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Abstract

Reasoning about the effect of interventions and counterfactu-
als is a fundamental task found throughout the data sciences.
A collection of principles, algorithms, and tools has been de-
veloped for performing such tasks in the last decades. One of
the pervasive requirements found throughout this literature is
the articulation of assumptions, which commonly appear in
the form of causal diagrams. Despite the power of this ap-
proach, there are significant settings where the knowledge
necessary to specify a causal diagram over all variables is
not available, particularly in complex, high-dimensional do-
mains. In this paper, we introduce a new graphical model-
ing tool called cluster DAGs (for short, C-DAGs) that allows
for the partial specification of relationships among variables
based on limited prior knowledge, alleviating the stringent
requirement of specifying a full causal diagram. A C-DAG
specifies relationships between clusters of variables, while
the relationships between the variables within a cluster are
left unspecified, and can be seen as a graphical representation
of an equivalence class of causal diagrams that share the re-
lationships among the clusters. We develop the foundations
and machinery for valid inferences over C-DAGs about the
clusters of variables at each layer of Pearl’s Causal Hierarchy
- L1 (probabilistic), Lo (interventional), and L3 (counterfac-
tual). In particular, we prove the soundness and completeness
of d-separation for probabilistic inference in C-DAGs. Fur-
ther, we demonstrate the validity of Pearl’s do-calculus rules
over C-DAGs and show that the standard ID identification
algorithm is sound and complete to systematically compute
causal effects from observational data given a C-DAG. Fi-
nally, we show that C-DAGs are valid for performing coun-
terfactual inferences about clusters of variables.

1 Introduction

One of the central tasks found in data-driven disciplines
is to infer the effect of a treatment X on an outcome Y,
which is formally written as the interventional distribution
P(Y|do(X = z)), from observational (non-experimental)
data collected from the phenomenon under investigation.
These relations are considered essential in the construction
of explanations and for making decisions about interven-
tions that have never been implemented before (Pearl 2000;
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Spirtes, Glymour, and Scheines 2000; Bareinboim and Pearl
2016; Peters, Janzing, and Scholkopf 2017).

Standard tools necessary for identifying the aforemen-
tioned do-distribution, such as d-separation, do-calculus
(Pearl 1995), and the ID-algorithm (Tian and Pearl 2002a;
Shpitser and Pearl 2006; Huang and Valtorta 2006; Lee, Cor-
rea, and Bareinboim 2019) take as input a combination of an
observational distribution and a qualitative description of the
underlying causal system, often articulated in the form of a
causal diagram (Pearl 2000). However, specifying a causal
diagram requires knowledge about the causal relationships
among all pairs of observed variables, which is not always
available in many real-world applications. This is especially
true and acute in complex, high-dimensional settings, which
curtails the applicability of causal inference theory and tools.

In the context of medicine, for example, electronic health
records include data on lab tests, drugs, demographic infor-
mation, and other clinical attributes, but medical knowledge
is not yet advanced enough to lead to the construction of
causal diagrams over all of these variables, limiting the use
of the graphical approach to inferring causality (Kleinberg
and Hripcsak 2011). In many cases, however, contextual
or temporal information about variables is available, which
may partially inform how these variables are situated in a
causal diagram relative to other key variables. For instance,
a data scientist may know that covariates occur temporally
before a drug is prescribed or an outcome occurs. They may
even suspect that some pre-treatment variables are causes
of the treatment and the outcome variables. However, they
may be uncertain about the relationships among each pair
of covariates, or it may be burdensome to explicitly define
them. Given that a misspecified causal diagram may lead
to wrong causal conclusions, this issue raises the question
of whether a coarser representation of the causal diagram,
where no commitment is made to the relationship between
certain variables, would still be sufficient to determine the
causal effect of interest.

In this paper, our goal is to develop a framework for causal
inferences in partially understood domains such as the med-
ical domain discussed above. We will focus on formalizing
the problem of causal effect identification considering that
the data scientist does not have prior knowledge to fully
specify a causal diagram over all pairs of variables. First,
we formally define and characterize a novel class of graphs



called cluster DAGs (or C-DAG, for short), which will allow
for encoding of partially understood causal relationships be-
tween variables in different abstracted clusters, representing
a group of variables among which causal relationships are
not understood or specified. Then, we develop the founda-
tions and machinery for valid probabilistic and causal in-
ferences, akin to Pearl’s d-separation and do-calculus for
when such a coarser graphical representation of the sys-
tem is provided based on the limited prior knowledge avail-
able. In particular, we follow Pearl’s Causal Hierarchy (Pearl
and Mackenzie 2018; Bareinboim et al. 2020) and develop
the machinery for inferences in C-DAGS at all three infer-
ential layers — £, (associational), Lo (interventional), and
L3 (counterfactual). The results are fundamental first steps
in terms of semantics and graphical conditions to perform
probabilistic, interventional, and counterfactual inferences
over clusters of variables.

Specifically, we outline our technical contributions below.

. We introduce a new graphical modelling tool called clus-
ter DAGs (or C-DAGs) over macro-variables represent-
ing clusters of variables where the relationships among
the variables inside the clusters are left unspecified (Def-
inition 1). Semantically, a C-DAG represents an equiva-
lence class of all underlying graphs over the original vari-
ables that share the relationships among the clusters.

We show that a C-DAG is a (probabilistic) Bayesian Net-
work (BN) over macro-variables and Pearl’s d-separation
is sound and complete for extracting conditional inde-
pendencies over macro-variables if the underlying graph
over the original variables is a BN (Theorems I and 2).

. We show that a C-DAG is a Causal Bayesian Network
(CBN) over macro-variables and Pearl’s do-calculus is
sound and complete for causal inferences about macro-
variables in C-DAGs if the underlying graph over the
original variables is a CBN (Theorems 3, 4, and 5). The
results can be used to show that the ID-algorithm is sound
and complete to systematically infer causal effects from
the observational distribution and partial domain knowl-
edge encoded as a C-DAG (Theorem 6).

We show that, assuming the underlying graph G is in-
duced by an SCM M, then there exists an SCM Mg
over macro-variables C such that its induced causal dia-
gram is G ¢ and it is equivalent to M on statements about
the macro-variables (Theorem 7). Therefore, the CTFID
algorithm (Correa, Lee, and Bareinboim 2021) for the
identification of nested counterfactuals from an arbitrary
combination of observational and experimental distribu-
tions can be extended to the C-DAGs.

1.1 Related Work

Since a group of variables may constitute a semantically
meaningful entity, causal models over abstracted clusters
of variables have attracted increasing attention for the de-
velopment of more interpretable tools (Scholkopf et al.
2021; Shen, Choi, and Darwiche 2018). (Parviainen and
Kaski 2016) studied the problem of, given a DAG, under
what assumptions a DAG over macro-variables can repre-
sent the same conditional independence relations between
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the macro-variables. Recent developments on causal ab-
straction have focused on the distinct problem of investigat-
ing mappings of a cluster of (micro-)variables to a single
(macro-)variable, while preserving some causal properties
(Chalupka, Perona, and Eberhardt 2015; Chalupka, Eber-
hardt, and Perona 2016; Rubenstein et al. 2017; Beckers and
Halpern 2019). The result is a new structural causal model
defined on a higher level of abstraction, but with causal prop-
erties similar to those in the low-level model.! Other re-
lated works include chain graphs (Lauritzen and Richardson
2002) and ancestral causal graphs (Zhang 2008) developed
to represent collections of causal diagrams equivalent un-
der certain properties. By contrast, our work proposes a new
graphical representation of a class of compatible causal dia-
grams, representing limited causal knowledge when the full
structural causal model is unknown.

Causal discovery algorithms can be an alternative for
when prior knowledge is insufficient to fully delineate a
causal diagram (Pearl 2000; Spirtes, Glymour, and Scheines
2000; Peters, Janzing, and Scholkopf 2017). However, in
general, it is impossible to fully recover the causal diagram
based solely on observational data, without making strong
assumptions about the underlying causal model, including
causal sufficiency (all variables have been measured), the
form of the functions (e.g., linearity, additive noise), and
the distributions of the error terms (e.g. Gaussian, non-
Gaussian, etc) (Glymour, Zhang, and Spirtes 2019). Then,
there are cases where a meaningful causal diagram cannot
be learned and prior knowledge is necessary for its construc-
tion. Our work focuses on establishing a language and corre-
sponding machinery to encode partial knowledge and infer
causal effects over clusters, alleviating some challenges in
causal modeling in high-dimensional settings.

2 Preliminaries

Notation. A single variable is denoted by a (non-boldface)
uppercase letter X and its realized value by a small letter x.
A boldfaced uppercase letter X denotes a set (or a cluster)
of variables. We use kinship relations, defined along the full
edges in the graph, ignoring bidirected edges. We denote by
Pa(X)g, An(X)g, and De(X)¢, the sets of parents, ances-
tors, and descendants in G, respectively. A vertex V is said
to be active on a path relative to Z if 1) V' is a collider and V'
or any of its descendants are in Z or 2) V is a non-collider
and is not in Z. A path p is said to be active given (or condi-
tioned on) Z if every vertex on p is active relative to Z. Oth-
erwise, p is said to be inactive. Given a graph G, X and Y
are d-separated by Z if every path between X and Y is inac-
tive given Z. We denote this d-separation by (X 1LY | Z)¢.
The mutilated graph G, is the result of removing from G
edges with an arrowhead into X (e.g., A — X, A < X)),
and edges with a tail from Z (e.g., A < Z).

Structural Causal Models (SCMs) Formally, an SCM
Mis a4-tuple (U, V, F, P(U)), where U is a set of exoge-
nous (latent) variables and V is a set of endogenous (mea-

'Tn (Beckers and Halpern 2019)’s notation, we investigate the
case of a constructive T-abstraction where the mapping 7 only
groups the low-level variables into high-level (cluster) variables.



Level Typical  Typical Typical
(Symbol) Activity Model Question
L1 Associational ~ Seeing BN How would seeing X
P(y|z) change my belief in Y'?
Lo Interventional Doing CBN What if I do X?

P(yldo(z), c)

Counterfactual
P (yI |‘T ,7 y/)

L3 Imagining SCM

ferently?

What if I had acted dif-

Table 1: The Ladder of Causation / Pearl’s Causal Hierarchy

sured) variables. F is a collection of functions { f;}|¥| such
that each endogenous variable V; € V is a function f; € F
of U; U Pa(V;), where U; C U and Pa(V;) C V\ V.
The uncertainty is encoded through a probability distribution
over the exogenous variables, P(U). Each SCM M induces
a directed acyclic graph (DAG) with bidirected edges — or an
acyclic directed mixed graph (ADMG) — G(V, E), known
as a causal diagram, that encodes the structural relations
among V U U, where every V; € V is a vertex, there is a di-
rected edge (V; — V;) forevery V; € V and V; € Pa(V;),
and there is a dashed bidirected edge (V; «-» V;) for every
pair V;,V; € V such that U; N U; # 0 (V; and V; have
a common exogenous parent). Performing an intervention
X =x is represented through the do-operator, do(X = x),
which represents the operation of fixing a set X to a con-
stant x, and induces a submodel M, which is M with fx
replaced to x for every X € X. The post-interventional dis-
tribution induced by My is denoted by P(v \ x|do(x)).
For any subset Y C 'V, the potential response Y (u) is de-
fined as the solution of Y in the submodel M given U = u.
P(U) then induces a counterfactual variable Y .

Pearl’s Causal Hierarchy (PCH) / The Ladder of Cau-
sation (Pearl and Mackenzie 2018; Bareinboim et al. 2020)
is a formal framework that divides inferential tasks into three
different layers, namely, 1) associational, 2) interventional,
and 3) counterfactual (see Tablel). An important result for-
malized under the rubric of the Causal Hierarchy Theorem
(CHT) (Bareinboim et al. 2020, Thm. 1) states that infer-
ences at any layer of the PCH almost never can be obtained
by using solely information from lower layers.

3 C-DAGs: Definition and Properties

Standard causal inference tools typically require assump-
tions articulated through causal diagrams. We investigate the
situations where the knowledge necessary to specify the un-
derlying causal diagram G(V, E) over the individual vari-
ables in V may not be available. In particular, we assume
that variables are grouped into a set of clusters of variables
Cy,...,Cy that form a partition of V (note that a vari-
able may be grouped in a cluster by itself) such that we
do not have knowledge about the relationships amongst the
variables inside the clusters C; but we have some knowl-
edge about the relationships between variables in different
groups. We are interested in performing probabilistic and
causal inferences about these clusters of variables; one may
consider each cluster as defining a macro-variable and our
aim is to reason about these macro-variables.
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Figure 1: (a): a possible ADMG over lisinopril (X), stroke
(Y), age (A), blood pressure (B), comorbidities (C'), medi-
cation history (D), and sleep quality (S). (b): a C-DAG of
(a) with Z = {A, B,C, D}. (c): aC-DAG of (a) with W =
{S,B}, Z = {A,C}. (d): an invalid C-DAG of (a), as the
partition { X, Y, W, Z}, with W = {S, B}, Z = {A,C, D}
is inadmissible due to the cycle among (X, W, Z).

Formally, we address the following technical problem:

Problem Statement: Consider a causal diagram G* over
V and a set of clusters of variables C = {Cy,...,Cy}
forming a partition of V. We aim to perform probabilistic,
interventional, or counterfactual inferences about the macro-
variables. Can we construct a causal diagram G'¢&; over the
macro-variables in C such that inferences by applying stan-
dard tools (d-separation, do-calculus, ID algorithm) on G'&
are valid in the sense they lead to the same conclusions as
inferred on G*?

To this end, we propose a graphical object called cluster
DAGs (or C-DAGS) to capture our partial knowledge about
the underlying causal diagram over individual variables.

Definition 1 (Cluster DAG or C-DAG). Given an ADMG
G(V,E) (a DAG with bidirected edges) and a partition C =
{Cy,...,Cy} of V, construct a graph Gc(C,Ec) over C
with a set of edges E¢ defined as follows:

1. Anedge C; — C; isin Ec if exists some V; € C; and
V; € C; such that V; € Pa(V;) in G;

2. A dashed bidirected edge C; «-+ C; is in Ec if exists
some V; € C; and V; € C; such that V; «-» V; in G.

If Go(C, Eg) contains no cycles, then we say that C is an
admissible partition of V. We then call G¢ a cluster DAG,
or C-DAG, compatible with G.

Throughout the paper, we will use the same symbols (e.g.
C,) to represent both a cluster node in a C-DAG G ¢ and the
set of variables contained in the cluster.

Remark 1. The definition of C-DAGs does not allow for
cycles in order to utilize standard graphical modeling tools
that work only in DAGs. An inadmissible partition of V
means that the partial knowledge available for constructing
G is not enough for drawing conclusions using the tools
developed in this paper.

Remark 2. Although a C-DAG is defined in terms of an
underlying graph G, in practice, one will construct a C-DAG
when complete knowledge of the graph G is unavailable. As
an example of this construction, consider the model of the
effect of lisinopril (X)) on the outcome of having a stroke (Y")
in Fig. 1(a). If not all the relationships specified in Fig. 1(a)
are known, a data scientist cannot construct a full causal di-
agram, but may still have enough knowledge to create a C-
DAG. For instance, they may have partial knowledge that the



Gec,

Figure 2: G¢, is the C-DAG for diagrams (a) and (b) and
G, is the C-DAG for diagrams (c) and (d), where Z =
{Z1,%Z5,Z3}. P(y|do(x)) is identifiable in G¢, by back-
door adjustment over Z and is not identifiable in G¢,.

covariates occur temporally before lisinopril is prescribed,
or that a stroke occurs and the suspicion that some of the
pre-treatment variables are causes of X and Y. Specifically,
they can create the cluster Z = {A, B,C, D} with all the
covariates, and then construct a C-DAG with edges Z — X
and Z — Y. Further, the data scientist may also suspect that
some of the variables in Z are confounded with X and others
with Y, an uncertainty that is encoded in the C-DAG through
the bidirected edges Z «-» X and Z «-» Y. With the ad-
ditional knowledge that sleep quality (.S) acts as a mediator
between the treatment and outcome, the C-DAG in Fig. 1(b)
can be constructed. Note that this C-DAG is consistent with
the true underlying causal diagram in Fig. 1(a), but was con-
structed without knowing this diagram and using much less
knowledge than what is encoded in it. Alternatively, if clus-
ters W = {S,B} and Z = {A,C} are created, then the
C-DAG shown in Fig. 1(c) would be constructed. Note that
both (a) and (b) are considered valid C-DAGs because no
cycles are created. Finally, if a clustering with W = {S, B}
and Z = {A, C, D} is created, this would lead to the C-DAG
shown in Fig. 1(d), which is invalid. The reason is that a cy-
cle X - W — Z — X is created due to the connections
X = 5,B— C,and D — X in the diagram (a).

Remark 3. It is important to note that a C-DAG G¢ as
defined in Def. 1 is merely a graph over clusters of nodes
C4,...,Cy, and does not have a priori the semantics and
properties of a BN or CBN over macro-variables C;. It’s
not clear, for example, whether the cluster nodes C; satisfy
the Markov properties w.r.t. the graph G¢. Rather, a C-DAG
can be seen as a graphical representation of an equivalence
class (EC, for short) of graphs that share the relationships
among the clusters while allowing for any possible relation-
ships among the variables within each cluster. For instance,
in Fig. 2, the diagrams (a) and (b) can be represented by
C-DAG G, (top) and can, therefore, be thought of as be-
ing members of an EC represented by G¢,. The same can
be concluded for diagrams (c) and (d), both represented by
C-DAG Gc,. The graphical representation of this ECs are
shown in Fig. 3, where on the left we have the space of all
possible ADMGs, and on the right the space of C-DAGs.
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Space of
DAGs

Space of
c-DAGs

true and
unknown
DAG

Identifiability status
of P(y|do(x))
WD MNotiD

Figure 3: Identifying P(y|do(z)) in a C-DAG means identi-
fying such an effect for the entire equivalence class. In G, ,
the effect is identifiable (blue) because it is identifiable in
G(a)» G(1), and all the other causal diagrams represented.
In G,, the same effect is non-identifiable (red), as the en-
coded partial knowledge is compatible with some causal di-
agrams in which the effect is not identifiable (e.g., G (q)).

Given the semantics of a C-DAG as an equivalence class
of ADMGs, what valid inferences can one perform about
the cluster variables given a C-DAG G¢? What properties
of C-DAGs are shared by all compatible ADMGs?

In principle, definite conclusions from C-DAGs can only
be drawn about properties shared among all EC’s members.
Going back to Fig. 3, we identify an effect in a C-DAG
(e.g., G, in Fig. 2) whenever this effect is identifiable in
all members of the EC; e.g., causal diagrams (a), (b), and
all other diagrams compatible with G¢,. Note that in this
particular EC, all dots are marked with blue, which means
that the effect is identifiable in each one of them. On the
other hand, if there exists one diagram in the EC where the
effect is not identifiable, this effect will not be identifiable
in the corresponding C-DAG. For instance, the effect is not
identifiable in the C-DAG G, due to diagram (d) in Fig. 2.

Once the semantics of C-DAGs is well-understood, we
turn our attention to computational issues. One naive ap-
proach to causal inference with cluster variables, e.g. iden-
tifying Q = P(C;|do(Cy})), goes as follows — first enu-
merate all causal diagrams compatible with Gc; then, eval-
uate the identifiability of @ in each diagram; finally, output
P(C,;|do(Cy)) if all the diagrams entail the same answer,
otherwise output “non-identifiable”. However, in practice,
this approach is intractable in high-dimensional settings —
given a cluster C; of size m, the number of possible causal
diagrams over the variables in C; is super-exponential in .
Can valid inferences be performed about cluster variables
using C-DAGs directly, without going through exhaustive
enumeration? What properties of C-DAGs are shared by all
the compatible causal diagrams? The next sections present
theoretical results to address these questions.

Finally, note that not all properties of C-DAGs are shared
across all compatible diagrams. To illustrate, consider the
case of backdoor paths, i.e., paths between X and Y with
an arrowhead into X, in Fig. 2. The path X «-» Z — Y



in G, is active when not conditioning on Z. However, the
corresponding backdoor paths in diagram (c) are all inactive.
Therefore, a d-connection in a C-DAG does not necessarily
correspond to a d-connection in all diagrams in the EC.

4 C-DAGsS for L-Inferences

In this section, we study probabilistic inference with C-
DAGs - £, inferences. We assume the underlying graph G
over V is a Bayesian Network (BN) with no causal inter-
pretation.> We aim to perform probabilistic inferences about
macro-variables with G that are valid in G regardless of the
unknown relationships within each cluster.

First, we extend d-separation (Pearl 1988), a fundamental
tool in probabilistic reasoning in BNs, to C-DAGs. As no-
ticed earlier, a d-connecting path in a C-DAG does not nec-
essarily imply that the corresponding paths in a compatible
ADMG G are connecting. Such paths can be either active
or inactive. However, d-separated paths in a C-DAG corre-
spond to only d-separated paths in all compatible ADMGs.3
These observations together, lead to the following definition
where the symbol * represents either an arrow head or tail:

Definition 2 (D-Separation in C-DAGs). A path p in a C-
DAG G is said to be d-separated (or blocked) by a set of
clusters Z C C if and only if p contains a triplet

1. C; = C,, — C; such that the non-collider cluster C,,
isin Z, or

2. Cyx— C,, <=+C; such that the collider cluster C,,, and
its descendants are not in Z.

A set of clusters Z is said to d-separate two sets of clusters
X,Y C C, denoted by (X 1L Y | Z)g, if and only if Z
blocks every path from a cluster in X to a clusterin Y.

We show in the following proposition that the d-
separation rules are sound and complete in C-DAGs in the
following sense: whenever a d-separation holds in a C-DAG,
it holds for all ADMGs compatible with it; on the other
hand, if a d-separation does not hold in a C-DAG, then there
exists at least one ADMG compatible with it for which the
same d-separation statement does not hold.

Theorem 1. (Soundness and Completeness of D-
Separation in C-DAGs). Let X,Z,Y C C. If X and Y are
d-separated by Z in a C-DAG G, then, in any compatible
ADMG G, i.e., X and Y are d-separated by Zi in G:

XLY|Z)oo — (XLY|Z)e (1)

If X and Y are not d-separated by Z in Gg, then, there
exists an ADMG G compatible with Gc where X and Y are
not d-separated by Z in G.

Theorem 1 implies that G¢ does not imply any condi-
tional independence that is not implied by the underlying G.
ADMGs are commonly used to represent BNs with la-
tent variables (which may imply Verma constraints on P(v)

2For a more detailed discussion on the tension between layers
L1 and Lo, please refer to (Bareinboim et al. 2020, Sec. 1.4.1).

3In Appendix A.1 (Anand et al. 2023), we investigate how path
analysis is extended to C-DAGs. We note that d-separation in AD-
MGs has also been called m-separation (Richardson 2003).
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not captured by independence relationships (Tian and Pearl
2002b)) where the observational distribution P(v) factor-
izes according to the ADMG G as follows

P(v)=>_P) [[ P(vclpav,,us),

k:Vi,eV

2

where Pay, are the endogenous parents of V; in G and
Ui C U are the latent parents of V. We show next that
the observational distribution P(v) factorizes according to
the graphical structure of the C-DAG G¢ as well.

Theorem 2. (C-DAG as BN). Let G¢ be a C-DAG compati-
ble with an ADMG G. If the observational distribution P(v)
factorizes according to G by Eq. (2), then the observational
distribution P(v) = P(c) factorizes according 1o Gg, i.e.,

P(C) = Zp(u) H P(Ck‘panu;c)a 3)

k:CreC

where Pac, are the parents of the cluster Cy, and U; C U
such that, for any i, j, U; N'U’; # () if and only if there is a
bidirected edge (C; «-+ C;) between C; and C; in Gc.

Thm. 2 implies that if the underlying ADMG G repre-
sents a BN with latent variables over V, then the C-DAG
G represents a BN over micro-variables C.

5 C-DAGs for L,-Inferences

We study now interventional (L) reasoning with C-DAGs.
We assume the underlying graph G over V is a CBN. Our
goal is to perform causal reasoning about macro-variables
with G¢ that are guaranteed to be valid in each G of the un-
derlying EC. We focus on extending to C-DAGs Pear!’s cel-
ebrated do-calculus (Pearl 1995) and the ID-algorithm (Tian
2002; Shpitser and Pearl 2006; Huang and Valtorta 2006).

Do-Calculus in C-DAGs

Do-calculus is a fundamental tool in causal inference from
causal diagrams and has been used extensively for solving a
variety of identification tasks. We show that if the underlying
ADMG G is a CBN on which do-calculus rules hold, then
do-calculus rules are valid in the corresponding C-DAG G¢.
We first present a key lemma for proving the soundness of
do-calculus in C-DAGs that the mutilation operations in a C-
DAG to create Gox and G'oy carry over to all compatible
underlying ADMGs. This result is shown in the following:

Lemma 1. If a C-DAG G¢ is compatible with an ADMG
G, then, for X,Z C C, the mutilated C-DAG Gc,, is com-
patible with the mutilated ADMG Gx,. B

The soundness of do-calculus in C-DAGs as stated next
follows from Theorem 1 and Lemma 1.

Theorem 3. (Do-Calculus in Causal C-DAGs). Let G be
a C-DAG compatible with an ADMG G. If G is a CBN en-
coding interventional distributions P(-|do(-)), then for any
disjoint subsets of clusters X, Y ,Z, W C C, the following
three rules hold:

Rule 1: P(y|do(x),z,w) = P(y|do(x),w)
(Y 1L 21X, W)

GCY



Rule 2: P(y|do(x),do(z),w) = P(y|do(x),z,w)
if (Y LZIX, Wce

Rule 3: P(y|do(x),do(z), w) = P(y|do(x),
if(Y 1L ZIX, W)a,

XZ(W)
where Gy, is obtained from Gg by removing the edges
into X and out of Z, and Z(W) is the set of Z-clusters that
are non-ancestors of any W-cluster in G c-

We also show next that the do-calculus rules in C-DAGs
are complete in the following sense:
Theorem 4. (Completeness of Do-Calculus). If in a C-DAG
Gc a do-calculus rule does not apply, then there is a CBN
G compatible with G ¢ for which it also does not apply.

w)

Truncated Factorization

An ADMG G represents a CBN if the interventional dis-
tributions factorizes according to the graphical structure,
known as the truncated factorization, i.e., for any X C 'V

P(v ZP I Pklpa,, ), @

k:Vi€VAX
where Pay, are the endogenous parents of V; in G and
U}, C U are the latent parents of V.
We show that the truncated factorization holds in C-DAGs
as if the underlying ADMG is a CBN, in the following sense.

Theorem 5. (C-DAG as CBN) Let G¢ be a C-DAG com-
patible with an ADMG G. If G satisfies the truncated fac-
torization (4) with respect to the interventional distribu-
tions, then, for any X C C, the interventional distribution
P(c\ x|do(x ))factorizes according to G, i.e.,

P( ZP H P(Ck|pa’Ck7u;c)a )

k:CreC\X
where Pac, are the parents of the cluster Cy, and U}, C U
such that, for any i, j, U; N U’ # () if and only zfthere isa
bidirected edge (C; «-» C i) between C;and Cj in Gc.

Theorem 5 essentially shows that a C-DAG G ¢ can be
treated as a CBN over the macro-variables C if the underly-
ing ADMG is a CBN.

ID-Algorithm

Equipped with d-separation, do-calculus, and the truncated
factorization in C-DAGs, causal inference algorithms devel-
oped for a variety of tasks that rely on a known causal di-
agram can be extended to C-DAGs (Bareinboim and Pearl
2016). In this paper, we consider the problem of identifying
causal effects from observational data using C-DAGs.

There exists a complete algorithm to determine whether
P(y|do(x)) is identifiable from a causal diagram G and
the observational distribution P(V) (Tian 2002; Shpitser
and Pearl 2006; Huang and Valtorta 2006). This algorithm,
or ID-algorithm for short, is based on the truncated factor-
ization, therefore, Theorem 5 allows us to prove that the
ID-algorithm is sound and complete to systematically infer
causal effects from the observational distribution P(V') and
partial domain knowledge encoded as a C-DAG Gc.

\ x|do(x

\ x|do(x
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Theorem 6. (Soundness and Completeness of the ID-
Algorithm). The ID-algorithm is sound and complete when
applied to a C-DAG G ¢ for identifying causal effects of the
form P(y|do(x)) from the observational distribution P(V),
where X and Y are sets of clusters in Gc .

The ID algorithm returns a formula for identifiable
P(y|do(x)) that is valid in all causal diagrams compatible
with the C-DAG G ¢. The completeness result ensures that if
the ID-algorithm fails to identify P(y|do(x)) from G ¢, then
there exists a causal diagram G compatible with G¢ where
P(y|do(x)) is not identifiable. Appendix A.3 (Anand et al.
2023) has an experimental study evaluating the ability of C-
DAGs to accurately assess the identifiability of effects while
requiring less domain knowledge for their construction.

Examples of Causal Identifiability in C-DAGs

We show examples of identification in C-DAGS in prac-
tice. Besides illustrating identification of causal effects in
the coarser graphical representation of a C-DAG, these ex-
amples demonstrate that clustering variables may lead to di-
agrams where effects are not identifiable. Therefore, care
should be taken when clustering variables, to ensure not so
much information is lost in a resulting C-DAG, such that
identifiability is maintained when possible.

Identification in Fig. 1. In diagram (a) the effect of X
on Y is identifiable through backdoor adjustment (Pearl
2000, pp. 79-80) over the set of variables {B, D} In the
C-DAG in Fig. 1(b), with cluster Z = {A, B,C, D}, the
effect of X on Y is identifiable through front-door adjust-
ment (Pearl 2000, p. 83) over S, given by P(y|do(z)) =
> s P(s|lx) Y. P(y|z’,s)P(z'). Because this front-door
adjustment holds for the C-DAG in Fig. 1(b) with which di-
agram (a) is compatible, this front-door adjustment identifi-
cation formula is equivalent to the adjustment in the case of
diagram (a) and gives the correct causal effect in any other
compatible causal diagram. In the C-DAG in (c), the loss of
separations from the creation of clusters Z = {A, B,C, D}
and W = {B, S} render the effect no longer identifiable,
indicating that there exists another graph compatible with
(c) for which the effect cannot be identified.

Z1 Zg

A > g
.—}.—’ﬁé
X, X, V) .”. X1 X2
(a) b) Gc, c) Ge, d) Gc,
Figure 4: (a): causal diagram G where the effect
P(y1, ya|do(x1, x2)) is identifiable. (b): C-DAG G¢, with

clustering X {X1,X2}, Y = {N,Y5}, and Z =
{Z1,Z>}. (¢): C-DAG G, with clustering X = {X1, X2}
and Y {Y1,Y2}. (d): C-DAG G¢, with clustering
Y = {1, Y2} and Z = {Z;, Z>}. The effect P(y|do(x))
is not identifiable in G¢,, but is identifiable in G, and
P(y|do(z1,x2)) is identifiable in G¢,.

Identification in Fig. 4. In causal diagram (a), the ef-



fectof { X1, X5} on {Y7, Y5} is identifiable by backdoor ad-
justment over {Z1, Z2} as follows: P(y1,yz2|do(z1, z2)) =
221722 P(y1,y2|x1, X9, 21, 22)P(21, 22). Note, however,
that the backdoor path cannot be blocked in the C-DAG
G1 (b) with clusters X {X1,X2}, Y = {Y1,Ys},
and Z = {Z1,Z>}. In this case, the effect P(y|do(x)) is
not identifiable. If the covariates Z; and Z5 are not clus-
tered together as shown in the C-DAG G, (c), the back-
door paths relative to X and Y can still be blocked de-
spite the unobserved confounders between Z; and X and
between Z5 and Y. So the effect P(y|do(x)) is identi-
fiable by backdoor adjustment over {Z;, Z>} as follows:
P(yldo(x)) = >_,, ., P(y[x,21,22)P(z1, 22). If the treat-
ments X; and X5 are not clustered together as shown in the
C-DAG G, (d), then the joint effect of X; and X3 on the
cluster Y is identifiable and given by the following expres-
sion: P(y|do(x1,22)) = 3, o/ P(y|}, 22,2)P(x},2).

AR R BRI e
X.S:% Xy j/IYé X‘S:I.:;{/Q
Yi Yi Yi
(a) G1 (b) G2 (C) G3 (d) GC

Figure 5: (a), (b), and (c) are causal diagrams compatible
with the C-DAG G¢ in (d) where X {X1,X5} and
Y = {Y37,Ys}. The causal effect P(y1,yz|do(z1,x2)) is
identifiable in (a) but not in (b) or (¢). Consequently, the
effect P(y|do(z)) is not identifiable from the C-DAG G¢.

Identification in Fig. 5. In the causal diagram (a), the ef-
fect of the joint intervention to { X, X5} on both outcomes
{Y1, Y32} is identifiable as follows: P(y1,yz2|do(x1,z2)) =
P(y1|xy,x2) Zx,l P(ys|a!, xa,y1)P(2}). By clustering the
two treatments as X and the two outcomes as Y, we lose the
information that X5 is not a confounded effect of X; and
that Y7 and Y5 are not confounded. If this is the case, as in
causal diagrams G5 (b) and G5 (¢), the effect would not be
identifiable. Note that the C-DAG (d), representing causal
diagrams (a), (b), and (c), is the bow graph, where the effect
P(y|do(x)) is also not identifiable.

6 C-DAGs for L;-Inferences

Now, we study counterfactual (L3) inferences in C-DAGs.
We assume that the underlying graph G over V is induced
by an SCM M, and our goal is to perform counterfactual
reasoning about macro-variables with G¢ that are always
valid in M (while both G and the SCM M are unknown).
We show that for any SCM over V with causal diagram
G, there is an equivalent SCM over macro-variables C' that
induces C-DAG G¢ and makes the same predictions about
counterfactual distributions over the macro-variables.

Theorem 7. Let Gc be a C-DAG compatible with an
ADMG G. Assume G is induced by an SCM M, then there
exists an SCM M over macro-variables C such that its

induced causal diagram is Gc and, for any set of counter-
factual variables Y, . . ., Ly, where Y, X, ..., Z, W C C,
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PM(wa . 'azw) = PMc(yx7’ . ‘azw)~

Following this result, algorithms developed for a variety
of counterfactual inference tasks that rely on a known causal
diagram, such as the CTFID algorithm (Correa, Lee, and
Bareinboim 2021), can be used in the context of C-DAGs.

For example, consider the C-DAG G, in Fig. 2, where
X is a drug, Y is a disease, and Z is a cluster of factors
potentially affecting X and Y. Suppose that a patient who
took the drug (X = 1) would like to know what his chances
of being cured (Y = 1) would have been had he not taken
the drug (X = 0). This quantity is defined by P(Yx—o =
1/X = 1). The CTFID algorithm applied to G¢, will con-
clude that P(Yx—o = 1|X = 1) is identifiable and given
by > PY =1|X =0,Z = 2)P(Z = z|X = 1). This
formula is correct in all ADMGs compatible with G¢,, re-
gardless of the relationships within cluster Z.

After all, we note that inferences in the lower layers as-
sume less knowledge than the higher layers. On the one
hand, some results about the lower layers are implied by the
higher layers. For instance, if G is induced by an SCM, then
G represents a CBN and a BN, and Thm. 7 implies that if the
underlying G is induced by an SCM, then G ¢ represents a
CBN and a BN. If G is a CBN, then it is necessarily a BN,
therefore Thm. 5 implies that if the underlying G represents
a CBN, then G ¢ represents a BN. On the other hand, if one
does not want to commit to the SCM generative process,
but can only ascertain that the truncated factorization holds
(e.g., for Lo), it’s still possible to leverage the machinery
developed without any loss of inferential power or making
unnecessary assumptions about the upper layers.

7 Conclusions

Causal diagrams provide an intuitive language for specify-
ing the necessary assumptions for causal inferences. Despite
all their power and successes, the substantive knowledge re-
quired to construct a causal diagram — i.e., the causal and
confounded relationships among all pairs of variables — is
unattainable in some critical settings found across society,
including in the health and social sciences. This paper in-
troduces a new class of graphical models that allow for a
more relaxed encoding of knowledge. In practice, when a
researcher does not fully know the relationships among cer-
tain variables, under some mild assumptions delineated by
Def. 1, these variables can be clustered together. (A causal
diagram is an extreme case of a C-DAG where each cluster
has exactly one variable. ) We prove fundamental results to
allow causal inferences within C-DAG’s equivalence class,
which translate to statements about all diagrams compatible
with the encoded constraints. We develop the formal ma-
chinery for probabilistic, interventional, and counterfactual
reasoning in C-DAGs following Pearl’s hierarchy assuming
the (unknown) underlying model over individual variables
are BN (£1), CBN (£5), and SCM (L3), respectively. These
results are critical for enabling C-DAGs use in ways com-
parable to causal diagrams. We hope these new tools will
allow researchers to represent complex systems in a simpli-
fied way, allowing for more relaxed causal inferences when
substantive knowledge is largely unavailable and coarse.
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