
Automated Verification of Social Laws in Numeric Settings

Ronen Nir1, Alexander Shleyfman2, Erez Karpas1

1 Technion – Israel Institute of Technology
2 Bar-Ilan University

ronen.nx@gmail.com, alexash@biu.ac.il, karpase@technion.ac.il

Abstract

It is possible for agents operating in a shared environment
to interfere with one another. One mechanism of coordina-
tion is called Social Law. Enacting such a law in a multi-
agent setting restricts agents’ behaviors. Robustness, in this
case, ensures that the agents do not harmfully interfere with
each other and that each agent achieves its goals regardless
of what other agents do. Previous work on social law ver-
ification examined only the case of boolean state variables.
However, many real-world problems require reasoning with
numeric variables. Moreover, numeric fluents allow a more
compact representation of multiple planning problems.
In this paper, we develop a method to verify whether a given
social law is robust via compilation to numeric planning. A
solution to this compilation constitutes a counterexample to
the robustness of the problem, i.e., evidence of cross-agent
conflict. Thus, the social law is robust if and only if the pro-
posed compilation is unsolvable. We empirically verify ro-
bustness in multiple domains using state-of-the-art numeric
planners. Additionally, this compilation raises a challenge by
generating a set of non-trivial numeric domains where un-
solvability should be either proved or disproved.

Introduction
During the past decade, the coordination of autonomous
agents in shared environments has been one of the main
challenges facing the AI community. Agents in this setting
have a set of actions and goals they strive to achieve. Even
with a single agent, planning or learning in such an environ-
ment is challenging. Managing interactions between mul-
tiple agents present an additional challenge, as the actions
of one agent can negatively affect those of another. If coor-
dination or communication is impossible, each agent must
produce a contingent plan, which considers all detrimen-
tal courses of action of all other agents. This is not always
possible, not only because computations do not scale, but
also because even in the most basic settings, agents need to
trust each other to behave reasonably. Imagine a pedestrian
stopped at a red light at a crossroad; they still assume that
cars will not drive on the sidewalk, even though they can.

Multiple approaches have been proposed to avoid destruc-
tive collisions between two or more agents. One may try

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to solve the coordination problem via centralized methods
(e.g., Brafman and Domshlak 2008; Nissim, Brafman, and
Domshlak 2010). This approach, unfortunately, has a major
drawback – it produces a single plan for each agent, denying
them the choice of plan, thus preventing adaptive behavior.
This approach also requires the agents to trust and commu-
nicate with the central planner, which is often infeasible.

The social law (SL) paradigm aims at mitigating these
drawbacks (Tennenholtz and Moses 1989). An SL is a set
of restrictions imposed on a multi-agent system to prevent
agents’ undesirable behavior. Karpas et al. (2017) defined
the concept of SL in the MA-STRIPS environment. An SL is
robust if it allows agents to plan, act and achieve their goals
without conflicts and without considering other agents’ ac-
tions in the environment. Karpas proposed an algorithm that
verifies whether an SL, given in a classical planning multi-
agent environment with binary variables, is robust.

While classical multi-agent planning is quite popular, it
falls short of faithfully representing real-world problems.
Consider, for example, a robotic factory where planning in-
volves reasoning about timing and numbers, which requires
more expressive formalisms, such as temporal and numeric
planning, respectively. Nir and Karpas (2019) partially ad-
dressed this by proposing an SL verification method for tem-
poral planning. As in the classical case, they compiled the
verification problem into a temporal planning problem.

Following this trail, we propose a method for solving the
SL verification problem in the setting of simple numeric
planning. Unsurprisingly, we do it via a compilation into a
simple numeric planning problem. The proposed compila-
tion constructs a counterexample to the robustness of a given
SL. Thus to verify that the SL is indeed robust we need
to prove that the numeric planning problem is unsolvable,
which can be challenging, as numeric planning is undecid-
able even in the simplest constellations (Helmert 2002).

Nevertheless, although it is impossible to prove that an
SL is robust in the numeric setting in the general case, our
experimental evaluation shows that when the SL is not ro-
bust, state of the art numerical planners manage to find a
counterexample rather quickly and that there are numeric
domains where the existence of SL can be verified. Further-
more, there are several problems where we can manually
prove that a social law is robust, yet numerical planners can
not prove this as these problems have an infinite number of

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12087

reachable states. Proving unsolvability in such cases is an
interesting challenge to the numerical planning community.

Another advantage of numerical SLs is their compactness.
We demonstrate how numeric settings can yield exponen-
tially more compact SLs than ones obtained using only clas-
sical representations. Finally, this paper brings us closer to
designing SL in complex, meaningful environments.

Preliminaries
Numeric planning extends the definition of a classical plan-
ning problem by introducing problems that involve proposi-
tional facts, P , and numeric variables, V . A state in numeric
planning can be represented by s = ⟨sp, sn⟩ where sp ⊆ P
is a subset of propositions that are true in s and sn is a nu-
meric assignment for each numeric variable in V . In this
paper, we consider simple numeric planning (SNP), given by
the formalism of Numeric Restricted Tasks (RT), that was in-
troduced by Hoffmann 2003a. In this formalism, a numeric
condition ψ is given in the form ψ : v ≥ w0 with v ∈ V and
w0 ∈ Q, the value of v in s is denoted by s[v] and, s |= ψ
if s[v] ≥ w0. The propositional conditions in this setting are
the same as the ones used in classical STRIPS, i.e., a propo-
sitional condition ψ is a subset of P , and s |= ψ iff ψ ⊆ sp.
For a set Ψ we say that s |= Ψ if s |= ψ for each ψ ∈ Ψ.

An RT is given by the 5-tuple Π = ⟨P, V,A, s0, G⟩, where
P is a set of propositional variables, V is the set of nu-
meric variables, A is the set of available actions, I is the
initial state which consists of sp0 ⊆ P propositions and,
sn0 is a full assignment on the numeric variables in V , and
G = Gp∪Gn is the goal conditions which also have a propo-
sitional and a numeric part. Each action a ∈ A is described
by a = ⟨prep(a), pren(a), add(a), del(a), num(a)⟩, where
prep(a), add(a), del(a) ⊆ P are the propositional parts of
the action, as in STRIPS (Fikes and Nilsson 1971), pren(a) is
a set of numeric conditions, and num(a) is a set of numeric
effects of the form v += kv , where v ∈ V and kv ∈ Q. We
assume that each action affects each numeric variable in V
at most once and in a meaningful way, i.e., there is at most
one numeric effect for each v ∈ V , and kv ̸= 0.

An action a is said to be applicable in state s if s |=
pren(a) ∪ prep(a). The resulting state, denoted by sJaK, is
given by sJaKp := (sp\del(a))∪add(a) for its propositional
part, and sJaK[v] = s[v]+kv for all v += kv ∈ num(a), for
all v ∈ V that are unaffected by a we have sJaK[v] = s[v].

We say that s∗ is a goal state if s∗ |= G. A sequence of
consecutively applicable actions π = ⟨a1, . . . , am⟩ leading
from the initial state s0 to a goal state s∗ is called a plan.

Despite its perceived lack of expressive power, RT
can account for linear numeric conditions of the form∑
v∈V wvv ▷◁ w0, where wv, w0 ∈ Q and ▷◁ ∈ {<,≤,=

,≥, >}. Due to the space constraint, we omit here the com-
pilation that replaces each linear formula with a single vari-
able (cf. Hoffmann 2003a). We also note that all effects in
RT add a finite set of constants, and each condition of the
form v > w0 can be replaced with v ≥ w0 + ε.

The multi-agent planning setting (MAP) considers
multiple non-collaborative, non-communicating agents. In
this work, we further modify the MA-STRIPS formal-

ism (Brafman and Domshlak 2008) with individual agent
goals (Karpas, Shleyfman, and Tennenholtz 2017).

A MAP setting is defined by a tuple Π =
⟨P, {Ai}ni=1, s0, {Gi}ni=1⟩. Here n ∈ N represents the
number of agents. Each agent i has an individual set of ac-
tions Ai, and an individual goal condition Gi. In everything
else, MAP repeats, the standard STRIPS formalism. Each
agent aims to construct and execute a plan that leads from
the initial state to its goal state. The single-agent plans in the
MAP context are named individual plans. The immediate
problem in this setting is that the individual plans of the
agents can contradict each other. Consider, for example,
two agents that need to use the same unique tool for their
tasks: say that the first agent took the tool and did not return
it to the toolbox after completing its mission. This prevents
the second agent from completing its task. To mitigate such
conflicts, Karpas et al. introduced the notion of SL, a set of
restrictions imposed on agents to promote coordination.

According to Karpas et al., an SL l is a modification of a
MAP setting Π, resulting in a MAP setting Πl. This mod-
ification may include, for example, removing a set of ac-
tions (Nir and Karpas 2019) or adding some auxiliary facts
that manage the agents by clever bookkeeping (Tuisov and
Karpas 2020). In addition, SLs can impose more complex
restrictions based on the wait-for mechanism. This mecha-
nism forces an agent to stay inactive rather than execute its
next action until some condition ψ is met. Thus, it is possible
to mark a certain fact p ∈ P as a wait-for precondition for
action a to be denoted as p ∈ prew(a). In many cases, given
an SL, one needs to check its robustness, i.e., if it prevents
the possibility for a conflict between the agents, whatever
the plans the agents choose to execute.

In the following section, we further describe the problem
of SL robustness verification in the multi-agent simple nu-
meric setting by giving a formal description of the system,
the model of execution, and the possible conflicts.

Problem Statement
Multi-Agent Simple Numeric Planning. Following Braf-
man and Domshlak (2008), we extend simple numeric plan-
ning to the multi-agent setting (MA-SNP) by including in-
dividual action sets and goal specifications for each agent.
The set of n agents is by denoted [n] := {1, . . . , n}. The
multi-agent restricted task (MART) then is given by the tu-
ple Π = ⟨P, V, s0, {Ai}ni=1, {Gi}ni=1⟩ where: P, V, s0 stay
the same, representing the facts, numeric variables, and ini-
tial state, Ai represents the actions available to agent i ∈ [n]
and, correspondingly,Gi represents the goal specification of
agent i. The individual projection of Π on agent i, given by
Π = ⟨P, V, s0, Ai, Gi⟩, is an RT.
Execution Model. Our execution model involves n agents
acting in the same environment. Each agent is ready to per-
form their next pending action according to their own prede-
fined individual plans. The decision on which agent will act
is arbitrary while respecting wait-for conditions. A joint exe-
cution is successful if every agent completes its plan without
conflict and the final state meets its goal.

More formally, let πjnt = {πi}ni=1 be the set of indi-
vidual plans for the n agents. A sequence of actions r =

12088

⟨a1, . . . am⟩, which is an interleaving derived from πjnt is a
joint execution if the following holds: (1) all actions in the
sequence except for, maybe, the last one are consecutively
applicable, i.e.,

∀j ∈ [m− 1] : sj−1 |= pre(aj) ∧ sj := sj−1JajK;

and (2) sm−1 |= prew(am), i.e., the wait-for preconditions
of the last action should be respected, while the action still
can be inapplicable. This implies that all states along a joint
execution respect the wait-for preconditions of the executed
actions.

The joint execution can stop due to four possible reasons:
0. Successful Termination – all agents have executed their

plans, and the last state is the goal state for each agent. In
this case, we say that the execution was successful.

1. Failure at Termination – the same as before, but here
at least one of the agents’ goals is not achieved in the
termination state.

2. Action Conflict – the agent tries to execute an action
with non-wait-for preconditions that does not hold.

3. Deadlock – the wait-for conditions of all existing pend-
ing actions are not satisfied in the current state, i.e., one
(or more) of the agents is waiting indefinitely for a con-
dition that will never hold. Deadlock is a failure, even if
the agent is in its goal state at the end of the execution.

Using this observation, we define the set of all joint exe-
cutions of a task Π, denoted by Rjnt(Π), as a subset of joint
executions, where no execution is a prefix of another, longer
execution. This is the same as saying that an execution is
concluded due to one of the reasons listed above. The set
Rjnt

∗ (Π) ⊆ Rjnt(Π) denotes all successful executions.
Definition 1. Let Π be a MAP. We say that Π has a robust
SL if Rjnt

∗ (Π) ̸= ∅ and Rjnt
∗ (Π) = Rjnt(Π).

Here, the condition Rjnt
∗ (Π) ̸= ∅ implies that there is at

least one successful joint execution, and thus all agents has
at least one individual plan, and Rjnt

∗ (Π) = Rjnt(Π) implies
that any joint executions terminate successfully. We omit Π
for brevity when it is clear from the context.

Social Law Verification
In this section, we present our compilation for verifying
the robustness of an SL in a MART setting. This compila-
tion builds on a similar compilation for the classical setting
(Karpas, Shleyfman, and Tennenholtz 2017), with two con-
tributions: (1) this compilation can handle numerical vari-
ables, and (2) this compilation fixes a mistake in the way the
original compilation handled wait-for preconditions.

More specifically, to verify the robustness of the SL in the
multi-agent setting Π, we construct a (single agent) numeric
planning problem Π̃ = ⟨P̃ , Ṽ , Ã, s̃0, G̃⟩) such that its plan π̃
constitutes a counterexample, i.e., it corresponds to a failed
joint execution of the individual plans {πi}ni=1 of the agents
in Π. Following is an overview of how we design Π̃ to find
an invalid joint plan execution.

As mentioned earlier, there are several possible reasons
why a joint plan execution may fail: 1. failure at termination,

2. action conflict, or 3. deadlock. The goal of our compila-
tion is to find a set of individual plans {πi}ni=1 that results in
a failed joint execution; thus, it has to simultaneously keep
track of n+ 1 copies of the original state: n local copies for
each agent i ∈ [n] where each state i reflects the state of the
system in the case that agent i acted alone, and a global copy
(denoted by g) that captures the overall state of the system,
taking into account all the actions taken by the agents. Π̃ has
a special flag for reporting failures in execution. This flag is
included in Π̃’s goal specification, and it is raised only when
the invalid execution conditions are met.

The proposed compilation also creates multiple copies of
each action, which can be divided into four types: (a) suc-
cessful version of ai that changes both the local copy of
agent i and the global copy g; (b) ai fails to meet its non-
wait-for precondition; (c) executing ai deadlocks the agent
due to an unmet propositional/numeric wait-for condition
which will never hold; (d) the agent i changes only its local
copy. Type (d) actions can only be executed when a deadlock
or action conflict has occurred.

Facts, Initial State and Goal. We start with compila-
tion’s fact and numeric variables sets, P̃ and Ṽ . The compi-
lation tracks n+1 state copies: n copies to track the state of
the environment as if the agent has acted alone with the local
variables pi and vi, for i ∈ [n], and one global copy that cor-
responds to the states of the original MA-STRIPS task, where
all agents’ actions are taken into account. The global copy
is represented via variables pg and vg . We denote by Pi the
set of atoms corresponding to copy i ∈ [n] ∪ {g}, and use
a similar notation Vi for the numeric variables. A restriction
to a copy i ∈ [n] ∪ {g}, reduces the atoms P̃ to Pi, and the
variables Ṽ to Vi. This will become handy in the following.

We define the following sets of atoms to account for the
wait-for preconditions. Every agent i ∈ [n] has a flag wti
indicating it is currently waiting for some precondition to
hold. In this compilation, the agent waits for something to
hold indefinitely; thus, no action can delete wti. For every
f ∈ P that is a wait-for precondition of some action ai, there
is a flag wtf that indicates an agent is waiting for an atom f .
Similarly, v ≥ w0 is a wait-for precondition for wtv≥w0 that
indicates an agent is waiting for v ≥ w0. Thus, the number
of waiting flags is the same as the size of all numeric and
atomic conditions in Π. The waiting atoms are

Wt := {wti, wtψ | ψ ∈ prew(ai), a ∈ Ai, i ∈ [n]},
where ψ can be either atomic ψ : p, or numeric ψ : v ≥ w0.
Lastly, we introduce a set of atoms needed to finalize the
task: Finding a set of individual plans, each is applicable
separately, but when carried out in a particular order, it
poses a conflict. The flag act indicates that the agents are
still executing their actions. By construction, act can be re-
moved only after the agents execute their individual plans
and achieve their local projection goal.

The compilation finds a failing joint execution (which
consists of n valid individual plans). Thus, we include the
atom fail in G̃ to represent an occurrence of some failure
in the execution. Once an action conflict has occurred, the
system enters a dead-end state. Thus, we add the flag cf to

12089

mark this situation and act accordingly. To ensure the valid-
ity of the individual plans, every agent i ∈ [n] has a final-
ization atom fini in the goal specification, fini ∈ G̃. fini
indicates that the agent has finished acting and its individual
plan is valid. The set of auxiliary atoms is denoted by:

Bk := {act, fail, cf} ∪ {fini | i ∈ [n]}.
Thus, the sets of atoms and numeric variables of Π̃ are

P̃ =Wt ∪Bk ∪
⋃

i∈[n]∪{g}

Pi , and Ṽ =
⋃

i∈[n]∪{g}

Vi.

After describing the compilation’s facts and variables, we
can define its initial state and goal description. We set all
n + 1 copies of the initial state to represent the initial state
of the original task and add the act atom, i.e.,

s̃p0 = {act} ∪ {pi | p ∈ sp0, i ∈ [n] ∪ {g}}
s̃n0 = {s̃0[vi] := s0[v] | i ∈ [n] ∪ {g}}.

We also set the goal to be G̃ = {fail} ∪ {fini | i ∈ [n]}.

Actions. This subsection is dedicated to describing the ac-
tions of the proposed compilation. In the proposed compi-
lation, we distinguish between four possible action versions
for each original action a ∈

⋃
i∈[n]Ai: (1) action is appli-

cable; (2) action is not applicable; (3) the agent goes into a
deadlock – a phase of forever waiting; (4) a deadlock exists,
or an action conflict has occurred.

For a condition ψ ∈ pre(a), we denote its corresponding
copy as ψi, for i ∈ [n] ∪ {g}. Here if ψ : p is an atom
its i’s copy is defined as ψi : pi, similarly, if ψ : v ≥ w0

we have that ψi : vi ≥ w0. Moreover, for each v ∈ V we
define the set of its constants to be Wv := {w0 | v ≥ w0 ∈⋃
i∈[n]

(
Gi ∪

⋃
a∈Ai

pren(ai)
)
}.

Start with the successful version (asi) of an action ai. It
represents the successful execution of ai; thus, it changes
both the individual copy of agent i ∈ [n] and the global
copy, marked g. This action copy is only applicable if: (a)
the preconditions of ai are satisfied in both the local and the
global parts of the state; (b) agent i is not in a deadlock; (c)
there was no actions conflict; and (d) it does not satisfy any
condition ψ flagged by some agent in deadlock to be forever
false. An important point required for dealing with numeri-
cal variables (but not propositional ones) is that when some
other agent is waiting for a numerical condition v ≥ w0

(which corresponds to wtv≥w0 being true in the compila-
tion), then it is forbidden for asi to increase the value of v
past w0, but it is allowed for asi to increase v to some value
lower than w0. Thus, the last line of the precondition en-
codes a conditional statement that checks whether the value
of v will increase past w0 after the effects of ai occur.

pre(asi) = act ∧ ¬wti ∧ ¬cf∧∧
ψ∈pre(a)

(ψi ∧ ψg) ∧
∧

p∈add(a)

¬wtp∧

∧
v+=kv
∈num(a)

∧
w0∈Wv

(¬wtv≥w0 ∨ (v < w0 − kv));

add(asi) = {pi, pg | p ∈ add(a)};
del(asi) = {pi, pg | p ∈ del(a)};

num(asi) = {vi += k, vg += k | v += kv ∈ num(a)}.

Here we note that the grounding of these actions heavily de-
pends on how many numerical effects they have and, due
to logical operator ∨ in its preconditions, may result in an
exponential number of “grounded actions”.

The actions of the type afi are the actions that represent
action conflict, i.e., action a was executed when one of its
non-wait-for preconditions ψ ∈ (prew(a))c := pre(a) \
prew(a) is not satisfied by the state it was applied in. afi is
only applicable if: (a) the wait-for preconditions of ai are
satisfied in both the local state and the global state; (b) there
was no action conflict yet; (c) all other conditions of ai are
satisfied in the local state (ensuring the individual plan is
valid); however, there is a propositional precondition not sat-
isfied in the global state; and (d) Agent i is not waiting for-
ever (in deadlock). afi represents an invalid action, and as
such, it raises both fail ∧ cf flags and affects only the local
copy of the agent i, leaving the global copy g unchanged.

pre(afi) = act ∧ ¬wti ∧ ¬cf∧∧
ψ∈pre(a)

ψi ∧
∧

ψ∈prew(a)

ψg ∧
∨

ψ∈(prew(a))c

¬ψg;

add(afi) = {fail, cf} ∪ {pi | p ∈ add(a)};
del(afi) = {pi | p ∈ del(a)};

num(afi) = {vi += k | v += kv ∈ num(a)}.

The action awt
φ

i indicates that agent i ∈ [n] has en-
tered a deadlock, permanently waiting for a condition φ ∈
prewp (ai) to execute action ai. This action is only applicable
if: (a) there is φ ∈ prew(a) that is not satisfied in the global
copy; (b) all preconditions are satisfied in the local copy i;
(c) an action conflict has not already occurred; and (d) agent
i is not already in a permanent waiting state. awt

φ

i indicates
that the agent is entering a deadlock; thus, it affects only the
local state, leaving the global state unchanged. The rest of
the actions of agent i do not affect the global copy. Raising
the fail flags andwti a potential deadlock. Since the compi-
lation forbids making the condition φ true if someone waits
for it, the existence of local plans for all agents indicates a
deadlock in the joint plan execution.

pre(awt
φ

i) = act ∧ ¬wti ∧ ¬cf ∧ ¬φg ∧
∧

ψ∈pre(a)

ψi;

add(awt
φ

i) = {wtφ, fail, wti} ∪ {pi | p ∈ add(a)};
del(awt

φ

i) = {pi | p ∈ del(a)};
num(awt

φ

i) = {vi += k += kv ∈ num(a)}.

The action ali is the version of ai applicable after agent i ∈
[n] has entered a deadlock or an action conflict has occurred.
Actions of this type affect only the local copy of the agent,

12090

ensuring that the rest of its individual plan is valid.

pre(ali) = act ∧ (wti ∨ cf) ∧
∧

ψ∈pre(a)

ψi;

add(ali) = {pi | p ∈ add(a)};
del(ali) = {pi | p ∈ del(a)};

num(ali) = {vi += kv ∈ num(a)}.

In total, there are four versions of actions for each orig-
inal action a ∈ A: (1) a successful action version; (2) an
inapplicable action version; (3) a deadlock action version,
and, finally, (4) a local action version that keeps track of the
agent’s activity on its local variables. The rest of the compi-
lation’s actions are for bookkeeping purposes, ensuring that
all agents have completed their valid individual plans.

For each agent i, we have two versions of the END ac-
tion. ENDs

i is the successful version of END, which is
only applicable when the agent has achieved its goal spec-
ification Gi in both the local and global states. ENDf

i is
the version of END where the agent has only achieved its
goal in the local copy. Once END is executed, we for-
bid executing any regular actions; hence del(ENDs

i) =

del(ENDf
i) = {act}. Then,

pre(ENDs
i) = ¬fini ∧

∧
ψ∈Gi

(ψi ∧ ψg)

add(ENDs
i) = {fini}, and

pre(ENDf
i) = ¬fini ∧

∧
ψ∈Gi

ψi ∧
∨
ψ∈Gi

¬ψg

add(ENDf
i) = {fini, fail}.

The next section provides a proof sketch for the compila-
tion’s correctness. Full proof can be found in Supplementary
Materials (SM).

Compilation Correctness
In the following, we assume a multi-agent RT setting Π, with
n agents, each with its own solvable planning problem Πi
and its plan πi, for i ∈ [n]. Also, let Π̃ be the result of apply-
ing the compilation on Π and let π′ be its plan if one exists.
The main theorem of this paper is as follows:

Theorem 1. Π̃ is solvable ⇐⇒ Π is not robust

Proof. (=⇒) Let π′ be a plan for Π̃. By Lemma 1, from
π′ it is possible to construct an individual plan πi, for i ∈
[n]. Thus, it is possible to construct a set of n individual
plans πjnt = {πi}ni=1. By Lemma 2, there exists a failed
joint execution of πjnt. Thus, by definition, Π is not robust.

(⇐=) Let Π be a not robust multi-agent planning prob-
lem. By definition, there exists a failed joint execution r of
some set of individual plans πjnt. By Lemma 3 it is possi-
ble to reconstruct a plan for Π̃ from πjnt and its failed joint
execution, making Π̃ solvable.

Detailed descriptions and proofs of Lemmas 1-3 are pro-
vided in the following sections starting with Lemma 1.

Lemma 1. Let Π be a MART with n agents, Π̃ be its com-
pilation with its plan π′. There exists πi a plan for Πi the
projection of Π on agent i, for i ∈ [n].

Proof. Consider the projection of Π̃ on agent i’s facts and
variables {pi | p ∈ P} ∪ {vi | v ∈ V } ∪ {fini} and let us
denote it as Π̃i. Note that Π̃i is only a simple extension of
Πi with the following modifications: (a) one additional fact
fini; (b) a goal specification that contains only one atom
fini; (c) one additional action ENDi with Gi as its pre-
condition and fini as its add effect. A plan for Π̃ is a plan
for any abstraction of Π̃, and specifically a plan for Π̃i. Thus
πi exists, for i ∈ [n].

By Lemma 1, it is possible to construct a set of individual
plans πjnt = {πi}ni=1 from π′. The next step is to show that
there exists a failed joint execution of πjnt.

Lemma 2. Let Π be a MART, and let Π̃ be its compilation
with a plan π′. Then, there exist a set of individual plans πjnt,
and a failed joint execution r reconstructed from π′.

Proof Sketch. Given a plan π′ for Π̃, we can reconstruct a set
of individual plans πjnt = {πi}ni=1 (Lem. 1). By construction
of Π̃ the plan π′ is a concatenation of π′

actions and π′
end, where

π′
actions is some interleaving of the plans in πjnt and π′

end is a
sequence of END actions. Note that in π′

end there is exactly
one finalizing action for each agent i ∈ [n], and the order
of these actions does not matter. The END actions check if
the agents have achieved their goals in both global and local
copies. The existence of π′ implies that all agents achieved
their goals in the local copies, and a failure occurred in the
global one.

We aim at reconstructing r from π′. Let us look at the
longest sub-sequence of successful actions1 in π′

actions up un-
til and including) the first failed action (if one exists) in
π′

actions. The natural mapping of this sub-sequence on the
original actions of Π constitutes r. Let us show that r is a
joint execution that leads to a conflict, i.e., r ∈ Rjnt(Π) \
Rjnt

∗ (Π). By construction of Π̃: (1) failed and waiting ac-
tions do not affect the global copy, and (2) an agent that
executed a waiting action is in a deadlock (since once the
agent has declared it waits for some condition, the compila-
tion forbids all other agents from making it true). Thus, r is
the longest successful prefix of some interleaving execution
of πjnt, hence r ∈ Rjnt(Π).

To show that r = ⟨a1, . . . am⟩ is a failed execution, i.e.,
r ̸∈ Rjnt

∗ (Π), we need to address three separate cases. If all
actions in π′

actions are successful and π′
end still leads to fail-

ure, we have a case of failure at termination, i.e., all agent
finish their plans in the local copies, but there is an agent
whose goal was sabotaged by some other agent. The case
when r ends with a failed action clearly leads to an action
conflict. Since the first m − 1 actions in r where success-
ful we have that j ∈ [m − 1] : sj−1 |= pre(aj) where
sj := sj−1JajK, and by construction of the failed actions

1Successful action belongs to the as type.

12091

sm−1 ̸|= pre(am) \ prew(am). Lastly, if there is no action-
conflict and still |r| ̸= |πjnt|, i.e., there are agents with un-
finished plans, some of the agents are in a deadlock. In our
compilation, if an agent declares that it is waiting for some
condition (numeric or otherwise), no other agent is allowed
to make this condition true. Since π′ is a plan, each agent
achieves its goal in its local copy. Thus there exists a joint
execution, where an agent is forever waiting for some con-
dition that will never hold. Hence, it is a deadlock.

Lemma 2 proves that there is a failed joint execution of
πjnt. Next, we show that if the SL is not robust, i.e., there is
a possible failed joint execution, the compilation is solvable.

Lemma 3. Let Π be a non-robust MART with n agents, Π̃
the compilation of Π is solvable.

Proof Sketch. Given that Π is not robust, there must be at
least one set of individual joint plans πjnt that has at least
one failed joint execution r ∈ Rjnt(Π). Our goal is to re-
construct π′ that solves Π̃, given πjnt and r. By construction,
all possible plans of Π̃ are of the form π′

actions ◦ π′
end, where

π′
actions is a sequence of actions in

⋃
i∈[n]Ai of one of the

four possible types, and π′
end is a sequence of the ENDi ac-

tions, and can be seen as a set. There is exactly one ENDi

action in π′
end for each agent i, and each agent achieves its

goal in the local copy if it acts according to πi.
Once again, we iterate over the three possible reasons for

failure. 1. Say that r has failed at termination. Then, all ac-
tions of πjnt were applied successfully in r. Thus, r contains
as a sub-sequence any πi ∈ πjnt, and no other actions. Let
rs be the r sequence, where each action a is replaced by its
counterpart of the successful type as. Then, π′ = rs ◦ π′

end.
Since we know that at least one agent did not achieved its
goal, we know that s̃0JrK ̸|= (Gi)g for some i ∈ [n]. Which
means that ENDf

i ∈ π′
end. Thus, π′ is indeed a plan.

2. Assume that r has terminated with action conflict.
Then, all actions in r but the last one are of the successful
type and the last one of the failed type. This happens since
action failure trumps deadlock, in the sense that deadlock
actions are not executed in the global copy, and we can ap-
ply all the actions in r to get straight to the failure. Denote
by rs,f the sequence of actions that corresponds to r in Π̃.
We have that s̃0JrK |= cf ∧ fail, thus π′

actions = rs,f ◦ σl,
where σl is the rest of the execution of πjnt where all actions
are of the ali type, i.e., executed in the local copies. Since all
agents achieve their goals in the local copy, π′

end, and thus π′

are executable. Since no action removes fail, π′ is a plan.
3. If r reaches a deadlock, once again let rs be the suc-

cessful copy of r. Note that since by definition r is not a
sub-sequence of any other joint execution, thus no action
the suffixes of πjntcan be executed after r. Let I be the set
of agents that have not completed their individual plans in r.
Then, π′

actions = rs ◦ σwt,I ◦ σl, where rs is a successful ac-
tion execution, σwt,I is an independent execution of actions
of the type awti for all agents that are in a deadlock (one per
agent), and σl is the rest of the actions that are executed in
the local copy. Since all local goals are achieved, and each
awti adds the fail atom, π′ is a plan.

Empirical Evaluation
We implemented the compilation in Python2 and tested it
on domains from previous work on numeric planning along
with the BRIDGE domain that we have formulated to illus-
trate an interesting view of how numerical SLs are more
compact than SLs in classical planning settings. Our com-
pilation takes a numeric multi-agent problem defined in
PDDL2.1 (Fox and Long 2003) and an additional JSON file
with information about the agents’ goal affiliation and wait-
for conditions. A numerical planning problem is then gener-
ated. To solve the generated problems, we used the metric-
fast forward planner (Hoffmann 2003b). Its performance
has been demonstrated to be better than that of other plan-
ners, such as NFD (Aldinger and Nebel 2017) and ENHSP-
20 (Scala 2020). We used a single Intel i7-7700K core on a
computer with 32GB of RAM. The time limit is 30 minutes.

SL Compactness Example. The bridge domain consists of
a bridge and several weighted agents that can cross it to
reach the other bank. Domain facts describe the current posi-
tions of each agent (left, right, and bridge), and the only nu-
meric variable represents how much weight the bridge can
support. Each agent has four actions (GET ON(a1, right),
GET OFF(a1, left), etc.).

We ran our compilation on an instance with two weighted
agents, T1 and T2, initially positioned on the right bank, with
their weights, 50 and 60 units, respectively, while the bridge
can hold only 100 units of weight. The first agent’s goal is to
be on the left bank, and the second agent has an empty goal
set. Our compilation found a possible conflict existed when
both of the agents tried to board the bridge at the same time.

One possible SL makes agents wait before they get on the
bridge if their weight is greater than the remaining weight
capacity of the bridge. Our compilation shows that this SL is
not robust because there is a possible conflict where the sec-
ond agent climbs on the bridge first and does not go down,
making the first agent stay in a forever waiting mode.

An improved SL may give the second agent a specific goal
position (right or left) and make the agents wait before they
climb on the bridge. Testing this SL with our compilation
proves that this SL is robust.

This domain can be represented using STRIPS or FDR by
keeping track of which agents are currently on the bridge
and maintaining a list of allowed sets of agents which can be
on the bridge at the same time, i.e., those whose combined
weights do not exceed the limit. However, the representa-
tion size of this SL is exponential in the number of agents,
while numeric SLs can represent the same restriction in con-
stant size. Thus, we have shown that numerical SLs are more
compact than SLs in classical planning settings.

Domains From Previous Works. The domains DEPOTS,
SAILING, PLANT-WATERING (Scala et al. 2016) and DELIV-
ERY (Shleyfman et al. 2022) were used to demonstrate the
scalability of the compilation. These were slightly modified
to fit the MART setting.

Trucks and hoists transport crates in DEPOTSẆe adapted
this domain to the multi-agent setting by creating a meta-

2https://github.com/ronen85/numeric-slv

12092

DEPOTS SAILING WATERING DELIVERY
|A| RSLT T[s] |A| RSLT T[s] |A| RSLT T[s] |A| RSLT T[s]
1 156 CE 0.1 16 CE 0.0 20 CE 0.1 136 CE 0.1
2 372 CE 0.1 18 CE 21.2 20 CE 0.2 200 CE 0.1
3 684 CE 1.0 20 CE 0.1 20 CE 0.1 264 CE 0.1
4 1092 CE 95.9 22 CE 0.1 22 CE 0.1 412 CE 0.3
5 1596 TO - 24 CE 211.0 22 CE 0.1 392 CE 0.2
6 PU - 26 CE 0.1 22 CE 0.2 576 CE 0.6
7 828 CE 0.2 28 CE 374.9 24 CE 0.3 656 CE 1.0
8 1836 CE 8.0 30 CE 0.1 24 CE 0.3 736 CE 1.6
9 3636 TO - 32 CE 0.6 24 CE 1.2 980 CE 9.3
10 1656 CE 49.7 34 CE 382.0 20 CE 0.1 1614 ERR -
11 3624 TO - 36 TO - 20 CE 0.3 1154 TO -
12 PU - 38 CE 1388.5 20 CE 0.7 1887 ERR -
13 1992 CE 1.2 40 CE 0.2 22 CE 0.5 2031 ERR -
14 4184 CE 339.3 42 CE 0.2 22 CE 0.7 2541 ERR -
15 8004 ERR - 44 CE 0.2 22 CE 0.3 2709 ERR -
16 2840 CE 1.3 46 CE 0.2 24 CE 3.6 4305 ERR -
17 5908 ERR - 48 CE 0.3 24 CE 0.3 4557 ERR -
18 11168 ERR - 50 TO - 24 CE 0.8 4809 ERR -
19 4768 ERR - 52 CE 0.2 20 CE 0.3 5061 ERR -
20 PU - 54 CE 0.3 20 CE 1.0 5313 ERR -
TOTAL 13 18 20 9

Table 1: Results on benchmarks and planning time: |A|= number of grounded actions, RSLT = result, CE = not robust, found
counterexample, PU = not robust, individual projection unsolvable, TO = timeout, ERR = parser error (problem too long).

agent that controls every hoist and every truck to meet a
specific crate position goal. In addition, the agents were ran-
domly assigned goals.

DELIVERY involves multi-gripper robots with trays and
weight limits that move weighted objects on a map of loca-
tions. A random assignment is made here as well.

In the PLANT-WATERING domain, the agents move in a
grid that contains plants and taps, then they load water from
the taps and pour it on the plants. Numeric variables are used
to describe the locations of the agents, plants, and taps.

In the SAILING domain, boats (agents) move around and
rescue persons if they meet a linear constraint on their x, y
location. The only change made to this domain is the addi-
tion of ¬saved to the save-person action’s precondition.

In this domain, an SL assigns each person to a specific
boat agent. It is easy to see that this SL prevents all conflicts
because the only source of contention between the agents is
the save-person action. However, since each boat agent can
reach infinitely many locations, the metric-FF planner fails
to prove SL robustness in all instances. Proving the unsolv-
ability of the compilation in these cases is a challenge to the
numerical planning community.

On each of the 20 instances in the four domains, the
metric-FF planner was used to solve the compiled problem,
i.e., determine whether the SL is robust. Table 1 reports (1)
the number of grounded actions for comparison; (2) the de-
cision result (whether the SL is robust or not); and (3) for
each solved instance, the solution time. Based on the results,
the compilation alone does not add too much overhead: 60
of 80 problems were solved. Let us note that, 14 times, we
encountered a parsing problem – a known problem related
to the length of the problem files, which include thousands

of grounded actions. These instances could be parsed but not
solved by other planners (e.g., NFD 2017).

Conclusions and Future Work
In this paper, we have shown how to verify the robustness of
an SL in an SNP setting. In the process, we have fixed some
mistakes in previous work on SL robustness verification in
classical planning settings (Karpas, Shleyfman, and Tennen-
holtz 2017). We have also shown that numerical SLs can be
much more compact than SLs in classical settings.

This compilation also presents a new challenge to the nu-
merical planning community. Specifically, verifying that a
numerical planning problem is unsolvable is usually done
by exhausting the reachable states. Unfortunately, in many
numeric planning problems, there are infinitely many reach-
able states. Nevertheless, in some of these problems, includ-
ing some that are the result of the compilation presented
here, it is possible to prove that the problem is unsolvable
manually. Thus, further developments in proving unsolvabil-
ity (e.g., Christen et al. 2022) for numerical planning would
also benefit this work.

Dealing with numbers in planning brings us one step
closer to handling real-world multi-robot problems. Com-
bining numbers with SLs in a continuous time setting (Nir
and Karpas 2019) is the next logical step. This would require
dealing with continuous change, which presents a new set of
challenges. Furthermore, robustness verification constitutes
the backbone of the SL synthesis as a search procedure (Nir,
Shleyfman, and Karpas 2020, 2021), which uses it as its goal
test. Thus, it is straightforward to synthesize robust SLs in
a numerical setting by combining the compilation presented
in this paper with the abovementioned search procedure.

12093

Acknowledgements
This work was partially supported by the Peter Monk Re-
search Institute (PMRI). The work of Alexander Shleyfman
was partially supported by the Israel Academy of Sciences
and Humanities program for Israeli postdoctoral researchers.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relaxation
Heuristics for Numeric Planning with Action Costs. In Proc.
SOCS, 155–156.
Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
ICAPS, volume 8, 28–35.
Christen, R.; Eriksson, S.; Pommerening, F.; and Helmert,
M. 2022. Detecting Unsolvability Based on Separating
Functions. In ICAPS, 44–52.
Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell., 2(3/4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR,
20(1).
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In AIPS, 303–
312.
Hoffmann, J. 2003a. The Metric-FF Planning System:
Translating ”Ignoring Delete Lists” to Numeric State Vari-
ables. J. Artif. Intell. Res., 20: 291–341.
Hoffmann, J. 2003b. The Metric-FF Planning System:
Translating ”Ignoring Delete Lists” to Numeric State Vari-
ables. J. Artif. Intell. Res., 20: 291–341.
Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated Verification of Social Law Robustness in STRIPS.
In ICAPS, 163–171.
Nir, R.; and Karpas, E. 2019. Automated Verification of
Social Laws for Continuous Time Multi-Robot Systems. In
AAAI, 7683–7690.
Nir, R.; Shleyfman, A.; and Karpas, E. 2020. Automated
Synthesis of Social Laws in STRIPS. In AAAI, 9941–9948.
Nir, R.; Shleyfman, A.; and Karpas, E. 2021. Learning-
Based Synthesis of Social Laws in STRIPS. In SOCS, 88–
96.
Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A gen-
eral, fully distributed multi-agent planning algorithm. In AA-
MAS, 1323–1330.
Scala, E. 2020. The ENHSP Planning System. https://sites.
google.com/view/enhsp/. Accessed: 2022-08-15.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016.
Numeric Planning with Disjunctive Global Constraints via
SMT. In Proc. ICAPS, 276–284.
Shleyfman, A.; Kuroiwa, R.; ; and Beck, J. C. 2022. Symme-
try Detection and Breaking in Cost-Optimal Numeric Plan-
ning. In Proc. HSDIP.
Tennenholtz, M.; and Moses, Y. 1989. On Cooperation in a
Multi-Entity Model. In IJCAI, 918–923.

Tuisov, A.; and Karpas, E. 2020. Automated Verification
of Social Law Robustness for Reactive Agents. In ECAI,
volume 325, 2386–2393.

12094

