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Abstract

Smoothed online combinatorial optimization considers a
learner who repeatedly chooses a combinatorial decision to
minimize an unknown changing cost function with a penalty
on switching decisions in consecutive rounds. We study
smoothed online combinatorial optimization problems when
an imperfect predictive model is available, where the model
can forecast the future cost functions with uncertainty. We
show that using predictions to plan for a finite time horizon
leads to regret dependent on the total predictive uncertainty
and an additional switching cost. This observation suggests
choosing a suitable planning window to balance between un-
certainty and switching cost, which leads to an online algo-
rithm with guarantees on the upper and lower bounds of the
cumulative regret. Empirically, our algorithm shows a signif-
icant improvement in cumulative regret compared to other
baselines in synthetic online distributed streaming problems.

Introduction
We consider the smoothed online combinatorial optimiza-
tion problem, which is an extension of online convex opti-
mization (Hazan 2019; Shalev-Shwartz et al. 2011; Zinke-
vich 2003; Hazan, Agarwal, and Kale 2007) and smoothed
online convex optimization (Lin et al. 2012a,b). In the
smoothed online combinatorial optimization problem, an
online learner is repeatedly optimizing a cost function with
unknown changing parameter. In every time step, the learner
chooses a feasible decision from a combinatorial feasible re-
gion before observing the parameter of the cost function. Af-
ter the learner chooses the decision, the learner receives (i)
the cost function parameter and the associated cost (ii) an
additional known switching cost function dependent on the
chosen decision and the previous decision. The goal of the
learner is to minimize the cumulative cost in T time steps,
including cost produced by the cost function and the switch-
ing cost.

Smoothed online combinatorial optimization is com-
monly seen in applications with online combinatorial de-
cisions and switching penalty, including ride sharing with
combinatorial driver-customer assignment (Jia, Xu, and Liu
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2017), distributed streaming system with bipartite data-to-
server assignment (Garg 2013; Thein 2014), and A-B test-
ing in advertisement (Bhat et al. 2020). All these exam-
ples incur a potential switching cost when the decisions are
changed, e.g., reassigning drivers or data to different loca-
tions or servers is costly, and changing advertisement cam-
paign requires additional human resources. The challenge
of online combinatorial decision-making and the presence
of hidden switching cost motivate the study of smoothed on-
line combinatorial optimization.

In this paper, we study the smoothed online combina-
torial optimization where an imperfect predictive model is
available. We assume that the predictive model can forecast
the future cost parameters with uncertainties, and the uncer-
tainties can evolve over time. We measure the performance
of online algorithms by dynamic regret, which assumes a
dynamic offline benchmark, i.e., the optimal performance
when the cost function parameters are given a priori and the
sequential decisions are allowed to change. The same use of
predictions and dynamic regret are also studied in receding
horizon control (Mattingley, Wang, and Boyd 2011; Cama-
cho and Alba 2013) in smoothed online convex optimization
under different assumptions on the predictions (Chen et al.
2015; Badiei, Li, and Wierman 2015; Chen et al. 2016; Li
and Li 2020; Li, Qu, and Li 2020). In our case, the chal-
lenges of bounding dynamic regret inherit from smoothed
online convex optimization, while the additional combina-
torial structure further complicates the analysis.

Main Contribution
Our main contribution is an online algorithm that plans
ahead using the imperfect predictions within a dynamic
planning window determined based on the predictive uncer-
tainty of the predictive model. We summarize our contribu-
tions as follows:

• Given imperfect predictions with uncertainties, we show
that planning based on predictions within a finite time
horizon leads to a regret bound that is a function of the
total predictive uncertainty with an additional potential
switching cost. This bound quantifies one source of re-
gret corresponding to the imperfectness of the predic-
tions, while the other source comes from the additional
switching cost (Theorem 0.5).
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• Our regret bound in finite time horizon suggests using
a dynamic planning window to optimally balance two
sources of regret coming from predictive uncertainty and
the switching cost, respectively. Iteratively selecting a
dynamic planning window to plan ahead leads to a regret
bound in infinite time horizon (Theorem 0.6).

• Specifically, when the uncertainties converge to 0 when
more data is collected, we show that the cumulative re-
gret is always sublinear (Theorem 0.7), which guaran-
tees the no-regretness of Algorithm 1. We also quan-
tify the dependency of the cumulative regret on the con-
vergence rate of the uncertainty in some special cases
(Corollary 0.8).

• Lastly, we show a lower bound on the total regret for
any randomized online algorithm when predictive uncer-
tainty is present. The order of the lower bound matches
to the order of the upper bound in some special cases,
which guarantees the tightness of our online algorithm
and the corresponding regret bounds (Corollary 0.9).

Lastly, given predictions and dynamic planning windows,
the smoothed online combinatorial optimization problem re-
duces to an offline combinatorial problem. We use an itera-
tive algorithm to find an approximate solution to the offline
problem efficiently, which largely reduces the computation
cost compared to solving the large combinatorial problem
using mixed-integer linear program.

Empirically, we evaluate our algorithm on the online dis-
tributed streaming problem motivated from Apache Kafka
with synthetic traffic. We compare our algorithm using pre-
dictions and dynamic planning windows with various base-
lines. Our algorithm using predictions outperforms baselines
without using predictions. Our experiments show an im-
provement of choosing the right dynamic planning windows
against algorithms using fixed planning window, which
demonstrates the importance of balancing uncertainty and
the switching cost. The use of iterative algorithm also largely
reduces the computation cost while keeping a comparable
performance, leading to an effective scalable online algo-
rithm that can be applied to real-world problems.

Related Work
Online convex optimization Online convex optimiza-
tion (Gemp and Mahadevan 2016; Hazan 2019; Shalev-
Shwartz et al. 2011; Zinkevich 2003) assumes the objective
function is convex and no switching cost. In online convex
optimization, static regret is most commonly used, which
assumes a static benchmark with full information but the de-
cisions over the entire time steps have to be static. Various
variants of online gradient descents (Zinkevich 2003; Hazan,
Agarwal, and Kale 2007; Hazan, Rakhlin, and Bartlett 2007;
Srebro, Sridharan, and Tewari 2011; Flaxman, Kalai, and
McMahan 2004) were proposed with bounds on the static
regret. However, the gradient-based approaches and the re-
gret bounds do not directly generalize to the combinatorial
setting due to the discreteness of the feasible region.

Smoothed online convex optimization with predictions
Smoothed online convex optimization generalizes online

convex optimization by assuming a switching cost that de-
fines the cost of moving from the previous decision to the
current one. (Andrew et al. 2013) showed that smoothed
online convex optimization can achieve the same static re-
gret bound using the algorithms in online convex optimiza-
tion without switching cost. In terms of dynamic regret, re-
ceding horizon control (Mattingley, Wang, and Boyd 2011)
was proposed to leverage the predictions of future time step
to make decision. Perfect (Lin et al. 2012b,a) and imper-
fect (Chen et al. 2015, 2016; Li and Li 2020; Li, Qu, and
Li 2020) predictions are used to bound the performance of
receding horizon control with fixed planning window size.
Separately, chasing convex bodies (Sellke 2020; Bubeck
et al. 2019, 2020; Friedman and Linial 1993) shares the same
challenge of smoothed online convex optimization but fo-
cuses on the competitive ratio.

Nonetheless, the analyses in the convex objectives and
feasible regions do not apply to the combinatorial setting.
The planning window in receding horizon control is also re-
stricted to be fixed across different time steps.

Online combinatorial optimization and metrical task
system Online combinatorial optimization assumes a dis-
crete feasible region that the learner can choose from be-
fore seeing the cost function. Existing results (Audibert,
Bubeck, and Lugosi 2014; Koolen et al. 2010) focus on
bounding dynamic regret in the case of linear objectives
without switching cost. On the other hand, metrical task sys-
tem assumes n discrete states that the learner can choose
after seeing the cost function, and there is a metrical switch-
ing cost associated to every switch. Existing results focus
on bounding competitive ratio, where the competitive ra-
tio is lower bounded by Ω( logn

log log n ) (Bartal, Bollobás, and
Mendel 2006; Bartal et al. 2003) and upper bounded by
O(log2 n) (Bubeck et al. 2021). In contrast, dynamic regret
is a stronger additive guarantee and is more challenging to
analyze.

Our work shows that analyzing dynamic regret in an arbi-
trary smoothed online combinatorial optimization problem
becomes tractable when an imperfect predictive model is
given.

Problem Statement
An instance of smoothed online combinatorial optimization
is composed of a cost function f : X × Θ → R≥0 where
x ∈ X denotes all the feasible decisions that can be taken
and θ ∈ Θ denotes all the possible unknown parameters of
the cost function, and a metric d : X × X → R≥0 that is
used to measure the distance of different decisions. At each
time step t, the learner receives a feature ξt ∈ Ξ that is corre-
lated to the unknown parameters in the future. Based on the
given feature ξt, the learner can predict the future parame-
ters and choose a feasible decision xt ∈ X without seeing
the future parameter θt. The parameter θt is revealed after
the decision is executed and the learner receives an objec-
tive cost f(xt,θt) with a switching cost d(xt−1,xt) which
measures the movement of the decisions made by time step
t and t− 1. The total cost of an online algorithm ALG up to
time T is the summation of both the objective cost and the
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Figure 1: Apache Kafka maintains a bipartite assignment xt
between k topics and m servers to prepare for processing
the streaming data. The streaming traffic θt comes later and
gets routed to the corresponding servers. A server imbalance
cost f(xt,θt) and a switching cost d(xt,xt−1) due to as-
signment change are received.

switching cost across all time steps:

costT (ALG) =
∑T

t=1
f(xt,θt) + d(xt,xt−1).

We want to compare to the offline benchmark OPT in
time T that knows all the parameters in advance, which min-
imizes the total cost defined below:

costT (OPT) = min
xt∈X ∀t

∑T

t=1
f(xt,θt) + d(xt,xt−1)

Definition 0.1. An online algorithm ALG has a dynamic
regret ρ(T ) if we have:

RegT := costT (ALG)− costT (OPT) ≤ ρ(T ) ∀T.

The goal of the learner is to design an online algorithm
with a small dynamic regret bound ρ(T ).

Example: Online Distributed Streaming Systems
One application of smoothed online combinatorial optimiza-
tion problems is the online load balancing problem in the
distributed streaming system known as Apache Kafka (Garg
2013; Thein 2014). The system is composed of k topics
of streaming data and m servers as shown in Figure 1. At
each time step t, the system maintains a bipartite assign-
ment xt between k topics and m servers so that the servers
can process the streaming data in real time. Specifically,
each topic must be assigned to exactly one server. We use
xt ∈ Xt ⊆ {0, 1}k×m with xt,i,j = 1 to denote assign-
ing the topic i to server j at time t. The learner can use the
parameters in the prior H time steps as the feature ξt that
is correlated to the unknown future parameters. After the as-
signment is chosen, a new traffic vector θt ∈ Rk arrives with
each entry representing the number of incoming messages
associated to the topic. Figure 1 illustrates how the data-to-
server assignment works. A commonly used server imbal-
ance cost is defined as makespan f(xt,θt) =

∥∥x>t θt∥∥∞,
the largest load across all servers.

Paper structure We first discuss how planning based on
predictions works and how to bound the associated dynamic
regret using predictive uncertainty. Second, we discuss two

different sources of regret, predictive uncertainty and the
number of planning windows used. We propose to use a dy-
namic planning window to balance the tradeoff with a re-
gret bound derived. Third, we propose an iterative algorithm
to solve an offline problem by decoupling the temporal de-
pendency caused by switching cost. Lastly, an application in
distributed streaming system and Apache Kafka is discussed
and used in our experiments.

Planning Using Predictions
Motivated by the use of predictions in smoothed online con-
vex optimization (Chen et al. 2016; Li and Li 2020; An-
toniadis et al. 2020), this section studies the connection of
predictions and predictive uncertainties to the dynamic re-
gret. To conduct the regret analysis below, we require the
following assumptions to hold:

Assumption 0.2. The cost function f(x, θ) is Lipschitz in
θ ∈ Θ with Lipschitz constant L, i.e., ‖∂f(x,θ)∂θ ‖ ≤ L for all
x ∈ X and θ ∈ Θ.

Assumption 0.3. The switching cost is upper bounded in
the feasible region X by B = supx,y∈X d(x,y).

Assumption 0.2 quantifies the change of the cost function
with respect to the parameter. Assumption 0.3 quantifies the
upper bound of switching cost.

Predictions with Uncertainty
Assumption 0.4. We assume there is a predictive model
that is trained based on the revealed parameters prior to
time t. At time t, the predictive model takes the feature
ξt and produces a sequence of predicted future parameters
{θ(t)s }s∈N,s≥t with uncertainty {ε(t)s }s∈N,s≥t, where the dis-
tance between the prediction θ(t)s and the true parameter θs
at time s is bounded by ‖θs − θ(t)s ‖ ≤ ε

(t)
s .

We also assume that the predictive uncertainty ε
(t)
s in-

creases in s due to the difficulty of predicting further future
parameters, while the predictive uncertainty decreases in t
due to more training data available to train the predictive
model.

Planning in Fixed Time Horizon
We first analyze the regret in fixed time horizon when we use
the predictions to plan accordingly. More precisely, at time
t, given the previous decision xt−1 at time t − 1 and the
prediction {θ(t)s }s∈N,s≥t of the future time steps, the learner
selects a planning window S ∈ N to plan for the next S time
steps by solving a minimization problem:

{xs}s∈{t,t+1,··· ,t+S−1}

= arg min
xs∈X ∀s

∑t+S−1

s=t
f(xs,θ

(t)
s ) + d(xs,xs−1). (1)

Solving the above finite time horizon optimization prob-
lem suggests a solution {xs}s∈{t,t+1,··· ,t+S−1} in the next
S time steps to execute starting from time t. This process is
summarized in Fig. 2.
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a The learner has access to the historical pa-
rameters {θs ∈ Rk}s<t. We plot each entry
of the parameter prior to time t as a time se-
ries to visualize the trend.
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b The learner predicts the future parameters
with uncertainty. Each entry of the parameter
corresponds to a time series prediction prob-
lem.
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planning window such that the total uncer-
tainty within the window is of the same order
of the switching cost.
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d Given the predictions and the planning window, the planning problem reduces to an offline combinatorial problem. We can use any combi-
natorial solver to find a solution to the offline problem. The solution is executed in the planning window.

Figure 2: This flowchart summarizes how predictions are used to derive planning decisions. Fig. 2a shows the historical data
prior to time t as multiple time series. Fig. 2b visualizes the predictions and uncertainty intervals learned from the historical
parameters. Fig. 2c demonstrates how to determine the dynamic planning window. Fig. 2d solves an offline problem and
executes accordingly.

However, since the predictions are not perfect, the sug-
gested solution might not be the true optimal solution when
the true cost function parameters are present. To compare
with the true offline optimal solution using the true cost
function parameters, we express the offline solution by:

{x′s}s∈{t,t+1,··· ,t+S−1}

= arg min
xs∈Xs ∀s

∑t+S−1

s=t
f(xs,θs) + d(xs,xs−1) (2)

The only difference between Eq. (1) and Eq. (2) is that
Eq. (2) has full access to the future cost parameters, while
Eq. (1) uses the predictions instead. We can define the dif-
ference by the following regret:

Regt+S−1t (xt−1)=

(∑t+S−1

s=t
f(xs,θs)+d(xs,xs−1)

)
−
(∑t+S−1

s=t
f(x′s,θs)+d(x′s,x

′
s−1)

)
. (3)

We have the following bound on the regret:
Theorem 0.5. Under Assumption 0.2, the regret from time
step t to t + S − 1 in Eq. 3 is upper bounded by:
Regt+S−1t (xt−1) ≤ 2L

∑t+S−1
s=t ε

(t)
s . where L is the Lip-

schitz constant in Assumption 0.2.
Theorem 0.5 links the dynamic regret with the total pre-

dictive uncertainty in finite time horizon. Notice that the
switching cost terms in Eq. (3) are misaligned. Therefore,
the proof requires not only the Lipschitzness of the objec-
tive function f but also the optimality conditions of both the
offline and online planning problems to bound the total cu-
mulative regret.

Algorithm 1: Dynamic Future Planning
Input: Total time steps T . Maximal switching cost B. A
predictive model that can produce predictions {θ(t)t+s}s∈N at
time t.

1: Initialization t = 1, # of planning windows I = 0
2: while t ≤ T do
3: Get predictions {θ(t)s }s∈N,s≥t and predictive uncer-

tainty {ε(t)s }s∈N,s≥t from the model.
4: Find the largest S s.t. 2L

∑t+S−1
s=t ε

(t)
s ≤ B.

5: Solve the optimization problem in Eq. (1) with
starting time t and planning window S to get
{xs}s∈{t,t+1,··· ,t+S−1}.

6: Execute xs and receive θs with cost f(xs,θs) +
d(xs,xs−1) at time s ∈ {t, · · · , t+ S − 1}.

7: Set t = t+ S, I = I + 1.
8: end while

Infinite Time Horizon and Dynamic Planning
Window
In the inifinite time horizon problem, the main idea is to re-
duce the problem to multiple finite time horizon problems
with different planning window sizes.

Recall that the predictive uncertainty often increases
when we try to predict the parameters in the far future, i.e.,
ε
(t)
s is increasing in s. Since the regret in Theorem 0.5 di-

rectly relates to the predictive uncertainty in the planning
window, it suggests keeping the planning window small to
reduce the regret.
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On the other hand, Theorem 0.5 assumes an identical ini-
tial decision xt−1 in the online problem (Eq. (1)) and of-
fline problem (Eq. (2)). In the infinite time horizon case, two
algorithms may start from different initial decisions, which
may create an additional regret upper bounded by the max-
imum switching cost B due to the misalignment of the ini-
tial decision. This observation suggests using larger plan-
ning windows to avoid changing between different planning
windows.

Therefore, we propose to balance two sources of regret by
choosing the largest planning window S such that:

2L
∑t+S−1

s=t
ε(t)s ≤ B (4)

The choice of the dynamic planning window can ensure that
the total excessive predictive uncertainty is upper bounded
by cost B, while we also plan as far as possible to reduce
the number of planning windows incurred during switching
between different finite time horizons. The algorithm is de-
scribed in Algorithm 1.

Theorem 0.6. Given Lipschitzness L in Assumption 0.2
and the maximal switching cost B in Assumption 0.3, in
T time steps, Algorithm 1 achieves cumulative regret upper
bounded by 2BI , where I is the total number of planning
windows used in Algorithm 1.

Proof sketch. The regret of our algorithm comes from two
parts: (i) regret from the discrepancy of the initial decision
xt−1 and the initial decision of the offline optimal x∗t−1 at
time t, the start of every planning window, and (ii) the incor-
rect predictions used in the optimization, which is bounded
by Theorem 0.5.

The regret in part (i) is bounded by d(xt−1,x
∗
t−1) ≤ B

for every planning window because it would take at most the
maximal switching cost B to align different initial decisions
before we can compare. Thus the total regret in part (i) is
bounded byBI , where I is the number of planning windows
executed in Algorithm 1.

The regret in part (ii) is bounded by Theorem 0.5 and the
choice of the dynamic planning window in Eq. (4). We have
Regt+S−1t (x∗t−1) ≤ 2L

∑t+Si−1
s=t ε

(t)
s ≤ B for the i-th win-

dow. We can take summation over all planning windows to
bound the total regret in part (ii) by:

∑I
i=1B = BI. where

combining two bounds concludes the proof.

Theorem 0.6 links the excessive dynamic regret to I , the
number of planning windows that Algorithm 1 uses. The
next step is to bound the number of planning windows I by
the total time steps T . In Theorem 0.7, we first show that the
cumulative regret is always sublinear in T when the predic-
tive uncertainty converges to 0 when more data is collected.

Theorem 0.7. Under Assumption 0.2 and 0.3, if ε(t)t+s−1 =

o(1) in t for all s ∈ N, i.e., ε(t)t+s−1 → 0 when t → ∞, then
the cumulative regret of Algorithm 1 is sublinear in T .

Proof. When the predictive uncertainty ε(t)s → 0 when t →
∞, the window size St that satisfies 2L

∑t+Si−1
s=t ε

(t)
s ≤ B

at time t converges to ∞ when t → ∞. This suggests that

the number of windows I required in total number of time
steps T is strictly smaller than Θ(T ), i.e., I = o(T ). By
Theorem 0.6, the cumulative regret is upper bounded by
2BI = o(T ), which is sublinear in T .

Theorem 0.7 guarantees that the cumulative regret of Al-
gorithm 1 in Theorem 0.6 is sublinear when the uncertainty
converges to 0. This establishes the no-regretness of Algo-
rithm 1 in dynamic regret, which is only known to be pos-
sible in the smoothed online convex optimization but not
known in the smoothed online combinatorial optimization.

In some special cases of the predictive uncertainty, we can
further provide a more precise bound on the cumulative re-
gret in the following corollary.

Corollary 0.8. If the uncertainty satisfies ε(t)t+s−1 = O( s
a

tb
),

∀s, t ∈ N with a, b ∈ R≥0, we have:

RegT ≤


O(T 1− b

a+1 ) if b < a+ 1

O(log T ) if b = a+ 1

O(log log T ) if b > a+ 1

.

Corollary 0.8 is proved by providing a more concrete
bound on the number of planning windows I in Theo-
rem 0.6. Corollary 0.8 also quantifies the dependency of the
cumulative regret on the convergence rate of predictive un-
certainty. When b > 0, the cumulative regret is always sub-
linear, which matches our result in Theorem 0.7.

Lower Bound on The Cumulative Regret
In this section, we provide a lower bound on the expected
cumulative regret, showing that no randomized algorithm
can achieve an expected cumulative regret lower than a term
similar to the upper bound.

Corollary 0.9. Given ε(t)t+s−1 = Ω( s
a

tb
) for all t, s ∈ N with

0 ≤ b, there exist instances such that for any randomized
algorithm, the expected regret is at least:

E[RegT ] ≥


Ω(T 1−b) if b < 1

Ω(log T ) if b = 1

Ω(1) if b > 1

.

The lower bound suggests that there is no online learning
algorithm that can achieve a cumulative regret that is smaller
than the regret in Corollary 0.9. Specifically, we can see that
the lower bound matches to the upper bound up to a loga-
rithm factor when a = 0, which guarantees the tightness of
our upper bound in Corollary 0.8 and Theorem 0.6 in the
case of a = 0.

Extension to Probabilistic Bounds
In this paper, we primarily focus on the deterministic un-
certainty bounds of the predictive model. The same analy-
ses in Section also generalize to probabilistic bounds of the
predictive model that hold with high probability, e.g., with
probability 1 − δi for each prediction in the i-th planning
window with size Si. This kind of probabilistic bounds is
commonly seen in the literature of probably approximately
correct (PAC) learning, where the predictive error bound can

12134



be bounded by the number of training samples used in fitting
the underlying hypothesis class. In this case, the regret anal-
ysis in Theorem 0.5 needs to additionally consider the event
when the uncertainty bounds do not hold, which leads to an
additional regret term with order O(Siδi) in Theorem 0.5,
leading to a linear term

∑I
i=1 Siδi in Theorem 0.6.

Fortunately, we can also select a decreasing failure prob-
ability δi in the later planning windows when more samples
are collected. As long as we can guarantee that the choice of
uncertainty bound ε(t)s and the failure probability δi at time t
converge to 0 when more samples are collected, we can ob-
tain a similar result as Theorem 0.7 showing the cumulative
regret bound is sublinear in T . This generalizes our results
of deterministic bounds to probabilistic bounds.

Experiment Setup
In our experiment, we use the distributed streaming system
problems with synthetic data to compare our algorithm with
other baselines.

Cost function and switching cost In the distributed
streaming system, the learner maintains a bipartite assign-
ment xt ∈ Xt ⊆ {0, 1}k×m between k topics and m servers
at time step t to process the streaming data, where xt,i,j = 1
denotes that topic i is assigned to server j at time t to pro-
cess the incoming traffic. Once the decision xt is chosen at
time t, a traffic vector θt ∈ Θ ⊆ Rk is revealed.

Given traffic θt and the chosen assignment xt, we define
the cost function by f(xt,θt) = ‖x>t θt‖∞ as the resulting
server imbalance cost, which is also known as makespan,
i.e., the maximal number of messages a server needs to
process across all servers. Minimizing makespan is a well-
studied strongly NP-complete problem (Garey and Johnson
1979) with various approximation algorithms (Hochbaum
and Shmoys 1987; Leung 1989). Additionally, we define the
switching cost by d(x,y) := 1>k |x− y|u, where |x− y| ∈
Rk×m≥0 represents the number of switches of each pair of
topic and server, and each entry of u ∈ Rm denotes the unit
switching cost associated to the corresponding server, which
is randomly drawn from a uniform distribution U [0, 2].

Data generation We assume that there are k = 10 top-
ics to be assigned to m = 3 servers. We generate k time
series, where each represents the trend of incoming traffic
{θt,i}t∈[T ] of topic i ∈ [k] as the cost function parame-
ter. Each time series is generated by a composition of sine
waves, an autoregressive process, and a Gaussian process to
model the seasonality, trend, and the random process. We
use sine waves with periods of 24 and 2 with amplitudes
drawn from U [1, 2] and U [0.5, 1] to model the daily and
hourly changes. We use an autoregressive process AR(1)
that takes the weighted sum of 0.9 of the previous signal
and a 0.1 of a white noise to generate the next signal. Lastly,
we use a rational quadratic kernel as the Gaussian process
kernel.

Predictive model At time step t, to predict the incoming
traffic θs ∈ Θ ⊆ Rk for all s ≥ t, we collect all the histori-
cal data {θs′}s′<t prior to time t and apply Gaussian process

regression using the same rational quadratic kernel on the
historical data to generate predictions {θ(t)s }s≥t of the fu-
ture time steps. We use the standard deviation learned from
Gaussian process regression as the uncertainty {ε(t)s }s≥t.
Experimental setup For each instance of the load balanc-
ing problem, we assume 50 historical data have been col-
lected a priori to stabilize Gaussian process regression. We
run different online algorithms for another 100 time steps
with hidden incoming traffic to measure the performance of
online algorithms. For each setup, we run 10 independent
trials with different random seeds to estimate the average
performance. All the results are plotted with average value
and the corresponding standard deviation.

Experimental Results
We compare with our algorithm with baselines in the litera-
ture of online convex optimization:
• The static approach uses the initial assignment and never

adjusts dynamically.
• The Online Gradient Descent (OGD) updates the assign-

ment by running gradient descent on the cost function
received previously and project back to the discrete fea-
sible region.

• The Follow-The-Leader (FTL) aggregates all the cost
functions received in the past and finds the optimal de-
cision that optimizes the historical cost functions with
switching cost.

• The Follow-The-Previous (FTP) optimizes the cost func-
tion in the last time step.

• The short-term algorithm and the long-term algorithm
both use predictions but with deterministic planning win-
dow sizes 1 and 10, respectively.

• The dynamic algorithm refers to our algorithm using a
dynamic planning window determined by the predictive
uncertainty.

All the algorithms compare with an offline benchmark
with full information. Since the offline problem is NP-hard
to solve, we split the offline problem into chunks of size 5
and solve each of them optimally using mixed integer pro-
gram to get the offline performance.

Effect of predictions In Fig. 3, we compare the per-
formance of baselines (static, OGD, FTL, FTP) with ap-
proaches using predictions with different planning window
sizes (short-term, long-term, dynamic). We first notice that
OGD and FTL perform worse than FTP, which simply fol-
lows the previous cost function to update solution. Due to
the smoothness of the cost function parameters, optimizing
over the previous cost function can be a strong baseline.

Secondly, the methods using predictions further improve
the solution quality. Using predictions can help leverage the
seasonality and trend information, and leave the uncertainty
to the planning part. On the other hand, the OGD and the
FTL algorithms are designed to deal with the case without
predictable pattern and switching cost. The different pur-
poses of algorithm design make our algorithm more appli-
cable to our problem.
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Figure 3: We compare the performance of our approaches with various baselines without using predictions. The first takeaway
is that methods using predictions largely outperform the methods without using predictions in Fig. 3a. Secondly, choosing the
right planning window can achieve a better imbalance cost in Fig. 3b with a small increase in the amount of switching cost in
Fig. 3c. All the algorithms are compared with an offline benchmark with full information. The shaded area refers to the region
within first standard deviation.
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Figure 4: Comparison of different methods of solving Eq. (1)
and different planning window sizes.

Lastly, in Fig. 3a, we can see that the dynamic algo-
rithm achieves the smallest cumulative regret compared to
the short-term algorithm and the long-term algorithm using
planning window with size 1 and 10, respectively. Fig. 3b
and Fig. 3c further compare different performance metrics.
We can see that our approach of choosing proper planning
window can achieve much smaller server imbalance perfor-
mance while requiring slightly more switching cost only.
Methods considering less future effect (FTL, FTP, short-
term) can be reluctant to switch and underestimate the bene-
fit of switching, which results in a smaller switching cost but
larger imbalance cost. In contrast, the long-term algorithm
using larger planning window instead can be harmed by the
increasing predictive uncertainty, which leads to incorrect
planning decision due to the uncertainty. This result justifies
the benefit of predictions and the right planning window to
balance between uncertainty and the switching cost.

Effect of planning window size In Fig. 4a, we compare
the performance of different choices of planning window
size and different ways of solving the offline problem in
Eq. (1). First, if we use mixed integer program (MIP), we
can see a clear improvement by using a larger planning
window and a slightly degraded performance after window

size exceeds 3. This empirical result matches to our analy-
sis of shorter and longer planning windows, where the dy-
namic planning window suggests a planning window with
size around 3. We also compare with an iterative algorithm
(Algorithm 2 in Appendix ) that is used to approximately
solve the NP-hard offline problem in Eq. (1). The effect of
planning window size is less significant due to the subopti-
mality of the iterative algorithm. But we can still see a simi-
lar benefit while using an appropriate planning window size.

Fig. 4b compares the runtime of solving Eq. (1) using
different approaches and planning window sizes. Runtime
of solving the optimization problem is important because
decisions have to be made in real time. We can see that
MIP requires an exponentially increasing runtime because
the combinatorial structure and the linearly increasing num-
ber of binary variables when the window size grows. On
the other hand, the iterative algorithm solves the problem
approximately and more efficiently. In short, the MIP algo-
rithm achieves the best performance but with an expensive
computation, while the iterative algorithm scales better but
with a loss in the solution quality.

Conclusion
This paper studies the smoothed online combinatorial opti-
mization problem with switching cost. We show that when
predictions with uncertainty are available, we can bound the
dynamic regret by the convergence of the predictive uncer-
tainty, which links the bound on dynamic regret to the pre-
dictability of the incoming cost function parameters. Our
analysis suggests using a dynamic planning window depen-
dent on the sequence of predictive uncertainties. Our dy-
namic planning window can optimize the regret, where we
empirically show in our experiments that using a predictive
model and an appropriate planning window can further im-
prove the performance.
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