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Abstract

This paper studies restless multi-armed bandit (RMAB) prob-
lems with unknown arm transition dynamics but with known
correlated arm features. The goal is to learn a model to pre-
dict transition dynamics given features, where the Whittle in-
dex policy solves the RMAB problems using predicted tran-
sitions. However, prior works often learn the model by max-
imizing the predictive accuracy instead of final RMAB solu-
tion quality, causing a mismatch between training and evalu-
ation objectives. To address this shortcoming, we propose a
novel approach for decision-focused learning in RMAB that
directly trains the predictive model to maximize the Whittle
index solution quality. We present three key contributions: (i)
we establish differentiability of the Whittle index policy to
support decision-focused learning; (ii) we significantly im-
prove the scalability of decision-focused learning approaches
in sequential problems, specifically RMAB problems; (iii) we
apply our algorithm to a previously collected dataset of ma-
ternal and child health to demonstrate its performance. In-
deed, our algorithm is the first for decision-focused learning
in RMAB that scales to real-world problem sizes.

Introduction
Restless multi-armed bandits (RMABs) (Weber and Weiss
1990; Tekin and Liu 2012) are composed of a set of het-
erogeneous arms and a planner who can pull multiple arms
under budget constraint at each time step to collect re-
wards. Different from the classic stochastic multi-armed
bandits (Gittins, Glazebrook, and Weber 2011; Bubeck and
Cesa-Bianchi 2012), the state of each arm in an RMAB can
change even when the arm is not pulled, where each arm
follows a Markovian process to transition between differ-
ent states with transition probabilities dependent on arms
and the pulling decision. Rewards are associated with dif-
ferent arm states, where the planner’s goal is to plan a se-
quential pulling policy to maximize the total reward received
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from all arms. RMABs are commonly used to model se-
quential scheduling problems where limited resources must
be strategically assigned to different tasks sequentially to
maximize performance. Examples include machine mainte-
nance (Glazebrook, Ruiz-Hernandez, and Kirkbride 2006),
cognitive radio sensing problem (Bagheri and Scaglione
2015), and healthcare (Mate et al. 2022).

In this paper, we study offline RMAB problems with un-
known transition dynamics but with given arm features. The
goal is to learn a mapping from arm features to transition dy-
namics, which can be used to infer the dynamics of unseen
RMAB problems to plan accordingly. Prior works (Mate
et al. 2022; Sun et al. 2018) often learn the transition dynam-
ics from the historical pulling data by maximizing the predic-
tive accuracy. However, RMAB performance is evaluated by
its solution quality derived from the predicted transition dy-
namics, which leads to a mismatch in the training objective
and the evaluation objective. Previously, decision-focused
learning (Wilder, Dilkina, and Tambe 2019) has been pro-
posed to directly optimize the solution quality rather than
predictive accuracy, by integrating the one-shot optimiza-
tion problem (Donti, Amos, and Kolter 2017; Perrault et al.
2020) or sequential problems (Wang et al. 2021; Futoma,
Hughes, and Doshi-Velez 2020) as a differentiable layer in
the training pipeline. Unfortunately, while decision-focused
learning can successfully optimize the evaluation objective,
it is computationally extremely expensive due to the pres-
ence of the optimization problems in the training process.
Specifically, for RMAB problems, the computation cost of
decision-focused learning arises from the complexity of the
sequential problems formulated as Markov decision pro-
cesses (MDPs), which limits the applicability to RMAB
problems due to the PSPACE hardness of finding the opti-
mal solution (Papadimitriou and Tsitsiklis 1994).

Our main contribution is a novel and scalable approach for
decision-focused learning in RMAB problems using Whit-
tle index policy, a commonly used approximate solution
in RMABs. Our three key contributions are (i) we estab-
lish the differentiability of Whittle index policy to support
decision-focused learning to directly optimize the RMAB
solution quality; (ii) we show that our approach of differen-
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tiating through Whittle index policy improves the scalability
of decision-focused learning in RMAB; (iii) we apply our al-
gorithm to an anonymized maternal and child health RMAB
dataset previously collected by ARMMAN (2022) to evalu-
ate the performance of our algorithm in simulation.

We establish the differentiability of Whittle index by
showing that Whittle index can be expressed as a solution
to a full-rank linear system reduced from Bellman equa-
tions with transition dynamics as entries, which allows us
to compute the derivative of Whittle index with respect to
transition dynamics. On the other hand, to execute Whit-
tle index policy, the standard selection process of choosing
arms with top-k Whittle indices to pull is non-differentiable.
We relax this non-differentiable process by using a differen-
tiable soft top-k selection to establish differentiability. Our
differentiable Whittle index policy enables decision-focused
learning in RMAB problems to backpropagate from final
policy performance to the predictive model. We significantly
improve the scalability of decision-focused learning, where
the computation cost of our algorithm O(NMω+1) scales
linearly in the number of arms N and polynomially in the
number of states M with ω ≈ 2.373, while previous work
scales exponentially O(MωN ). This significant reduction in
computation cost is crucial for extending decision-focused
learning to RMAB problems with large number of arms.

In our experiments, we apply decision-focused learning
to RMAB problems to optimize importance sampling-based
evaluation on synthetic datasets as well as an anonymized
RMAB dataset about a maternal and child health program
previously collected by (ARMMAN 2022) – these datasets
are the basis of comparing different methods in simula-
tion. We compare decision-focused learning with the two-
stage method that trains to minimize the predictive loss. The
two-stage method achieves the best predictive loss but sig-
nificantly degraded solution quality. In contrast, decision-
focused learning reaches a slightly worse predictive loss
but with a much better importance sampling-based solu-
tion quality evaluation and the improvement generalizes to
the simulation-based evaluation that is built from the data.
Lastly, the scalability improvement is the crux of apply-
ing decision-focused learning to real-world RMAB prob-
lems: our algorithm can run decision-focused learning on
the maternal and child health dataset with hundreds of arms,
whereas state of the art is a 100-fold slower even with 20
arms and grows exponentially worse.

Related Work
Restless multi-armed bandits with given transition dy-
namics This line of research primarily focuses on solv-
ing RMAB problems to get a sequential policy. The com-
plexity of solving RMAB problems optimally is known to
be PSPACE hard (Papadimitriou and Tsitsiklis 1994). One
approximate solution is proposed by Whittle (1988), where
they use Lagrangian relaxation to decompose arms and com-
pute the associated Whittle indices to define a policy. Specif-
ically, the indexability condition (Akbarzadeh and Mahajan
2019; Wang et al. 2019) guarantees this Whittle index pol-
icy to be asymptotically optimal (Weber and Weiss 1990).

In practice, Whittle index policy usually provides a near-
optimal solution to RMAB problems.

Restless multi-armed bandits with missing transition dy-
namics When the transition dynamics are unknown in
RMAB problems but an interactive environment is available,
prior works (Tekin and Liu 2012; Liu, Liu, and Zhao 2012;
Oksanen and Koivunen 2015; Dai et al. 2011) consider this
as an online learning problem that aims to maximize the ex-
pected reward. However, these approaches become infeasi-
ble when interacting with the environment is expensive, e.g.,
healthcare problems (Mate et al. 2022). In this work, we con-
sider the offline RMAB problem, and each arm comes with
an arm feature that is correlated to the transition dynamics
and can be learned from the past data.

Decision-focused learning The predict-then-optimize
framework (Elmachtoub and Grigas 2021) is composed of a
predictive problem that makes predictions on the parameters
of the later optimization problem, and an optimization
problem that uses the predicted parameters to come up with
a solution, where the overall objective is the solution quality
of the proposed solution. Standard two-stage learning
method solves the predictive and optimization problems
separately, leading to a mismatch of the predictive loss
and the evaluation metric (Huang et al. 2019; Lambert
et al. 2020; Johnson and Khoshgoftaar 2019). In contrast,
decision-focused learning (Wilder, Dilkina, and Tambe
2019; Mandi et al. 2020; Elmachtoub, Liang, and McNellis
2020) learns the predictive model to directly optimize the
solution quality by integrating the optimization problem as
a differentiable layer (Amos and Kolter 2017; Agrawal et al.
2019) in the training pipeline. Our offline RMAB problem
is a predict-then-optimize problem, where we first (offline)
learn a mapping from arm features to transition dynamics
from the historical data (Mate et al. 2022; Sun et al. 2018),
and the RMAB problem is solved using the predicted
transition dynamics accordingly. Prior work (Mate et al.
2022) is limited to using two-stage learning to solve the of-
fline RMAB problems. While decision-focused learning in
sequential problems were primarily studied in the context of
MDPs (Wang et al. 2021; Futoma, Hughes, and Doshi-Velez
2020) they come with an expensive computation cost that
immediately becomes infeasible in large RMAB problems.

Model: Restless Multi-armed Bandit
An instance of the restless multi-armed bandit (RMAB)
problem is composed of a set of N arms, each is mod-
eled as an independent Markov decision process (MDP).
The i-th arm in a RMAB problem is defined by a tuple
(S,A, Ri, Pi). S and A are the identical state and action
spaces across all arms. Ri, Pi : S × A × S → R are the
reward and transition functions associated to arm i. We con-
sider finite state space with |S| = M fully observable states
and action set A = {0, 1} corresponding to not pulling or
pulling the arm, respectively. For each arm i, the reward is
denoted by Ri(si, ai, s

′
i) = R(si), i.e., the reward R(si)

only depends on the current state si, where R : S → R
is a vector of size M . Given the state si and action ai,
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Pi(si, ai) = [Pi(si, ai, s
′
i)]s′i∈S defines the probability dis-

tribution of transitioning to all possible next states s′i ∈ S .
In a RMAB problem, at each time step t ∈ [T ], the learner

observes st = [st,i]i∈[N ] ∈ SN , the states of all arms. The
learner then chooses action at = [at,i]i∈[N ] ∈ AN denoting
the pulling actions of all arms, which has to satisfy a budget
constraint

∑
i∈[N ] at,i ≤ K, i.e., the learner can pull at most

K arms at each time step. Once the action is chosen, arms
receive action at and transitions under P with rewards rt =
[rt,i]i∈[N ] accordingly. We denote a full trajectory by τ =
(s1,a1, r1, · · · , sT ,aT , rT ). The total reward is defined by
the summation of the discounted reward across T time steps
and N arms, i.e.,

∑T
t=1 γ

t−1
∑

i∈[N ] rt,i, where 0 < γ ≤ 1

is the discount factor.
A policy is denoted by π, where π(a | s) is the probability

of choosing action a given state s. Additionally, we define
π(ai = 1 | s) to be the marginal probability of pulling arm
i given state s, where π(s) = [π(ai = 1 | s)]i∈[N ] is a
vector of arm pulling probabilities. Specifically, we use π∗

to denote the optimal policy that optimizes the cumulative
reward, while πsolver to denote a near-optimal policy solver.

Problem Statement
This paper studies the RMAB problem where we do not
know the transition probabilities P = {Pi}i∈[N ] in advance.
Instead, we are given a set of features x = {xi ∈ X}i∈[N ],
each corresponding to one arm. The goal is to learn a map-
ping fw : X → P , parameterized by weights w, to make
predictions on the transition probabilities P = fw(x) :=
{fw(xi)}i∈[N ]. The predicted transition probabilities are
later used to solve the RMAB problem to derive a policy
π = πsolver(fw(x)). The performance of the model f is eval-
uated by the performance of the proposed policy π.

Training and Testing Datasets
To learn the mapping fw, we are given a set of RMAB in-
stances as training examples Dtrain = {(x, T )}, where each
instance is composed of a RMAB problem with feature x
that is correlated to the unknown transition probabilities P ,
and a set of realized trajectories T = {τ (j)}j∈J generated
from a given behavior policy πbeh that determined how to
pull arms in the past. The testing set Dtest is defined simi-
larly but hidden at training time.

Evaluation Metrics
Predictive loss To measure the correctness of transition
probabilities P = {Pi}i∈[N ], we define the predictive loss
as the average negative log-likelihood of seeing the given
trajectories T , i.e., L(P, T ) := − log Pr(T | P ) =
−Eτ∼T

∑
t∈[T ] logP (st,at, st+1). Therefore, we can de-

fine the predictive loss of a model fw on dataset D by:

E(x,T )∼D L(fw(x), T ) (1)

Policy evaluation On the other hand, given transition
probabilities P , we can solve the RMAB problem to de-
rive a policy πsolver(P ). We can use the historical trajecto-
ries T to evaluate how good the policy performs, denoted by

Eval(πsolver(P ), T ). Given dataset D, we can evaluate the
predictive model fw on dataset D by:

E(x,T )∼D Eval(πsolver(fw(x)), T ) (2)

Two common types of policy evaluation are importance
sampling-based off-policy policy evaluation and simulation-
based evaluation, which will be discussed in Section .

Learning Methods
Two-stage learning To learn the predictive model fw,
we can minimize Equation 1 by computing gradient
dL(fw(x),T )

dw to run gradient descent. However, this training
objective (Equation 1) differs from the evaluation objective
(Equation 2), which often leads to suboptimal performance.

Decision-focused learning In contrast, we can directly
run gradient ascent to maximize Equation 2 by computing
the gradient dEval(πsolver(fw(x)),T )

dw . However, in order to com-
pute the gradient, we need to differentiate through the policy
solver πsolver and the corresponding optimal solution. Unfor-
tunately, finding the optimal policy in RMABs is expensive
and the policy is high-dimensional. Both of these challenges
prevent us from computing the gradient to achieve decision-
focused learning.

Decision-focused Learning in RMABs
In this paper, instead of grappling with the optimal policy,
we consider the Whittle index policy (Whittle 1988) – the
dominant solution paradigm used to solve the RMAB prob-
lem. Whittle index policy is easier to compute and has been
shown to perform well in practice. In this section we es-
tablish that it is also possible to backpropagate through the
Whittle index policy. This differentiability of Whittle index
policy allows us to run decision-focused learning to directly
maximize the performance in the RMAB problem.

Whittle Index and Whittle Index Policy
Informally, the Whittle index of an arm captures the added
value derived from pulling that arm. The key idea is to de-
termine the Whittle indices of all arms and to pull the arms
with the highest values of the index.

To evaluate the value of pulling an arm i, we consider the
notion of ‘passive subsidy’, which is a hypothetical exoge-
nous compensation m rewarded for not pulling the arm (i.e.
for choosing action a = 0). Whittle index is defined as the
smallest subsidy necessary to make pulling as rewarding as
not pulling, assuming indexability (Liu and Zhao 2010):

Definition 0.1 (Whittle index). Given state u ∈ S , we define
the Whittle index associated to state u by:

Wi(u) := infm{Qm
i (u; a = 0) = Qm

i (u; a = 1)} (3)

where the value functions are defined by the following Bell-
man equations, augmented with subsidy m for action a = 0.

V m
i (s) = maxa Q

m
i (s; a) (4)

Qm
i (s; a)=m1a=0+R(s)+γ

∑
s′
Pi(s, a, s

′)V m
i (s′) (5)
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Figure 1: This flowchart visualizes different methods of learning the predictive model. Two-stage learning directly compares
the predicted transition probabilities with the given data to define a predictive loss to run gradient descent. Decision-focused
learning instead goes through a policy solver using Whittle index policy to estimate the final evaluation and run gradient ascent.

Given the Whittle indices of all arms and all states W =
[Wi(u)]i∈[N ],u∈S , the Whittle index policy is denoted by
πwhittle : SN −→ [0, 1]N , which takes the states of all arms
as input to compute their Whittle indices and output the
probabilities of pulling arms. This policy repeats for every
time step to pull arms based on the index values.

Decision-focused Learning Using Whittle Index
Policy
Instead of using the optimal policy π∗ to run decision-
focused learning with expensive computation cost, we use
Whittle index policy πwhittle to determine how to pull arms
as an approximate solution. In this case, in order to run
decision-focused learning, we need to compute the deriva-
tive of the evaluation metric by chain rule:

dEval(πwhittle, T )

dw
=

dEval(πwhittle, T )

dπwhittle

dπwhittle

dW

dW

dP

dP

dw
(6)

where W is the Whittle indices of all states under the pre-
dicted transition probabilities P . The policy πwhittle is the
Whittle index policy induced by W . The flowchart is illus-
trated in Figure 1.

The term dEval(πwhittle,T )
dπwhittle can be computed via policy gra-

dient theorem (Sutton, Barto et al. 1998), and the term dP
dw

can be computed using auto-differentiation. However, there
are still two challenges remaining: (i) how to differentiate
through Whittle index policy to get dπwhittle

dW (ii) how to differ-
entiate through Whittle index computation to derive dW

dP .

Differentiability of Whittle Index Policy
A common choice of Whittle index policy is defined by:
Definition 0.2 (Strict Whittle index policy).

πstrict
W (s) = 1top-k([Wi(si)]i∈[N]) ∈ {0, 1}N (7)

which selects arms with the top-k Whittle indices to pull.
However, the strict top-k operation in the strict Whittle

index policy is non-differentiable, which prevents us from
computing a meaningful estimate of dπwhittle

dW in Equation 6.
We circumvent this issue by relaxing the top-k selection to
a soft-top-k selection (Xie et al. 2020), which can be ex-
pressed as an optimal transport problem with regularization,
making it differentiable. We apply soft-top-k to define a new
differentiable soft Whittle index policy:

Definition 0.3 (Soft Whittle index policy).

πsoft
W (s) = soft-top-k([Wj(si)]i∈[N ]) ∈ [0, 1]N (8)

Using the soft Whittle index policy, the policy becomes
differentiable and we can compute dπwhittle

dW .

Differentiability of Whittle Index
The second challenge is the differentiability of Whittle in-
dex. Whittle indices are often computed using value itera-
tion and binary search (Qian et al. 2016; Mate et al. 2020)
or mixed integer linear program. However, these operations
are not differentiable and we cannot compute the derivative
dW
dP in Equation 6 directly.

Main idea After computing the Whittle indices and the
value functions of each arm i, the key idea is to construct lin-
ear equations that link the Whittle index with the transition
matrix Pi. Specifically, we achieve this by resolving the max
operator in Equation 4 of Definition 0.1 by determining the
optimal actions a from the pre-computed value functions.
Plugging back in Equation 5 and manipulating as shown be-
low yields linear equations in the Whittle index Wi(u) and
transition matrix Pi, which can be expressed as a full-rank
linear system in Pi, with the Whittle index as a solution. This
makes the Whittle index differentiable in Pi.

Selecting Bellman equation Let u and arm i be the target
state and target arm to compute the Whittle index. Assume
we have precomputed the Whittle index m = Wi(u) for
state u and the corresponding value functions [V m

i (s)]s∈S
for all states under the same passive subsidy m = Wi(u).
Equation 5 can be combined with Equation 4 to get:

V m
i (s) ≥

{
m+R(s) + γ

∑
s′∈S Pi(s, a = 0, s′)V m

i (s′)

R(s) + γ
∑

s′∈S Pi(s, a = 1, s′)V m
i (s′)

(9)

where m = Wi(u).
For each s ∈ S, at least one of the equalities in Equa-

tion 9 holds because one of the actions must be optimal
and match the state value function V m

i (s). We can identify
which equality holds by simply plugging in values of pre-
computed value functions [V m

i (s)]s∈S . Furthermore, for the
target state u, both equalities must hold because by the def-
inition of Whittle index, the passive subsidy m = Wi(u)
makes both actions equally optimal, i.e. in Equation 3,
V m
i (u) = Qm

i (u, a = 0) = Qm
i (u, a = 1) for m = Wi(u).
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Figure 2: We establish the differentiability of Whittle index policy using a soft top-k selection to construct a soft Whittle index
policy, and the differentiability of Whittle index by expressing Whittle index as a solution to a linear system in Equation 11.

Thus Equation 9 can be written in matrix form:[
V m

i
V m

i

]
≥
[
1M γP i(S, a=0,S)
0M γP i(S, a=1,S)

] [
m
V m

i

]
+

[
R(S)
R(S)

]
(10)

where V m
i := [V m

i (s)]s∈S , R(S) = [R(s)]s∈S , and
P i(S, a,S) := [Pi(s, a, s

′)]s,s′∈S ∈ RM×M .
By the aforementioned discussion, we know that there are

at least M +1 equalities in Equation 10 while there are also
only M + 1 variables (m ∈ R and V m

i ∈ RM ). There-
fore, we rearrange Equation 10 and pick only the rows where
equalities hold to get:

A

[
1M γP i(S, a = 0,S)− IM
0M γP i(S, a = 1,S)− IM

] [
m
V m

i

]
= A

[
−R(S)
−R(S)

]
(11)

where we use a binary matrix A ∈ {0, 1}(M+1)×2M with a
single 1 per row to extract the equality. For example, we can
set Aij = 1 if the j-th row in Equation 10 corresponds to the
equality in Equation 9 with the i-th state in the state space
S for i ∈ [M ], and the last row A(M+1),j = 1 to mark the
additional equality matched by the Whittle index definition
(see Appendix for more details). Matrix A picks M + 1
equalities out from Equation 10 to form Equation 11.

Equation 11 is a full-rank linear system with m = Wi(u)
as a solution. This expresses Wi(u) as an implicit function
of P , allowing for computation of dWi(u)

dP via autodifferen-
tiation, thus achieving differentiability of the Whittle index.
We repeat this process for every arm i ∈ [N ] and every state
u. Figure 2 summarizes the differentiable Whittle index pol-
icy and the algorithm is shown in Algorithm 1.

Computation Cost and Backpropagation
It is well studied that Whittle index policy can be computed
more efficiently than solving the RMAB problem as a large
MDP problem. Here, we show that the use of Whittle index
policy also demonstrates a large speed up in terms of back-
propagating the gradient in decision-focused learning.

In order to use Equation 11 to compute the gradient of
Whittle indices, we need to invert the left-hand-side of Equa-
tion 11 with dimensionality M + 1, which takes O(Mω)
where ω ≈ 2.373 (Alman and Williams 2021) is the best
known matrix inversion constant. Therefore, the overall
computation of all N arms and M states is O(NMω+1) per
gradient step.

In contrast, the standard decision-focused learning dif-
ferentiates through the optimal policy using the full Bell-
man equation with O(MN ) variables, where inverting the

large Bellman equation requires O(MωN ) cost per gradient
step. Thus, our algorithm significantly reduces the compu-
tation cost to a linear dependency on the number of arms
N . This significantly improves the scalability of decision-
focused learning.

Extension to Partially Observable RMAB
For partially observable RMAB problem, we focus on a sub-
class of RMAB problem known as collapsing bandits (Mate
et al. 2020). In collapsing bandits, belief states (Monahan
1982) are used to represent the posterior belief of the un-
observable states. Specifically, for each arm i, we use bi ∈
B = ∆(S) ⊂ [0, 1]M to denote the posterior belief of an
arm, where each entry bi(si) denotes the probability that
the true state is si ∈ S . When arm i is pulled, the current
true state si ∼ bi is revealed and drawn from the posterior
belief with expected reward b⊤i R, where we can define the
transition probability on the belief states. This process re-
duces partially observable states to fully observable belief
states with in total MT states since the maximal horizon is
T . Therefore, we can use the same technique to differentiate
through Whittle indices of partially observable states.

Policy Evaluation Metrics
In this paper, we use two different variants of evaluation met-
ric: importance sampling-based evaluation (Sutton, Barto
et al. 1998) and simulation-based (model-based) evaluation.

Importance sampling-based Evaluation We adopt Con-
sistent Weighted Per-Decision Importance Sampling (CW-
PDIS) (Thomas 2015) as our importance sampling-based
evaluation. Given target policy π and a trajectory τ =
{s1, a1, r1, · · · , sT , aT , rT } executed by the behavior pol-
icy πbeh, the importance sampling weight is defined by ρti =∏t

t′=1

π(at′,i|st′ )
πbeh(at′,i|st′ )

. We evaluate the policy π by:

EvalIS(π, T ) =
∑

t∈[T ],i∈[N ]
γt−1Eτ∼T [rt,iρti(τ)]

Eτ∼T [ρti(τ)]
(12)

Importance sampling-based evaluations are often unbiased
but with a larger variance due to the unstable impor-
tance sampling weights. CWPDIS normalizes the impor-
tance sampling weights to achieve a consistent estimate.

Simulation-based Evaluation An alternative way is to
use the given trajectories to construct an empirical transi-
tion probability P̄ to build a simulator and evaluate the tar-
get policy π. The variance of simulation-based evaluation is
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Algorithm 1: Decision-focused Learning in RMAB

1: Input: training set Dtrain, learning rate r, model fw
2: for epoch = 1, 2, · · · and (x, T ) ∈ Dtrain do
3: Predict P = fw(x) and compute Whittle indices

W (P ).
4: Let πwhittle = πsoft

W and compute Eval(πwhittle, T ).

5: Update w = w+ r dEval(πwhittle,T )
dπwhittle

dπwhittle

dW
dW
dP

dP
dw , where

dW
dP is computed from Equation 11.

6: end for
7: Return: predictive model fw

small, but it may require additional assumptions on the miss-
ing transition when the empirical transition P̄ is not fully
reconstructed.

Experiments
We compare two-stage learning (TS) with our decision-
focused learning (DF-Whittle) that optimizes importance
sampling-based evaluation directly. We consider three dif-
ferent evaluation metrics including predictive loss, impor-
tance sampling evaluation, and simulation-based evaluation
to evaluate all learning methods. We perform experiments
on three synthetic datasets including 2-state fully observ-
able, 5-state fully observable, and 2-state partially observ-
able RMAB problems. We also perform experiments on a
real dataset on maternal and child health problem modelled
as a 2-state fully observable RMAB problem with real fea-
tures and historical trajectories. For each dataset, we use
70%, 10%, 20% of the RMAB problems as the training, val-
idation, and testing sets, respectively. All experiments are
averaged over 50 independent runs.

Synthetic datasets We consider RMAB problems com-
posed of N = 100 arms, M states, budget K = 20, and
time horizon T = 10 with a discount rate of γ = 0.99.
The reward function is given by R = [ i−1

M−1 ]i∈[M ], while the
transition probabilities are generated uniformly at random
but with a constraint that pulling the arm (a = 1) is strictly
better than not pulling the arm (a = 0) to ensure the benefit
of pulling. To generate the arm features, we feed the transi-
tion probability of each arm to a randomly initialized neu-
ral network to generate fixed-length correlated features with
size 16 per arm. The historical trajectories T with |T | = 10
are produced by running a random behavior policy πbeh. The
goal is to predict transition probabilities from the arm fea-
tures and the training trajectories.

Real dataset The Maternal and Child Healthcare Mo-
bile Health program operated by ARMMAN (2022) aims
to improve dissemination of health information to pregnant
women and mothers with an aim to reduce maternal, neona-
tal and child mortality and morbidity. ARMMAN serves
expectant/new mothers in disadvantaged communities with
median daily family income of $3.22 per day which is seen
to be below the world bank poverty line (World Bank 2020).
The program is composed of multiple enrolled beneficia-
ries and a planner who schedules service calls to improve

the overall engagement of beneficiaries; engagement is mea-
sured in terms of total number of automated voice (health
related) messages that the beneficiary engaged with. More
precisely, this problem is modelled as a M = 2-state fully
observable RMAB problem where each beneficiary’s behav-
ior is governed by an MDP with two states - Engaging and
Non-Engaging state; engagement is determined by whether
the beneficiary listens to an automated voice message (av-
erage length 115 seconds) for more than 30 seconds. The
planner’s task is to recommend a subset of beneficiaries ev-
ery week to receive service calls from health workers to fur-
ther improve their engagement behavior. We do not know the
transition dynamics, but we are given beneficiaries’ socio-
demographic features to predict transition dynamics.

We use a subset of data from the large-scale anonymized
quality improvement study performed by ARMMAN for
T = 7 weeks, obtained from Mate et al. (2022), with benefi-
ciary consent. In the study, a cohort of beneficiaries received
Round-Robin policy, scheduling service calls in a fixed or-
der, with a single trajectory |T | = 1 per beneficiary that
documents the calling decisions and the engagement behav-
ior in the past. We randomly split the cohort into 8 training
groups, 1 validation group, and 3 testing groups each with
N = 639 beneficiaries and K = 18 budget formulated as an
RMAB problem. The demographic features of beneficiaries
are used to infer the missing transition dynamics.

Data usage All the datasets are anonymized. The experi-
ments are secondary analysis using different evaluation met-
rics with approval from the ARMMAN ethics board. There
is no actual deployment of the proposed algorithm at AR-
MMAN. For more details about the dataset, consent of data
collection, please refer to Appendix and .

Experimental Results
Performance improvement and justification of objective
mismatch In Figure 3, we show the performance of ran-
dom policy, two-stage, and decision-focused learning (DF-
Whittle) on three evaluation metrics - predictive loss, impor-
tance sampling-based evaluation and simulation-based eval-
uation for all domains. For the evaluation metrics, we plot
the improvement against the no-action baseline that does
not pull any arms throughout the entire RMAB problem. We
observe that two-stage learning consistently converges to a
smaller predictive loss, while DF-Whittle outperforms two-
stage on all solution quality evaluation metrics significantly
(p-value < 0.05) by alleviating the objective mismatch is-
sue. This result also provides evidence of aforementioned
objective mismatch, where the advantage of two-stage in the
predictive loss does not translate to solution quality.

Significance in maternal and child care domain In the
ARMMAN data in Figure 3, we assume limited resources
that we can only select 18 out of 638 beneficiaries to make
service call per week. Both random and two-stage method
lead to around 15 more (IS-based evaluation) listening to
automated voice messages among all beneficiaries through-
out the 7-week program by 18 × 7 = 126 service calls,
when compared to not scheduling any service call; this low

12143



0

250

500

750
2-state

0

500

1000

1500
5-state

0

50

100

150
2-state partial

0

2000

4000

6000

ARMMAN

pr
ed

ic
tiv

e 
lo

ss

a Predictive loss

0

20

40

2-state

0

5

10

15
5-state

0

20

40

2-state partial

0

20

40

60

ARMMAN

so
lu

tio
n 

qu
al

ity

b IS-based evaluation

0

20

40

2-state

0

5

10

15
5-state

0

20

40

2-state partial

0

10

20

ARMMAN

so
lu

tio
n 

qu
al

ity

c Simulation-based evaluation

Figure 3: Comparison of predictive loss, importance sampling-based evaluation, and simulation-based evaluation on all syn-
thetic domains and the real ARMMAN dataset. For the evaluation metrics, we plot the improvement against the no-action
baseline that does not pull any arm. Although two-stage method achieves the smallest predictive loss, decision-focused learning
consistently outperforms two-stage method in both solution quality evaluation metrics across all domains.
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Figure 5: We compare the computation cost of our decision-
focused learning with other baselines and the theoretical
complexity O(NMω+1) with varying number of arms N .

improvement also reflects the hardness of maximizing the
effectiveness of service calls. In contrast, decision-focused
learning achieves an increase of beneficiaries listening to 50
more voice messages overall; DF-whittle achieves a much
higher increase by strategically assigning the limited service
calls using the right objective in the learning method. The
improvement is statistically significant (p-value < 0.05).

In the testing set, we examine the difference between
those selected for service call in two-stage and DF-Whittle.
We observe that there are some interesting differences. For
example, DF-Whittle chooses to do service calls to expec-
tant mothers earlier in gestational age (22% vs 37%), and
to a lower proportion of those who have already given birth
(2.8% vs 13%) compared to two-stage. In terms of the in-
come level, there is no statistic significance between two-
stage and DFL (p-value = 0.20 see Appendix ). In particular,

94% of the mothers selected by both methods are below the
poverty line (World Bank 2020).

Impact of Limited Data Figure 4 shows the improvement
between decision-focused learning and two-stage method
with varying number of trajectories given to evaluate the im-
pact of limited data. We notice that a larger improvement be-
tween decision-focused and two-stage learning is observed
when fewer trajectories are available. We hypothesize that
less samples implies larger predictive error and more dis-
crepancy between the loss metric and the evaluation metric.

Computation cost comparison Figure 5a, compares the
computation cost per gradient step of our Whittle index-
based decision-focused learning and other baselines in
decision-focused learning (Wang et al. 2021; Futoma,
Hughes, and Doshi-Velez 2020) by changing N (the num-
ber of arms) in M = 2-state RMAB problem. The other
baselines fail to run with N = 30 arms and do not scale
to larger problems like maternal and child care with more
than 600 people enrolled, while our approach is 100x faster
than the baselines as shown in Figure 5a and with a linear
dependency on the number of arms N .

In Figure 5b, we compare the empirical computation cost
of our algorithm with the theoretical computation complex-
ity O(NMω+1) in N arms and M states RMAB problems.
The empirical computation cost matches with the linear
trend in N . Our computation cost significantly improves the
computation cost O(MωN ) of previous work as discussed
in Section .

Conclusion
This paper presents the first decision-focused learning
in RMAB problems that is scalable for large real-world
datasets. We establish the differentiability of Whittle index
policy in RMAB by providing new method to differenti-
ate through Whittle index and using soft-top-k to relax the
arm selection process. Our algorithm significantly improves
the performance and scalability of decision-focused learn-
ing, and is scalable to real-world RMAB problem sizes.
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