent if the root mean
square error of approximation, a chi-square effect size de-
fined by

√
(χ2 − df)/(ndf), is greater than 0.05. We then

learned model structures on subsamples of the dataset, and
calculated F1 scores by comparing d-connected variables in
the learned CPDAG to dependent variables in the dataset.
GLM and RFT performed best except for the smallest sample
sizes (Figure 8b).

Taken together, our results show that our GLM and
RFT perform similarly or slightly worse than baselines for
low-dimensional, limited data, but equally or better in the
other cases. Especially in our motivating scenario of high-
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Figure 9: Mean runtime (100 CI tests per point) with vary-
ing numbers of conditional variables and 1000 samples per
dataset; data is generated like in Figure 3. Shading: mean ±
standard error.

dimensional, tightly correlated datasets, the performance gain
is substantial. GLM and RFT were slower than most baselines
but faster than MC-MI (Figure 9).

Conclusion
We have proposed a residualization-based approach for CI
testing for discrete and ordinal data. We think this approach
could be especially attractive for manual model testing in
empirical research because (1) it is symmetric by construc-
tion; (2) it is based on rather elementary statistical concepts
(here we used Hotelling’s test and GLM/random forest); and
(3) its computational cost is reasonable. In addition to these
qualitative advantages, we showed that it compares favorably
to existing alternatives with respect to calibration, discrim-
ination, and power, and is useful in the context of structure
learning when the networks can be expected to be dense,
which is the case for many real-world datasets.

Although the test is sensitive to model misspecification
when computing the residuals, it provides the flexibility to
choose a parametric M-estimator that is suitable for the data
at hand. Alternatively, we found the non-parametric Random
Forest estimator to perform well empirically.

We have shown that the LS residuals that our approach is
based on are closely related to partial copulas. We therefore
believe that it should be possible to combine the CI testing
approach proposed by Petersen and Hansen (2021) with our
approach to obtain a single, unifying CI testing framework
for any kind of mixed dataset.

Since our approach outperforms baselines in high- but not
low-dimensional settings, structure learning algorithms might
be able to get the “best of both worlds” by adaptively choos-
ing our test or a simpler one based on some estimation of how
well the simpler test should perform. However, appropriate
criteria for switching between the two tests would need to be
developed first.

For now, we hope that the combination of our residual-
ization approach and a random forest might be a reasonably
robust “plug-in” solution for causal model testing and struc-
ture learning in datasets containing ordinal and categorical
variables. We hope that this might help to persuade more
empirical researchers to test their graphical causal models or
to try out structure learning algorithms.
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Székely, G. J.; Rizzo, M. L.; Bakirov, N. K.; et al. 2007.
Measuring and testing dependence by correlation of distances.
Annals of Statistics, 35(6): 2769–2794.
Tennant, P. W. G.; Murray, E. J.; Arnold, K. F.; Berrie, L.;
Fox, M. P.; Gadd, S. C.; Harrison, W. J.; Keeble, C.; Ranker,
L. R.; Textor, J.; Tomova, G. D.; Gilthorpe, M. S.; and Ellison,
G. T. H. 2020. Use of directed acyclic graphs (DAGs) to
identify confounders in applied health research: review and
recommendations. International Journal of Epidemiology,
50(2): 620–632.
Thoemmes, F.; Rosseel, Y.; and Textor, J. 2018. Local fit eval-
uation of structural equation models using graphical criteria.
Psychological Methods, 23(1): 27–41.
Tsamardinos, I.; and Borboudakis, G. 2010. Permutation
Testing Improves Bayesian Network Learning. In Machine
Learning and Knowledge Discovery in Databases, 322–337.
Springer. ISBN 978-3-642-15939-8.
Venables, W. N.; and Ripley, B. D. 2002. Modern Applied
Statistics with S. New York: Springer, fourth edition. ISBN
0-387-95457-0.

12187



Watson, D. S.; and Wright, M. N. 2021. Testing conditional
independence in supervised learning algorithms. Machine
Learning, 110(8): 2107–2129.
Weihs, L.; Drton, M.; and Meinshausen, N. 2018. Symmetric
rank covariances: a generalized framework for nonparametric
measures of dependence. Biometrika, 105(3): 547–562.
Wright, M. N.; and Ziegler, A. 2017. ranger: A Fast Imple-
mentation of Random Forests for High Dimensional Data in
C++ and R. Journal of Statistical Software, 77(1): 1–17.
Yee, T. W. 2015. Vector Generalized Linear and Additive
Models. Springer New York, first edition. ISBN 978-1-4939-
2817-0.

12188


