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Abstract

We present a framework for learning useful subgoals that sup-
port efficient long-term planning to achieve novel goals. At
the core of our framework is a collection of rational subgoals
(RSGs), which are essentially binary classifiers over the envi-
ronmental states. RSGs can be learned from weakly-annotated
data, in the form of unsegmented demonstration trajectories,
paired with abstract task descriptions, which are composed of
terms initially unknown to the agent (e.g., collect-wood then
craft-boat then go-across-river). Our framework also discov-
ers dependencies between RSGs, e.g., the task collect-wood
is a helpful subgoal for the task craft-boat. Given a goal de-
scription, the learned subgoals and the derived dependencies
facilitate off-the-shelf planning algorithms, such as A∗ and
RRT, by setting helpful subgoals as waypoints to the plan-
ner, which significantly improves performance-time efficiency.
Project page: https://rsg.csail.mit.edu

Introduction
Being able to decompose complex tasks into subgoals is crit-
ical for efficient long-term planning. Consider the example
in Fig. 1: planning to craft a boat from scratch is hard, as it
requires a long-term plan going from collecting materials to
crafting boats, but it can be made easier if we know that hav-
ing an axe and having wood are useful sub-goals. Planning
hierarchically with these subgoals can substantially reduce
the search required. It is also helpful to understand the tem-
poral dependencies between these subgoals, such as having
wood being a useful subgoal to achieve prior to crafting boat
makes long-term planning much more efficient.

In this work, we propose Rational Subgoals (RSGs), a
framework for learning useful subgoals and their temporal
dependencies from demonstrations. Our system learns with
very weak supervision, in the form of a small number of un-
segmented demonstrations of complex behaviors paired with
abstract task descriptions. The descriptions are composed of
terms that are initially unknown to the agent, much as an
adult might narrate the high-level steps when demonstrating
a cooking recipe to a child. These action terms indicate im-
portant subgoals in the action sequence, and our agent learns
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to detect when these subgoals are true in the world, infer their
temporal dependencies, and leverage them to plan efficiently.

Illustrated in Fig. 1, our model learns from a dataset of
paired but unaligned low-level state-action sequences and
the corresponding abstract task description (collect-wood
then craft-boat then go-across-river). For each action term
o (e.g., collect-wood), our model learns a goal condition Go,
which maps any state to a binary random variable, indicat-
ing whether the state satisfies the goal condition. Given the
training data, we decompose the observed trajectory into frag-
ments, each of which corresponds to a “rational” sequence
of actions for achieving a subgoal in the description.

While this model-based approach enables great general-
ity in generating behaviors, it suffers from the slow online
computation. To speed up online planning, we compute a de-
pendency matrix whose entries encode which subgoals might
be helpful to achieve before accomplishing another subgoal
(e.g., having wood is a helpful subgoal for the task crafting
boat, and thus the entry (having wood, crafting boat) will
have a higher weight). During test time, given a final goal
(e.g., craft boat) and the initial state, a hierarchical search
algorithm is applied at both the subgoal level and the lower,
environmental-action level.

The explicit learning of subgoals and their dependency
structures brings two important advantages. First, the sub-
goal dependency allows us to explicitly set helpful subgoals
as waypoints for planners. This significantly improves their
runtime efficiency. Second, compared to alternative subgoal
parameterizations such as reward functions, subgoals in the
form of a state classifier allows us to use simple and efficient
planners. For example, in continuous spaces, we can use
Rapidly-exploring Random Trees (RRT) to search for plans
in the robot configuration space. These planers do not require
training and generalize immediately to novel environments.

We evaluate RSGs in Crafting World (Chen, Gupta, and
Marino 2021), an image-based grid-world domain with a
rich set of object crafting tasks, and Playroom (Konidaris,
Kaelbling, and Lozano-Perez 2018), a 2D continuous domain
with geometric constraints. Our evaluation shows that our
model clearly outperforms baselines on planning tasks where
the agent needs to generate trajectories to accomplish a given
task. Another important application of RSGs is to create a
language interface for human-robot communication, which
includes robots interpreting human actions and humans in-
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Figure 1: Interpreting a demonstration and its description in terms of RSGs: (a) Each RSG is represented as a subgoal Go. (b)
The system infers a transition to the next subgoal if the G condition is satisfied. Such transition rules can be used to interpret
demonstrations and to plan for tasks that require multiple steps to achieve.

structing robots by specifying a sequence of subgoals. Our
model enables compositional generalization through flexible
re-composition of learned subgoals, which allows the robot
to interpret and execute novel instructions.

Rational Subgoal Learning and Planning
We focus on learning rational subgoals from demonstration
data and leveraging them for planning. Formally, our training
data is a collection of paired unsegmented demonstrations
(i.e., state and action sequences) and abstract descriptions
(e.g., collect-wood then craft-boat) composed of action terms
(collect-wood, etc.) and connectives (then, or). Our ultimate
goal is to recover the grounding (i.e., the corresponding sub-
goal specified by the action term) for each individual action
term. These subgoals will be leveraged by planning algo-
rithms to solve long-horizon planning problems.

We begin this section with basic definitions of the rational
subgoal representations and the language T L for abstract de-
scriptions. Second, we outline the planning algorithm we use
to refine high-level instructions in T L into environmental ac-
tions that agents can execute, given the RSGs. Although any
search algorithms or Markov Decision Process (MDP) solvers
are in principle applicable for our planning task, in this paper,
we have focused on a simple extension to the A* algorithm.
Next, we present the algorithm we use to learn RSGs from
data. Since we are working with unsegmented trajectories,
the learning algorithm has two steps. It first computes a ra-
tionality score for individual actions in the trajectory based
on the optimal plan derived from the A* algorithm. Then,
it uses a dynamic programming algorithm to find the best
segmentation of the trajectory and updates the parameters.
Finally, we describe a dependency discovery algorithm for
RSGs and apply it to solve planning tasks given only a single
goal action term (e.g., collect-gold), in contrast to the earlier
case where there are detailed step-by-step instructions.

We call our representation rational subgoals because our
learning algorithm is based on a rationality objective with

-
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Figure 2: Illustrative example of how finite state machines
(FSM) are constructed from task descriptions. The super-
starting node v0 and the super-terminal node vT are high-
lighted.

respect to demonstration trajectories, and our planning algo-
rithm chooses rational subgoals to accelerate the search.

Formally, a rational subgoal (RSG) is a classifier that
maps an environmental state s to a Boolean value, indicat-
ing whether the goal condition is satisfied at s. Each RSG
has an atomic name o (e.g., collect-wood), and the corre-
sponding goal classifier is denoted by Go. Depending on the
representation of states, Go can take various forms of neural
networks, such as convolutional neural networks (CNNs) for
image-based state representations.

In both learning and planning, we will be using an ab-
stract language to describe tasks, such as collect-wood then
craft-boat. These descriptions are written in a formal task lan-
guage T L. Syntactically, all atomic subgoals are in T L; and
for all t1, t2 ∈ T L, (t1 then t2), (t1 or t2), and (t1 and t2)
are in T L. Semantically, a state sequence s̄ satisfies a task
description t, written s̄ |= t when:

• If t is a RSG o, then the first state does not satisfy Go,
and the last state satisfies Go. Note that this implies that
the sequence s̄ must have at least 2 states.

• If t = (t1 then t2) then ∃0 < j < n such that
(s1, . . . , sj) |= t1 and (sj , . . . , sn) |= t2: task t1 should
be accomplished before t2.

• If t = (t1 or t2) then s̄ |= t1 or s̄ |= t2: the agent should
either complete t1 or t2.
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• If t = (t1 and t2) then s̄ |= (t1 then t2) or s̄ |=
(t2 then t1): the agent should complete both t1 and t2,
but in any order (t1 first or t2 first)*.

Note that the relation s̄ |= t only specifies whether s̄ com-
pletes t but not how optimal s̄ is. Later on, when we define
the planning problem, we will introduce the trajectory cost.

Each task description t ∈ T L can be represented with a
non-deterministic finite state machine (FSM), representing
the sequential and branching structures. Each FSMt is a
tuple (Vt, Et, V It, V Gt) which are subgoal nodes, edges, set
of possible starting nodes and set of terminal nodes. Each
node corresponds to an action term in the description, and
each edge corresponds to a possible transition of changing
subgoals. Fig. 2 illustrates the constructions for syntax in T L,
and we provide the follow algorithm for the construction.
• Single subgoal: A single subgoal s is corresponding FSM

with a single node i.e. VIt = VGt = Vt = {s}, and
Et = ∅.

• t1 then t2: We merge FSMt1 and FSMt2 by merging their
subgoal nodes, edges and using VIt1 as the new starting
node set and VGt2 as the new terminal node set. Then, we
add all edges from VGt1 to VIt2 . Formally,

FSMt1 then t2 =

(Vt1 ∪ Vt2 , Et1 ∪ Et2 ∪ (VGt1 × VIt2),VIt1 ,VGt2),

where × indicates the Cartesian product, meaning that
each terminal node of FSMt1 can transit to any starting
node of FSMt2 .

• t1 or · · · or tn: Simply merge n FSMs without adding
any new edges. Formally,

FSMt1 or ··· or tn = (
⋃
i

Vti ,
⋃
i

Eti ,
⋃
i

VIti ,
⋃
i

VGti)

• t1 and · · · and tn: Build 2n−1n sub-FSMs over n lay-
ers: the i-th layer contains n ·

(
n−1
i−1

)
sub-FSMs each la-

beled by (s,D) where s is the current subgoal to complete
(so this sub-FSM is a copy of FSMs), and D is the set
of subgoals that have been previously completed. Then
for a sub-FSM (s1, D1) and a sub-FSM (s2, D2) in the
next layer, if D2 = D1 ∪ {s1}, we add all edges from ter-
minal nodes of the first sub-FSM to starting nodes of the
second sub-FSM. After building layers of sub-FSMs and
connecting them, we set the starting nodes to be the union
of starting nodes in the first layer and terminal nodes to
be the union of terminal nodes in the last layer.

Note that our framework requires the starting and terminal
nodes to be unique, but the construction above may output a
FSM with multiple starting/terminal nodes, so we introduce
the virual super starting node v0 and terminal node vT to
unify them.

*The operator and can be generalized be n-ary. In this case,
accomplishing them in any order is considered accomplishing the
composed task. For example, the task mine-wood and mine-gold
and mine-coal allows the agent to accomplish all three subgoals
in any order. Note that this is different from the specification with
parenthesis: (mine-wood and mine-gold) and mine-coal.

Skill 1 (!!): mine-gold Skill 2 (!"): craft-boat

!7 is completed. !8 is completed.The agent may make some
progress (mine wood for the
boat) towards !! even if !"
has not been completed yet.

Task: !" "#$% !#
Completing !!Completing !"Completing !!

Figure 3: An example of optimal interleaving subgoals: s1
is ”mine gold”, and s2 is ”craft boat”. It is valid that the
agent first goes to collect wood (for accompolishing s2), and
then mine gold (for accompolishing s1), and finally crafts
boat. In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as
s2 then s2 because s1 is accomplished before s2.

Remark. In this paper, the language T L used for describ-
ing tasks covers LTLf , a finite fragment of LTL that does not
contain the always quantifier, so our fragment does not model
task specifications that contain infinite loops. Finite LTL for-
mulae can be converted to a finite automaton (De Giacomo
and Vardi 2013), represented using the FSM.

Execution steps for different subgoals can interleave.
RSGs does not simply run optimal policy for each individual
subgoal sequentially. Rather, the semantic of s1 then s2 is: s1
should be completed before s2. It does not restrict the agent
from making progress towards the subgoal before the subgoal
is completed. In some case, such interleaving is necessary to
obtain the globally optimal trajectory.

Consider the example shown in Figure 3, where s1 is
”mine-gold”, and s2 is ”craft-boat”. It is valid that the agent
first goes to collect wood (for accompolishing s2), and then
mine gold (for accompolishing s1), and finally crafts boat.
In this case, the action sequences for completing s1 and
s2 are interleaved. However, they can are be recognized as
s1 then s2 because s1 is accomplished before s2.

Planning with RSGs
We first consider the problem of planning an action sequence
that satisfies a given task description t written in T L. We
assume that the external world is well modeled as a deter-
ministic, fully observable decision process with a known
state space, an action space, a transition function, and a
cost function ⟨S,A, T , C⟩ and that we have a set of goal
classifiers Go parameterized by θ. Given a task t, we con-
struct an FSM representation and then compose it with the
environment process to obtain an FSM-augmented process
⟨St,At, Tt, Ct⟩. Concretely, St = S × Vt, where Vt is the
set of nodes of FSM constructed from task t. We then denote
each task-augmented state as (s, v), where s is the environ-
ment state, and v indicates the current subgoal. The actions
At = A ∪ FSMt, where each action either corresponds to a
primitive action a ∈ A or a transition in FSMt. An FSM tran-
sition action indicates that the agent has achieved the current
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Figure 4: A running example of the FSM-A∗ algorithm for the task “(mine wood or mine coal) then mine gold.” For simplicity, we
only show a subset of states visited on each FSM node. The blue arrows indicate transitions by primitive actions (in this example,
each primitive action takes a cost of 0.1). The yellow arrows are transitions on the FSM, which can only be performed when Gv(·)
and Gv′(·) evaluates to False (in practice, the reward is computed as − (logGv(·) + log (1−Gv′(·)))). At the super-terminal
node vT , the state with minimum cost will be selected and we will back-trace the entire state-action sequence. The number right
of each state indicates the accumulated cost.

subgoal and will proceed to the next subgoal. We further de-
fine Tt ((s, v), a) = (T (s, a), v) if a is a primitive action in
A, while Tt ((s, v), a) = (s, v′) if a = (v, v′) ∈ FSMt is an
edge in the FSM. The former are environmental actions. They
only change the environmental state s but do not change the
current subgoal v. The latter, namely FSM transitions, do not
change the environmental state, but mark the current subgoal
as completed and switch to the next one. Similarly, for the
cost function,

C′ ((s, v), a) =

C(s, a) if a ∈ A,

−λ (logGv(s; θ)+ if a = (v, v′) ∈ FSMt

log (1−Gv′(s; θ)))

where λ is a hyperparameter. The key intuition behind the
construction of Ct is that the cumulative cost from v0 to
vT is the summation of all primitive action costs added to
the log probability of the validity of subgoal transitions. At
each subgoal transition, the state s should satisfy the goal
condition of the current RSGs but should not satisfy the goal
condition of the next RSGs—which enforces the sequential
constraints specified in the task. In principle, when Gv are
Boolean-output classifiers, the cost is 0 for a valid transition
and∞ for an invalid transition. In practice, we approximate
the “soft” version of classifiers with neural networks: the
outputs are in [0, 1], indicating how likely those conditions
are to be satisfied.

Importantly, our formulation of the RSG planning problem
is different from planning for each individual action term and
stitching the sub-plans sequentially. Concretely, we are find-
ing a “globally” optimal plan instead of achieving individual

subgoals in a locally optimal way. Thus, we allow complex
behaviors such as making progress for a later subgoal to
reduce the total cost. We include detailed examples in the
supplementary material.

At the input-output level, our planner receives the a task
description t represented as an FSM, an environmental tran-
sition model T , and a cost function C, together with a set
of goal classifiers {Go} parameterized by θ. It generates a
sequence of actions ā that is a path from (s0, v0) to (sT , vT )
and minimizes the cumulative action costs defined by Ct.
Here, s0 is the initial environmental state, v0 is the initial
state of FSMt, sT is the last state of the trajectory, and vT is
the terminal state of FSMt.

We make plans using slightly modified versions of A∗

search, with a learned domain-dependent heuristic for pre-
viously seen tasks and a uniform heuristic for unseen tasks.
This algorithm can be viewed as doing a forward search to
construct a trajectory from a given state to a state that satisfies
the goal condition. Our extension to the algorithms handles
the hierarchical task structure of the FSM.

Our modified A∗ search maintains a priority queue of nodes
to be expanded. At each step, instead of always popping the
task-augmented state (s, v) with the optimal evaluation, we
first sample a subgoal v uniformly in the FSM, and then
choose the priority-queue node with the smallest evaluation
value among all states (·, v). This balances the time allocated
to finding a successful trajectory for each subgoals in the task
description.

Our hierarchical search algorithm also extends to continu-
ous domains by integrating Rapidly-Exploring Random Trees
(RRT) (LaValle et al. 1998). We include the implementation
details in the supplementary material. Any state-action se-
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quence produced by planning in the augmented model is
legal according to the environment transition model and is
guaranteed to satisfy the task specification t.

Example. Fig. 4 shows a running example of our FSM-A∗

planning given the task “mine wood or mine coal then mine
gold” from the state s0 (the left-most state).

1. At the beginning, (s0, v0) is expanded to the node v1:mine
wood and v2:mine coal with FSM transition actions.

2. We expand the search tree node on v1 and v2 and compute
the cost for reaching each states on v1 and v2.

3. For states that satisfy the goal conditions for v1 and v2
(i.e., G1 and G2, respectively, and circled by green and
blue boxes) and the initial condition for v3 (i.e., 1−G3),
we make a transition to v3 at no cost (the states that do
not satisfy the conditions can also be expanded to v3 but
with a large cost.

4. Then search can be done in a similar way at v3 and the
states at v3 that satisfy G3 can reach vT .

5. For all states at vT , we back-trace the state sequence with
the minimum cost.

Learning RSGs from Unsegmented Trajectories and
Descriptions
We learn RSGs from weakly-annotated demonstrations, in the
form of unsegmented trajectories and paired task descriptions.
The training dataset D contains tuples (s̄, ā, t) where s̄ is a
sequence of environmental states, ā is a sequence of actions,
and t ∈ T L is a task description.

Our goal is to recover the grounding of subgoal terms from
these demonstrations. At a high level, our learning objective
is to find a set of parameters for the goal classifiers Go that
rationally explain the demonstration data: the actions taken
by the demonstrator should be “close” in some sense to the
optimal actions that would be taken to achieve the goal. Let
θ denote the collection of parameters in {Go}. Thus, our
training objective takes the following form:

θ∗ = argmax
θ

1

|D|
∑

(s̄,ā,t)∈D

score (s̄, ā, t; θ) . (1)

The scoring function score combines the rationality of the
observed trajectory with an additional term that emphasizes
the appropriateness of FSM transitions given t:

score(s̄, ā, t; θ) := max
v̄
{ log∏

i

Rat (si, vi, ai, t; θ)+∑
(vi,vi+1)∈

FSM transitions

{
logGvi

(si; θ) + log
(
1−Gvi+1

(si; θ)
)}}

(2)

The rationality score measures the likelihood that the ac-
tion a ∈ At in state (s, v) would have been chosen by a
nearly-optimal agent, who is executing a policy that assigns
a probability to an action based on the optimal cost-to-go for
task t in the FSM-augmented model after taking it:

Rat (s, v, a, t; θ) :=
exp (−α · Jt(s, v, a; θ))∫

x∈A′ exp (−α · Jt(s, v, x; θ))
, (3)

where α is a hyperparameter called inverse rationality. The
integral is a finite sum for discrete actions and can be approx-
imated using Monte Carlo sampling for continuous actions.
If α is small, the assumption is that the demonstrations may
be highly noisy; if large, then they are near optimal.

The cost-to-go (analogous to a value function) is defined
recursively as

Jt(s, v, a; θ) = Ct ((s, v), a) + max
a′∈At

Jt (T ′ ((s, v), a) , a; θ)

(4)

It need not be computed for the whole state space; rather, it
can be computed using the planner on a tree of relevant states,
reachable from (s0, v0).

Figure 5 summarize the learning process of RSGs. First,
we perform a A∗ search (or RRT for continuous domains)
from the trajectory. Then, we backtrack in the search
tree/RRT to compute the shortest distance from each node
to the terminal state, Jt, so that Rat(si, vi, ai, t; θ) can be
evaluated along the trajectory s̄, ā.

At learning time, we can observe the environmental state
and action sequence, but we cannot observe the FSM states or
transitions. To efficiently find the optimal FSM states and tran-
sitions, given an environment state and action sequence as
well as goal classifiers parameterized by the current θ, we use
a dynamic programming method. Specifically, we will first la-
bel the FSM nodes from 0 to T by sorting them topologically.
Next, we can use a two-dimensional dynamic programming
with the transition equations based on Rat and Gv can find
v̄ that maximizes score. Concretely, let f [i, j] denote the
maximum score by aligning the trajectory si, ai, si+1, · · ·
with the last j nodes of the FSM. The dynamic programming
algorithm iterates over i in the reversed order. At each step,
it tries to either assign the current (si, ai) pair to the cur-
rent FSM node j, or to create a new transition from another
FSM node k to j. We present the detailed algorithm in the
supplementary material. Although the transition model we
have discussed so far is deterministic, the methods can all
be extended straightforwardly to the stochastic case, as also
described in the supplement.

To improve the optimization, we add a contrastive loss
term, encoding the idea that, for each demonstration (s̄, ā),
the corresponding task description t should have a higher
rationality score compared to an unmatched task description
t′, yielding the final objective to be maximized:

J (θ) =
∑

(s̄,ā,t)∈D

(score(s̄, ā, t; θ)

+ γ · log exp (β · score(s̄, ā, t; θ))∑
t′ exp (β · score(s̄, ā, t′; θ))

)
, (5)

where t′s are uniformly sampled negative tasks in T L. This
loss function is fully differentiable w.r.t. θ, which enables

12072



𝐺!

Rational
Subgoals

�̅� 𝑎$𝑡

TrajectoryTask

Search: A*/RRT

Compute 𝐽!(𝑠, 𝑣, 𝑎)

Dynamic Programming for 𝑠𝑐𝑜𝑟𝑒(�̅�, 𝑎-, 𝑡)

ℒ
Back
Propagation

Algorithm 1: Overview of the training paradigm in pseudocode.
Initiate the goal condition Go(·; θ)
for (s̄, ā, t) ∈ D do

for t′ in candidate task descriptions do
Apply A* search from all states in s̄ with task t′ to compute a tree T .
for each node (s, v, a, t′) ∈ T in reversed topological order do

Compute Jt′(s, v, a; θ) on the node using Eq. 4.
end for
for each node (s, v, a, t′) ∈ T in reversed topological order do

Compute Rat (s, v, a, t′; θ) for each tree node using Eq. 3.
end for
Compute score(s̄, ā, t′; θ) using Eq. 2 based on Rat values of nodes in T .

end for
Compute the training objective J (θ) using the score of all candidate task

descriptions t′ using Eq. 5.
Update θ using gradient descent by maximizing J (θ).

end for

Figure 5: An overview of the training paradigm for RSGs. Left: the figure illustration. Right: the algorithmic illustration.

mine-gold

collect-wood
craft-boat!! !"

Task: (collect-wood or mine-good) then craft-boat

Figure 6: An example of the value function for task-
augmented states on a simple FSM. mina∈A Jt (s, v, a) are
plotted at each location at each FSM node. Deeper color in-
dicates larger cost. Red boxes and dotted lines illustrate the
goal and a rational trajectory for each subgoal.

us to apply gradient descent for optimization. Essentially,
we are back-propagating through two dynamic programming
computation graphs: one that computes Jt based on planning
optimal trajectories given goal classifiers parameterized by
θ, and one that finds the optimal task-state transitions for the
observed trajectory.

RSG Dependency Discovery and Planning
Next, we describe our algorithm for planning with a sin-
gle, final goal term (e.g., craft-boat) instead of step-by-step
instructions. Since directly planning for the goal based on
the corresponding goal classifier can be very slow due to
the long horizon, our key idea here is to leverage the RSGs
learned from data to perform a bilevel search. Our algorithm
begins with discovering a dependency matrix between RSGs
during training time. At performance time, we first use the
discovered dependency model to suggest high-level plans, in
the form of step-by-step instructions in T L. Next, we use

these instructions to plan for environmental actions using our
planning algorithm.

For each possible subgoal o, we evaluate the associated
learned goal classifier Go over all states along training tra-
jectories that contain o. Next, we compute first(s̄, o) as the
smallest index i such that Go(si) is true. If such i does
not exist (i.e., Go is never satisfied in s̄) or o is not men-
tioned in the task specification t associated with s̄, we de-
fine first(s̄, o) = ∞. For all tuples (s̄, o1, o2), we say o2 is
achieved before o1 if neither first(s̄, o1) nor first(s̄, o1) is
infinity, and first(s̄, o2) < first(s̄, o1).

Let bcount(o1, o2) be the number of s̄ ∈ D such that o2 is
achieved before o1 in s̄. We construct a dependency matrix d
by normalizing the bcount as:

d(o1, o2) ≜
bcount(o1, o2)∑
o′ bcount(o1, o′)

, (6)

where o′ sums over all RSGs.
The derived dependency matrix can be interpreted as the

probability that o2 is a precondition for o1. Now, recall that
our task is to find an action sequence ā that, starting from
the initial state s0, yields a new state sT that satisfies the
given goal action term g, such as craft-boat. Our high-level
idea is to leverage the dependency matrix to suggest possible
step-by-step instructions t, whose last action term is g. The
planning algorithm will follow the suggested instructions to
generate low-level plans ā.

Formally, we only consider instructions that are action
terms connected by the then connective. Denote a candidate
instruction t = o1 then o2 then · · · then ok. We define its
priority as:

priority(t) = λk
k−1∏
i=1

1−
k∏

j=i+1

(1− d(oj , oi))

 , (7)

where λ is a length bias constant which is set to 0.9 because
we prefer shorter instructions.
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Algorithm 2: Overview of the search algorithm given only
the final goal.

Build a priority queue of instructions H .
H ← {final goal}
while H is not empty do

t← H.pop()
Run A* search on task t.
if the A* search finds a solution then

Return the solution.
end if
if length(t) ≤ length limit then

for o ∈ O do
if o /∈ t and ∃o′ ∈ t.d(o′, o) > 0 then

H.push(o then t) # See Eq. 7.
end if

end for
end if

end while

Given the candidate instructions, we run the planning al-
gorithm for these instructions. We prioritize instructions t
with high priorities priority(t), and these instructions are gen-
erated by a search approach (Algorithm 2) from the given
final goal. The limit of instruction length, length limit, is set
to 6 for our experiment.. For more complicated domains, a
promising future direction is to learn a full abstract planning
model (symbolic or continuous) based on the subgoal terms
learned from demonstrations.

Experiments
We compare our model with other subgoal-learning ap-
proaches in Crafting World (Chen, Gupta, and Marino
2021), a Minecraft-inspired crafting environment, and Play-
room (Konidaris, Kaelbling, and Lozano-Perez 2018), a 2D
continuous domain with geometric constraints.

Crafting World. In Crafting World, the agent can move in
a 2D grid world and interact with objects next to it, including
picking up tools, mining resources, and crafting items. Min-
ing in the environment typically requires tools, while crafting
tools and other objects have their own preconditions, such
as being close to a workstation or holding another specific
tool. Thus, crafting a single item often takes multiple subgoal
steps. There are also obstacles such as rivers (which require
boats) and doors (which require specific keys to open).

We define 26 primitive tasks, instantiated from templates
of grab-X, toggle-switch, mine-X, and craft-X. While gener-
ating trajectories, all required items have been placed in the
agent’s inventory. For example, before mining wood, an axe
must be already in the inventory. In this case, the agent is
expected to move to a tree and execute the mining action. We
also define 26 compositional tasks composed of the afore-
mentioned primitive tasks. Each task has 400 demonstrations.

All models are trained using tuples of task description t and
expert state-action sequences (s̄, ā). In particular, we train all
models on primitive and compositional tasks and test them
on two splits: compositional and novel. The compositional
split contains novel state-action sequences of previously-seen

Figure 7: An illustration of the Playroom environment and
a trajectory for the task: turn-on-music then play-with-ball
then turn-off-music.

tasks. The novel split contains 12 novel tasks, where primitive
tasks are composed in ways never seen during training (i.e.,
not in the 26 tasks from the compositional split).

Playroom. Our second environment is Play-
room (Konidaris, Kaelbling, and Lozano-Perez 2018),
a 2D maze with continuous coordinates and geometric
constraints. Fig. 7 shows an illustrative example of the
environment. Specifically, a 2D robot can make moves in
a small room with obstacles. The agent has three degrees
of freedom (DoFs): x and y direction movement, and a 1D
rotation. The environment invalidates movements that cause
collisions between the agent and the obstacles. Additionally,
there are six objects randomly placed in the room, which the
robot can interact with. For simplicity, when the agent is
close to an object, the corresponding robot-object interaction
will be automatically triggered.

Similar to the Crafting World, we have defined six primi-
tive tasks (corresponding to the interaction with six objects in
the environment) and eight compositional tasks (e.g., turn-on-
music then play-with-ball). We have designed another eight
novel tasks, and for each task, we have 400 expert demonstra-
tions. We train different models on rational demonstrations
for both the primitive and compositional tasks, and evaluate
them on the compositional and novel splits.

Baselines
We compare our RSGs, which learns goal-based represen-
tations, with two baselines using different underlying repre-
sentations: IRL methods learn reward-based representations,
and behavior cloning methods directly learn policies. The
implementation details are in the supplementary material.

Our max-entropy inverse reinforcement learning (IRL;
Ziebart et al. 2008) baseline learns a task-conditioned re-
ward function by trying to explain the demonstration. For
planning, we use the built-in deep-Q-learning algorithm. The
behavior cloning (BC; Torabi, Warnell, and Stone 2018) base-
line directly learns a task-conditioned policy that maps the
current state and the given task to an environment primitive
action. BC-FSM is the BC algorithm augmented with our
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Model Task
Input

Env.
Tran.

Crafting World Playroom

Com. Novel Com. Novel

IRL Lang. Y 36.5 1.8 28.3 9.6
BC Lang. N 11.2 0.8 15.8 4.8
BC-FSM FSM N 5.2 0.3 38.2 31.5

RSGs FSM Y 99.6 97.8 82.0 78.2

Table 1: Results of the planning task, evaluated as the success
rate of task completion. IRL and BC take raw task specifica-
tion and process them with LSTM, while BC-FSM and RSGs
uses the FSM directly. RSGs and IRL use the environmental
transition model during training while BC and BC-FSM dot
not. The maximum number of expanded nodes for all plan-
ners is 5,000. All models are trained on the compositional
split, and tested on the compositional and the novel split.

FSM description of tasks. Compared with RSGs, instead of
segmenting the demonstration sequence based on rational-
ity, BC-FSM segments them based on how consistent each
fragment is with the policy for the corresponding action term.

Results
To evaluate planning, each algorithm is given a new task t,
either specified in T L, or as a black-box goal state classifier,
and generates a trajectory of actions to complete the task.
Planning with instructions. Table 1 summarizes the results.
Overall, RSGs outperforms all baselines. On the composi-
tional split, our model achieves a nearly perfect success rate
in the Crafting World (99.6%). Comparatively, although the
tasks have been presented during training of all baselines,
their scores remain below 40%.

On the novel split, RSGs outperforms all baselines by a
larger margin than on the compositional split. We observe
that since novel tasks contain longer descriptions than those
in the compositional set, all baselines have a success rate of
almost zero. Compared with IRL methods, the more com-
positional structure in our goal-centric representation allows
it to perform better. Meanwhile, a key difference between
behavior cloning methods (BC and BC-FSM) and ours is that
BC directly applies a learned policy, while our model runs an
A* search based on the learned goal classifier and leverages
the access to the transition model. This suggests that learning
goals is more sample-efficient than learning policies in such
domains and generalizes better to new maps.

Our model can be easily applied to environments with
image-based states, simply by changing the inputs of Io and
Go models to images. We evaluate our model in an image-
based Crafting World environment. It achieves 82.0% and
78.2% success rates on the compositional and novel splits,
respectively. Comparatively, the best baseline BC-FSM gets
38.2% and 31.5%. Details are in the supplementary material.

Planning with goals. We also evaluate RSGs on planning
with a single goal action term. These problems require a long
solution sequence, making them too difficult to solve with
a blind search from an initial state. Since there is no task
specification given, in order to solve the problems efficiently,

it is critical to use other dependent RSGs for search guidance.
We use 8 manually designed goal tests, each of which can
be decomposed into 2–5 subgoals. We run our hierarchical
search based on RSGs and the discovered dependencies.

We compare this method with two baselines: a blind
forward-search algorithm, and a hierarchical search based
on RSGs without discovered dependencies (i.e., by setting
the dependency matrix as a uniform distribution). We test
all three methods on 100 random initial states for each task.
Fig. 8 summarizes the result. Overall, RSGs with discovered
dependencies enables efficient searches for plans. On easier
tasks (2 or 3 subgoals), search with RSGs and dependencies
has a similar runtime as the baseline that searches without
dependencies. Both of them outperform the blind-search base-
line (about 2.4× more efficient when reaching a 70% success
rate). However, when the task becomes complex (4 or 5 sub-
goals), searching with RSGs and the discovered dependencies
significantly outperforms other alternatives. For example, to
reach a 70% success rate, searching with RSGs needs only
4,311 expanded nodes. By contrast, searching without RSGs
needs 19,220 (4.5×) nodes. Interestingly, searching with
RSGs but without discovered dependencies performs worse
than the blind-search baseline. We hypothesize that this is
because it wastes time on planning for unreasonable instruc-
tions. Overall, the effectiveness of RSGs with discovered
dependencies grows as the complexity of tasks grows.

Related Work
Modular policy learning and planning. Researchers have
been learning modular “policies” by simultaneously looking
at trajectories and reading task specifications in the form of
action term sequences (Corona et al. 2021; Andreas, Klein,
and Levine 2017; Andreas and Klein 2015), programs (Sun,
Wu, and Lim 2020), and linear temporal logic (LTL) formu-
las (Bradley et al. 2021; Toro Icarte et al. 2018; Tellex et al.
2011). However, they either require additional annotation
for segmenting the sequence and associating fragments with
labels in the task description (Corona et al. 2021; Sun, Wu,
and Lim 2020), or cannot learn models for planning (Tellex
et al. 2011). By contrast, RSGs learns useful subgoals from
demonstrations. We use a small but expressive subset of LTL
for task description, and jointly learn useful subgoals and
segment the demonstration sequence.

Our subgoal representation is also related to other mod-
els in domain control knowledge (de la Rosa and McIlraith
2011), goal-centric policy primitives (Park et al. 2020), macro
learning (Newton et al. 2007), options and hierarchical rein-
forcement learning (HRL; Sutton, Precup, and Singh 1999;
Dietterich 2000; Barto and Mahadevan 2003; Mehta 2011),
and methods that combine reinforcement learning and plan-
ning (Segovia-Aguas, Ferrer-Mestres, and Jonsson 2016;
Winder et al. 2020). However, the execution of subgoals
in RSGs is fundamentally different from options: each option
has a policy that we can follow to achieve the short-term goal,
while subgoals in RSGs should be refined with segments of
primitives by planning algorithms. Our planning algorithm is
similar to other approaches: (de la Rosa and McIlraith 2011;
Botvinick and Weinstein 2014; Winder et al. 2020), but they
do not leverage discovered dependencies between subgoals.
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Figure 8: RSGs applied to planning with a final goal. We do evaluation on 3 groups of planning tasks in the Crafting World
environment. We use 100 random initial states for each task. Each search method can expand up to 25,000 nodes.

Learning from demonstration. Learning from demonstra-
tion generally refers to building agents that can interact with
the environment by observing expert demonstrations (e.g.,
state-action sequences). Techniques for learning from demon-
stration can be roughly categorized into four groups: pol-
icy function learning (Chernova and Veloso 2007; Torabi,
Warnell, and Stone 2018), cost and reward function learn-
ing (Markus Wulfmeier and Posner 2015; Ziebart et al. 2008),
generative adversarial learning (Ho and Ermon 2016; Liu et al.
2022), and learning high-level plans (Ekvall and Kragic 2008;
Konidaris et al. 2012). We refer to Argall et al. (2009) and
Ravichandar et al. (2020) as comprehensive surveys. In this
paper, we learn useful subgoals that support planning, and
compare our model with methods that directly learn policies
and cost functions. Moreover, unlike those who use similari-
ties between different actions (Niekum et al. 2012) to segment
demonstrations, in RSGs, we segment the demonstration with
associate action terms by rationality assumptions of the agent.
Inverse planning. Our model is also related to inverse plan-
ning algorithms that infer agent intentions from behavior by
finding a task description t that maximizes the consistency
between the agent’s behavior and the synthesized plan (Baker,
Saxe, and Tenenbaum 2009). While existing work has largely
focused on modeling the rationality of agents (Baker, Saxe,
and Tenenbaum 2009; Zhi-Xuan et al. 2020) and more ex-
pressive task descriptions (Shah et al. 2018), our focus is on
leveraging the learned subgoals and their dependencies to
facilitate agent planning for novel tasks.
Unsupervised subgoal discovery. Our method is also related
to approaches for discovering subgoals from unlabelled tra-
jectories (Paul, Vanbaar, and Roy-Chowdhury 2019; Tang
et al. 2018; Kipf et al. 2019; Lu et al. 2021; Gopalakrish-
nan et al. 2021), mostly based on the assumption that the
trajectory can be decomposed into segments, and each seg-
ment corresponds to a subgoal. Some other approaches for
discovering subgoals are to detect “bottleneck” states (Men-
ache, Mannor, and Shimkin 2002; Şimşek, Wolfe, and Barto
2005) based on the state transition graphs. RSG differs from
these works in that we focus on learning the grounding of
action terms defined in task descriptions. Thus, RSGs are
associated with action terms and thus can be recomposed by
human users to describe novel tasks. It is a meaningful future

direction to combine learning from trajectory-only data and
trajectories with descriptions to improve the data efficiency.

Conclusion
We have presented a subgoal learning framework for long-
horizon planning tasks. The rational subgoals (RSGs) can be
learned by observing expert demonstrations and reading task
specifications described in a simple task language T L. Our
learning algorithm simultaneously segments the trajectory
into fragments corresponding to individual subgoals, and
learns planning-compatible models for each subgoal. Our
experiments suggest that our framework has strong composi-
tional generalization to novel tasks.

Limitation. The assumption of a deterministic environ-
ment has allowed us to focus on the novel RSG formulation
of subgoal models. For domains with substantial stochastic-
ity, the high-level concepts of RSGs could be retained (e.g.,
rationality), and algorithmic changes may be required such
as replacing maximum entropy IRL with maximum causal
entropy (Ziebart, Bagnell, and Dey 2010). Another limitation
of RSGs is that it can not leverage trajectories without la-
beled task descriptions. Future work may consider the jointly
learning of subgoals and subgoal structures of tasks (Vazquez-
Chanlatte et al. 2018; Chou, Ozay, and Berenson 2022).
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