
Fully Online Matching with Stochastic Arrivals and Departures

Zihao Li, Hao Wang, Zhenzhen Yan
Nanyang Technological University

zihao004@e.ntu.edu.sg, hao wang@ntu.edu.sg, yanzz@ntu.edu.sg

Abstract

We study a fully online matching problem with stochastic ar-
rivals and departures. In this model, each online arrival fol-
lows a known identical and independent distribution over a
fixed set of agent types. Its sojourn time is unknown in ad-
vance and follows type-specific distributions with known ex-
pectations. The goal is to maximize the weighted reward from
successful matches. To solve this problem, we first propose a
linear program (LP)-based algorithm whose competitive ratio
is lower bounded by 0.155 under mild conditions. We further
achieve better ratios in some special cases. To demonstrate
the challenges of the problem, we further establish several
hardness results. In particular, we show that no online algo-
rithm can achieve a competitive ratio better than 2

3
in this

model and there is no LP-based algorithm (with respect to
our proposed LP) with a competitive ratio better than 1

3
. Fi-

nally, we demonstrate the effectiveness and efficiency of our
algorithm numerically.

1 Introduction
Starting from the seminal work by Karp, Vazirani, and
Vazirani (1990), online matching has been a fundamental
research topic in online resource allocation. Many online
matching studies focus on online bipartite matching, where
vertices on one side are assumed to be known upfront, and
those on the other side arrive online. However, this set-
ting fails to model some modern applications, such as ride-
sharing, where all vertices arrive online and depart after a
sojourn time. This paper studies this general setting. In par-
ticular, all vertices arrive in the system in an online manner.
When a vertex arrives, the edges with the previously arrived
vertices are revealed. A vertex will be matched to another
unmatched neighboring vertex (linked to the vertex by an
incident edge) before its departure or be left unmatched and
depart. The goal is to maximize the total reward of success-
ful matches. We name this general problem a fully online
matching problem.

Fully online matching generalizes online bipartite match-
ing in several dimensions (e.g., from a bipartite graph to a
general graph, all agents arrive online) and is hence much
more complicated. There is limited literature on the related

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

study. Huang et al. (2020a) and Huang et al. (2020b) are in-
spiring ones. They assume that agents arrive and depart in
an adversary manner. Their goal is to maximize the num-
ber of matches. In contrast, in this paper we assume arrivals
follow an identical and independent (i.i.d.) probability dis-
tribution, which is a common assumption in online match-
ing literature (Huang, Shu, and Yan 2022; Huang and Shu
2021; Jaillet and Lu 2014; Feldman et al. 2009). Upon ar-
rival, each agent will stay in the system for a sojourn time
before leaving the system. We do not specify the exact dis-
tribution of the sojourn time but assume it follows a type-
specific distribution with known expectations. In addition,
we consider maximizing the edge-weighted reward of suc-
cessful matches. We claim the model settings considered in
this paper are more applicable in ride-sharing. The arrival
distribution can be easily estimated using customers’ arrival
data. However, the data on sojourn time is often less avail-
able. Hence we consider a distributionally free setting, with-
out assuming a specific distribution but require information
on the mean sojourn time. Finally, the rewards from differ-
ent paired agents are often different. Our model captures this
feature by maximizing the total weight of matched pairs.

Fully online matching has potential applications in vari-
ous domains besides ride-sharing. For example, in a chess
game platform, players join the platform in an online man-
ner and will wait for an opponent to match for only a limited
time. We can measure the quality of a match by the rating
difference between the two matched players. The platform’s
goal is to maximize the total quality of successful matches.
Another example is kidney exchange. Donors and recipi-
ents arrive in the market sequentially and stochastically. The
lifetime for recipients and kidneys is limited. They must be
matched within their lifetime, otherwise, they will be aban-
doned. The goal is to maximize the total matching quality.

Our Contributions
We summarize the main contributions as follows. We study a
fully online matching model with stochastic arrivals and de-
partures. In particular, the arrivals follow a known i.i.d. dis-
tribution, and the sojourn time before agents depart can fol-
low a large family of distributions with a known expectation.
The goal is to maximize the total weight (defined on edges)
of successful matches. The model settings are applicable in
a wide family of applications, including ride-sharing.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

12014

We design a distributionally free LP-based algorithm, and
investigate its performance measured by a competitive ratio,
see Theorem 4.6. Under mild assumptions, we prove that
the competitive ratio of our algorithm is at least 0.155, see
Corollary 4.7. Moreover, for some specific distributions, we
can achieve better competitive ratios, see Corollary 4.8, 4.9
and 4.10.

We further establish two hardness results to foreground
the technical challenges of the problem we study. We first
show no online algorithm can achieve a competitive ratio
of more than 2

3 , see Theorem 5.1. But if we restrict the al-
gorithms to LP-based algorithms with respect to the LP we
derive, we show that there exists no such online algorithm
with a competitive ratio larger than 1

3 , see Theorem 5.2.
We conduct extensive numerical studies to evaluate the

performance of our algorithms. Our algorithms can sig-
nificantly outperform the baseline algorithms from related
works in most parameter settings.

Related Work
There is extensive literature on online bipartite matching,
where there exists a set of offline vertices, and each online
vertex will be matched to an offline vertex immediately upon
its arrival or be rejected. A seminar work by (Karp, Vazi-
rani, and Vazirani 1990) considered maximizing the num-
ber of matches when agents arrive in an adversary setting.
Many works further consider generalizing the objective to
maximizing vertex-weighted (or edge-weighted) matching,
and the arrival process to a stochastic process (Feldman
et al. 2009; Aggarwal et al. 2011; Huang and Shu 2021;
Huang, Shu, and Yan 2022). To the best of our knowl-
edge, the best bound under a stochastic arrival model is
achieved by (Huang, Shu, and Yan 2022). They provided
a 0.716-competitive algorithm in a vertex-weighted setting
and a 0.706-competitive algorithm in an edge-weighted with
free disposal setting, i.e., each offline vertex can update its
matching vertex upon new arrivals.

Recently, fully online matching has attracted increasing
attention, where each vertex has its arrival and departure
time and can be matched anytime before it departs. In other
words, a delay in matching is allowed. Our paper lies in
this steam of research. Starting from a non-weighted set-
ting, Huang et al. (2020a,b, 2019); Eckl et al. (2021) studied
fully online matching with adversarial arrivals and depar-
tures, and provided a 0.569-competitive algorithm and hard-
ness results. Considering edge-weighted reward and assum-
ing fixed and identical sojourn time, Ashlagi et al. (2019)
proposed a 0.25-competitive algorithm when agents arrive
in an adversary manner and a 0.279-competitive algorithm
when the arrival sequence follows a random order model.
Several papers focus on the setting where both arrival and
departure follow a type-specific Poisson process. Collina
et al. (2021) proposed a 0.125-competitive algorithm for an
edge-weighted setting, where the goal is to maximize total
weights defined on edges. Aouad and Saritac (2019) stud-
ied a dynamic stochastic matching with the same arrival and
departure process. They model the problem as an infinite-
horizon continuous-time Markov decision process and pro-
vide an approximation policy that can achieve e−1

4e ≈ 0.158

of the optimality, in sharp contrast with the competitive ratio
for online matching problems. Our paper differs from those
papers in the following perspectives. First, all online vertices
arrive according to a known i.i.d. distribution. Second, we
don’t assume a specific type of distribution for agents’ so-
journ time. In other words, our algorithm works for a large
family of distributions with a known expectation and is ro-
bust when the distribution varies.

Another stream of literature models the delay in match-
ing by incorporating the delay cost in the total cost function
and makes the matching decision to minimize cost (Ashlagi
et al. 2016; Emek, Kutten, and Wattenhofer 2016; Azar and
Fanani 2020; Azar, Chiplunkar, and Kaplan 2017; Wang and
Bei 2022). It is in contrast to the modeling perspective in
fully online matching literature, where a hard constraint for
the match to be restricted in a time interval is imposed.

2 Preliminaries
We consider the following online matching problem. Given
an edge-weighted graph G = (V,E), each vertex v ∈ V
represents one agent type and each edge e = (x, y) ∈ E
connects two vertices x and y with a weight we ∈ R≥0.
Self-loops are allowed.

For the online process, we consider a given time horizon
of T . For each time t ∈ {1, 2, . . . , T}, one agent arrives and
is represented by (x, d), where x is the agent type in V and d
is the sojourn time of this agent. We define the sojourn time
by the number of future agents that an agent wants to wait
for. Hence the sojourn time follows a discrete distribution.

At each time, an online agent (x, d) is determined in the
following way. x is chosen from a known i.i.d. distribution
{pv} where

∑
v∈V pv = 1 and Pr[x = v] = pv for all v ∈

V . d is chosen from a discrete distribution Dx and unknown
to us until it departs. For each v ∈ V , we only know the
expectation Dv but not the specific distribution of Dv .

After an arrival, we can match some available vertex
pair(s) irrevocably. Here an available pair is a pair of ver-
tices (i, j) that have not departed or been matched, and are
connected, i.e., e = (xi, yj) ∈ E, where xi and yj are their
corresponding types. For each pair matched, we can gain a
reward we where e is its corresponding edge. Our goal is to
maximize the total reward over the whole time horizon.

Note that for each x, y ∈ V we can always add one edge
e = (x, y) with weight 0 in E and only retain the one with
the largest weight for reward maximization. Hence we as-
sume G is a complete graph in the following analysis for
simplicity, i.e., ∀x, y ∈ V , there exists exactly one edge
(x, y) in E. We use wxy and we for edge e = (x, y) in-
terchangeably in the following analysis.

Competitive ratio. We use competitive ratio to measure
the performance of online algorithms. For an online al-
gorithm ALG and an instance I of our problem, we use
ALG(I) to represent the expected total reward output by
ALG on I . Here, the expectation is taken over random ar-
rival sequences of online agents, the random sojourn time of
each online agent and the randomized (if needed) algorithm.
Similarly, we can define OPT(I) as the expected total re-
ward output by a clairvoyant optimal algorithm OPT, where

12015

this algorithm holds the information of all the subsequent
agents (x, d). We also call OPT(I) the offline optimal, and
we will drop I when there is no ambiguity. The competitive
ratio of ALG is defined as the minimum ratio of ALG(I)
over OPT(I) among all instances I of our problems.

3 Linear Programming Benchmark
To bound the competitive ratio, we first provide a linear pro-
gram to bound the OPT. We define a variable nxy for each
ordered pair (x, y) where x, y ∈ V . We then define a bench-
mark LP (1) as follows.

max
∑
x,y∈V

wxynxy (1)

s.t.
∑
y∈V

nxy +
∑
y∈V

nyx ≤ pxT, ∀x ∈ V, (1a)

nxy ≤ pxTpyDx, ∀x, y ∈ V, (1b)
nxy ≥ 0, ∀x, y ∈ V, (1c)

In LP (1), each variable nxy denotes the expected number
of times that an online agent of type y is matched to an
unmatched online agent of type x. Constraints (1a) upper
bound each type x’s total expected number of matches by
its expected number of occurrences. Constraints (1b) restrict
nxy by the total number of occurrences of the event that an
online agent of type y is in the sojourn time of x.

We then show in Lemma 3.1 that LP (1) is a relaxation
of the offline optimal. The intuition behind the proof is as
follows. We use n∗xy to denote the optimal solution to OPT.
We then show such {n∗xy} is a feasible solution to LP (1).
Due to the space limit, we move all the lemmas’ proof to the
technical appendix but include the proof sketch.
Lemma 3.1. For any instance I , the optimal value of LP (1)
is an upper bound of OPT(I).

For analysis convenience, we let αxy be nxy
pyT

for all x, y ∈
V . αxy ≤ 1 according to Constraints (1a). Then we can
reformulate LP (1) as LP (2), and we will use LP (2) in the
following analysis.

max
∑
x,y∈V

wxyαxypyT (2)

s.t.
∑
y∈V

αxypy +
∑
y∈V

αyxpx ≤ px, ∀x ∈ V, (2a)

αxy ≤ pxDx, ∀x, y ∈ V, (2b)
αxy ∈ [0, 1], ∀x, y ∈ V, (2c)

4 Approximation Algorithm
Inspired by the algorithm used in Collina et al. (2021), we
propose our LP-based Algorithm 1. In the algorithm, we set
the matching probability according to the optimal solution
{αxy} to LP (2). Specifically, the matching probability be-
tween an arriving agent of type y and an existing agent of
type x is set to γ · αx,y/(pxDx), where γ is a scaling pa-
rameter and the term 1/(pxDx) is designed to increase the

Algorithm 1: SAM(γ)
Input: Online arrivals of agents
Parameter: Scaling parameter γ ∈ (0, 1]

1: {αxy} := Solution to LP (2);
2: for each arriving agent i whose type is y ∈ V do
3: J := The multiset of types of unmatched agents;
4: for each type x ∈ J in a uniformly random order do
5: j := The corresponding unmatched agent of

type x;
6: Match i and j w.p. γ · αxy/(pxDx);
7: end for
8: end for

matching probability appropriately. The matching probabil-
ity is not greater than 1 according to Constraints (2b) and
γ ≤ 1. We use J to denote the multiset of types of all exist-
ing unmatched agents when an agent i of type y ∈ V arrives.
We enumerate all elements x in J in a uniformly random or-
der and match agent iwith the specific agent j of type xwith
the above probability (Lines 5-6 in Algorithm 1). When an
agent j is matched with i successfully, no further enumera-
tion is needed. Algorithm 1 is solvable in polynomial time
since LP (2) can be solved in polynomial time and the num-
ber of computations per arrival is O(|J |) where the size |J |
of the set J defined in Line 3 of Algorithm 1 can be bounded
by the maximum support among all Dvs of v ∈ V .

We next analyze the competitive ratio of Algorithm 1. In
the following analysis in this section, we assume the maxi-
mal value in the support of the distribution Dv is much lower
than T for each v ∈ V . The assumption is mild in ride-
sharing applications since the time horizon is much larger
than the possible sojourn time of every agent.

Analysis
Note that the total weight generated by OPT cannot be
greater than the optimal value of LP (2) from Lemma 3.1, we
can compare the performance of Algorithm 1 with the value
of LP (2) to get a lower bound of the competitive ratio. Thus,
the strategy of calculating the competitive ratio is to lower
bound the ratio between the expected number of successful
matches and the term αxypyT in the objective function of
LP (2), for each ordered pair (x, y), where x, y ∈ V . Here,
we only consider the pair (x, y) such that Dx > 0 since
agents of type x will not wait otherwise.

We assume an agent i of type y ∈ V arrives at time t.
We will calculate the probability of matching this agent to
an existing agent j of type x ∈ V who arrives at time t′ < t
by considering four events separately.

The first eventE1 is defined as an agent j of type x arrives
at time t′. From the known i.i.d. arrival setting we can easily
derive Lemma 4.1.

Lemma 4.1. The probability of E1 is px.

The second event is defined to calculate the probability of
the agent j who arrives earlier (at t′ < t) and is of type x be-
ing unmatched. We denote this event as E2. In our proof, we
use a vector ~b to store the information of unmatched agents

12016

at time t′, where each element bz equals the number of type
z in set J defined in Line 3 of Algorithm 1. By conditioning
on the probability distribution over ~b, we upper bound the
probability that there is one agent of type z ∈ V matching
to the agent j. By union bound, we get Lemma 4.2.
Lemma 4.2. The probability of E2 is at least 1− γ.

Next, we use E3 to represent the event that no arriving
agent between time t′ + 1 and t − 1 matches agent j given
the occurrence of events E1, E2.
Lemma 4.3. If Dx ≥ 1, the probability of E3 is at least
(1− γ/Dx)

t−t′−1.
The sketch of this proof is to first provide an upper bound

of the event that an arriving agent at time t′′ ∈ [t′+1, t− 1]
matches agent j. Using the independence between different
t′′, we prove Lemma 4.3.

The remaining is to measure the probability of the agent i
of type y matching the agent j of type x given the fact that
agent j is unmatched before time t. We denote this event as
E4.
Lemma 4.4. The probability ofE4 is at least γαxypxDx

(
1− γ

2

)
.

The intuition behind the proof is that there are two parts
needed to match i to j successfully. The first is that j can
be matched to i in Line 6 of Algorithm 1, and the second is
that all unmatched type z ∈ J that joins J earlier than the
agent j’s type x cannot match i successfully. The first can
be easily calculated, while the second needs to utilize the
uniformly random order of elements in J and apply similar
arguments as in the proof of Lemma 4.2.

Besides the analysis of the four events, we need to uti-
lize another lemma to calculate the total ratio between the
expected matching number of (x, y) and the term αxypyT ,
which can be proved by induction.

Lemma 4.5. (1−x)d ≤ 1−dx+ d(d−1)
2 x2, for all x ∈ [0, 1]

and all non-negative integer d.
Now we are ready to formally present our main result.

Theorem 4.6. Under the assumption that Dv ≥ 1 for all
v ∈ V , the competitive ratio of Algorithm 1 with param-
eter γ is at least γ(1 − γ)

(
1− γ

2

) (
1− γ

2 + γ
2C
)
, where

we define V arv as the variance of the distribution Dv and
C = minv∈V

Dv−V arv
D2
v

.

Proof. We assume the support set S of the distribution
Dx with probability qs of support s ∈ S. Fix agent i of
type y at time t, we want to calculate the expected match-
ing number of agent j of type x, which should be equal
to
∑
s∈S qs

∑t−1
t′=t−s Pr[E1]Pr[E2]Pr[E3]Pr[E4]. Here, be-

cause of the assumption that T � s and we will also enu-
merate all possible ts, the case that t−s < 1 can be ignored,
so we can directly start t′ from t− s but not max{1, t− s}.

Then, by observation, the lower bound of Pr[E1], Pr[E2]
and Pr[E4] don’t contain the term t′, we can directly
move these terms outside and only focus on the value∑
s∈S qs

∑t−1
t′=t−s Pr[E3], which is equal to∑

s∈S
qs

t−1∑
t′=t−s

(1− γ/Dx)
t−t′−1

=
∑
s∈S

qs
1− (1− γ/Dx)

s

γ/Dx

≥
∑
s∈S

qs
s · γ/Dx − 1

2s(s− 1) · (γ/Dx)2

γ/Dx

≥ Dx −
γ

2Dx

∑
s∈S

qs(s
2 − s)

= Dx +
γ

2
− γ

2Dx

(
V arx +D2

x

)
= Dx

(
1− γ

2
+
γ

2

Dx − V arx
D2
x

)
Here, the inequality is from Lemma 4.5. Since t can choose
from 1 to T and agent i of type y will arrive w.p. py , the total
expected number of ordered pairs (x, y) should be at least

Tpypx(1− γ)
γαxy
pxDx

(
1− γ

2

)
Dx

(
1− γ

2
+
γ

2
C
)

= Tpyαxyγ(1− γ)
(
1− γ

2

)(
1− γ

2
+
γ

2
C
)

where C = minv∈V
Dv−V arv

D2
v

.

Theorem 4.6 provides a lower bound of competitive ratio
with respect to γ and C. Note that C depends on the mean
and variance of the online arrivals’ sojourn time. In the re-
maining part, we will discuss several special types of distri-
butions to get their bounds. For each type, we can tune γ to
achieve the best bound.
Corollary 4.7. Under the assumptions thatDv ≥ V arv and
Dv ≥ 1 for all v ∈ V , the competitive ratio of algorithm 1 is
at least γ(1−γ)

(
1− γ

2

)2
. By setting γ∗ = 7−

√
17

8 ≈ 0.360,
the competitive ratio is at least 0.155.

We claim the assumptions in Corollary 4.7 are mild since
they hold for many classic discrete distributions, such as
binomial distribution, Poisson distribution, hypergeomet-
ric distribution, and geometric distribution with parameter
pG ≥ 0.5 (refer to technical appendix for the definition).

Specific Distributions
In this part, we will discuss several special types of the dis-
tributions Dv on the achieved competitive ratios. First, we
consider the case where the distribution Dv is a single-point
distribution, i.e., each type v ∈ V has fixed sojourn timeDv .
Corollary 4.8. Under the assumption that each type v ∈ V
has fixed sojourn timeDv , the competitive ratio of algorithm
1 is at least 0.159 by setting γ∗ ≈ 0.373.

Proof. Most are similar to the proof of Theorem 4.6. We
replace the inequality from Lemma 4.5 by the inequality
(1− x/d)

d ≤ e−x which is satisfied when x ∈ [0, 1] and d is
a positive number, and we have

∑
s∈S qs

∑t−1
t′=t−s Pr[E3] is

at least 1−e−γ
γ/Dx

. Thus, the total expected number of ordered
pair (x, y) is at least

Tpypx(1− γ)
γαxy
pxDx

(
1− γ

2

) 1− e−γ
γ/Dx

12017

= Tpyαxy(1− γ)
(
1− γ

2

)
(1− e−γ).

When γ ≈ 0.373, the competitive ratio is the largest, which
is ≈ 0.159.

Second, we consider three common discrete distribu-
tions: Poisson distribution Poi(λP), geometric distribution
Geo(pG) and binomial distribution B(nB , pB). The detailed
definitions of these distributions can be found in the tech-
nical appendix. The performance over these three distri-
butions will also be further evaluated in the following ex-
periments section. Since the expectation and the variance
of Poi(λP) are both λP , we get the same competitive ra-
tio as in Corollary 4.7 if λP ≥ 1. For the remaining two
distributions, from the simple expressions of the expecta-
tion and variance, we can transform the formula in Theorem
4.6 to γ(1 − γ)

(
1− γ

2

)
(1 − (1 − pG)γ) for Geo(pG) and

γ(1−γ)
(
1− γ

2

) (
1− γ

2 (1−
1
nB

)
)

for B(nB , pB) to get the
respective competitive ratios (see Corollaries 4.9 and 4.10,
respectively).
Corollary 4.9. Under the assumption that each distribution
Dv is a geometric distribution Geo(pGv), by setting γ∗ =
0.35, the competitive ratio of Algorithm 1 is at least 0.122+
0.066pG, where pG is the smallest pGv for all v ∈ V .

Corollary 4.10. Under the assumption that each distri-
bution Dv is a binomial distribution B(nBv , p

B
v) satisfying

Dv = nBv p
B
v ≥ 1, by setting γ∗ = 0.40, the competitive

ratio of Algorithm 1 is at least 0.154 + 0.038
nB

, where nB is
the largest nBv for all v ∈ V .

Compared to the results in Corollary 4.7, we can get a
better guarantee when pG > 0.5 and nB < 38, respectively.
Moreover, the above choice of γ∗ is from the consideration
of being able to achieve relatively good performance over all
possible values of pG and nB . If more refined ranges of pG
and nB are given, we can adjust the value of γ∗ to reach a
better performance.
Remark. Algorithm 1 can obtain a similar performance
guarantee if the arrivals of agents in each type v ∈ V
is driven by an independent Poisson arrival process (see
Huang and Shu (2021) for details) and the corresponding
Dv is an arbitrary (continuous or discrete) distribution with
non-negative support. Specifically, after modifying the state-
ments of some used lemmas such as Lemma 4.3, we can
show the competitive ratio of Algorithm 1 is at least γ(1 −
γ)
(
1− γ

2

) (
1− γ

2 + γ
2C
′), where C ′ = minv∈V

−V arv
D2
v

.

5 Hardness Results
In this section, we will present hardness results to demon-
strate the challenge of the problem considered in the pa-
per. We will first show that no online algorithm can reach
a competitive ratio better than 2

3 . Next, by restricting the al-
gorithms to LP-based online algorithms with respect to our
LP (2), we further show that no LP-based online algorithm
with respect to LP (2) can obtain a competitive ratio better
than 1

3 .
Theorem 5.1. No online algorithm can reach a competitive
ratio better than 2

3 .

Proof. We consider such an instance:

• T →∞ and V = {1, 2};
• p1 = ε and p2 = 1− ε where ε is significantly small;
• D1 and D2 are both single-point distributions where
D1 = 0 and D2 = 1;

• w(1,2) =
1

ε(1−ε) , w(1,1) = 0 and w(2,2) = 1;

We define f(t) as the expected value of t rounds output
by the online optimal algorithm given the first two agents are
of type 2 and define g(t) as the expected value of T rounds
output by the online optimal algorithm given the first agent
is of type 1. Our decision is needed only for each f(t) with
t ≥ 2.

For f(2), the optimal decision is to match the existing two
agents of type 2, which means f(2) = 1. For f(3), the value
is the maximum of q3·w(2,2)+(1−q3)·(p1·w(1,2)+p2·f(2)),
where q3 ∈ [0, 1] is the decision parameter such that we
match the existing two agents of type 2 with probability q3.
Since p1 ·w(1,2) =

1
1−ε > 1 = w(2,2), q3 = 0 is the optimal

strategy.
We next consider f(t) with t ≥ 4. We again denote qt ∈

[0, 1] as the decision parameter such that we match the first
two agents of type 2 with probability qt. If we match the
first two agents, we get the expected value 1 + p1 · (0 +
g(t − 2)) + p2p1 · (w(1,2) + g(t − 3)) + p2p2 · f(t − 2),
and we denote it by At, where the three terms except the
first one are corresponding to the following arrival sequence
of type (1), (2, 1) and (2, 2), respectively. If we don’t match
the first two agents, we get the expected value p1 · (w(1,2) +
g(t − 2)) + p2 · f(t − 1), and we denote it by Bt, where
these two terms corresponding to the following arrival type
1 and 2, respectively. The value with respect to qt is equal to
qtAt + (1− qt)Bt. f(t) is the optimum among them.

We then compare At and Bt. Since the representation of
Bt also holds for the case when t = 3, we replace f(t − 1)
in the representation of Bt by f(t− 1) ≥ Bt−1. So we have
Bt ≥ 1+ 1

1−ε+εg(t−2)+ε(1−ε)g(t−3)+(1−ε)2f(t−
2) > At. Thus, qt = 0 is the optimal strategy again.

To sum up, since f(2) = 1, the expected value output
by the online optimal algorithm is not greater than the sum
of the expected value output by the strategy which only
matches agents between type 2 and type 1 and one.

We now compare the expected values output by the offline
and the online optimal algorithm.

The offline optimal algorithm will match every pair of
the type sequence (2, 1), which is equal to p2p1Tw(1,2) +
o(T). Considering the expected matching number of type
sequence (2, 2), for every consecutive sequence of agents of
type 2, if the total number len is even, the matching number
is at least (len− 2)/2, while if the total number len is odd,
the matching number is (len − 1)/2. With the fact that the
total number of consecutive sequence is at most the number
of agents of type 1 plus 1, the expected matching number of
type sequence (2, 2) is lower bounded by p2−2p1

2 T + o(T).
Thus, the expected value output by the offline optimal algo-
rithm is p2p1Tw(1,2) +

p2−2p1
2 T + o(T).

Then, in the strategy which only matches agents be-
tween type 2 and type 1, the expected value is exactly

12018

p2p1Tw(1,2) + o(T). So the expected value output by the
online optimal algorithm is p2p1Tw(1,2) + o(T).

Replacing all the variables by ε and T , the competitive
ratio is 2

3(1−ε) , which is 2
3 when ε is significantly small.

To capture the hardness of our problem based on the
LP (2), we conclude the following theorem. The full proof
is shown in the technical appendix.

Theorem 5.2. No LP-based online algorithm with respect
to LP (2) can reach a competitive ratio better than 1

3 .

6 Experiments
In this section, we compare our algorithms to several base-
line algorithms over synthetic datasets to demonstrate the
effectiveness and efficiency of our algorithms.

Synthetic Datasets
We denote U(a, b) as the uniform distribution that samples
value from a to b uniformly, and Uint[a, b] as the integer
uniform distribution that samples integer value from a to b
(a and b are included) uniformly.

We generate a graph G = (V,E) with |V | = m = 100
and a parameter density q. Without loss of generality, we
set V = {1, 2, . . . ,m}. For each pair (x, y) ∈ V 2 and
x ≤ y, we generate a value w′xy from U(0, 1). If the value
w′xy ≥ 1− 2q

m+1 , we add two non-trivial (positive-weighted)
edges e = (x, y) and e = (y, x) with a weight we = w′xy to
the edge set E. For the rest of the cases, we add trivial edges
with wxy = 0. It is straightforward to see that q is approxi-
mately the ratio between the number of non-trivial edges and
the number of vertices (m). If a graph is sparse, q should be
small compared to 1. The probability pv of each type v is
randomly generated from U(0, 1), and then we normalize it
to satisfy

∑
v∈V pv = 1.

Three types of sojourn time distributions are tested:

• Geometric distribution Geo(pG): pG ∼ U(PG, 1) where
PG ∈ (0, 1) is a hyperparameter.

• Binomial distribution B(nB , pB): nB ∼ Uint[10, N
B]

and pB ∼ U(0, 1) where NB ≥ 10 is a hyperparameter.

• Poisson distribution Poi(λP): λP ∼ U(0, LP) where
LP ≥ 1 is a hyperparameter.

We assume the sojourn time of all vertices in a graph follows
the same type of distribution (geometric, binomial, or Pois-
son), and their distributions’ parameters are randomly gen-
erated from a probability distribution. For example, if we
assume vertices’ sojourn time follow a geometric distribu-
tion with PG = 0.5, then we will generate pGv ∼ U(0.5, 1)
for each vertex v ∈ V .

In summary, a problem instance I is defined by a graph
parametric by q and the type of distribution (geometric, bi-
nomial, or Poisson distribution) with its corresponding hy-
perparameter (PG, NB or LP). For all experiments, we set
T = 3000 which is much larger than the sojourn time of any
vertex under any tested distribution.

OPT 4.420 BAT 0.652
RCP 1.131 SAM0.5 0.696
GRD 0.016 SAM 0.737

Table 1: Average runtimes of different algorithms (second)

Baseline Algorithms
• RCP: This is the randomized compatibility policy from

Appendix B.3 of Aouad and Saritac (2019). We adjust it
to make it suitable for our model.

• GRD: Each arrival is matched to an available neighboring
vertex with an incident edge whose weight is the largest.

• BAT: This is the batching algorithm described in Section
4.1 of Ashlagi et al. (2019). We set the batch size as bd̃c+
1 where d̃ is the expected sojourn time over all types.

• SAM0.5: Algorithm 1 with γ = 0.5.
• SAM: Algorithm 1 with γ = 0.36.

Here we test two different γs for Algorithm 1. SAM uses
γ = 0.36 which is suggested by Corollary 4.7 for theoretical
analysis. However, we note that SAM may be too conserva-
tive in practice. Hence, we would like to test a larger value.
γ = 0.5 is selected since its associated lower bound for the
competitive ratio is 0.141 according to Corollary 4.7, which
is not bad in the theoretical bound but turns out to generate
much better performance in expectation (the results will be
discussed later). Note that we have tried many values for γ
and obtained similar insights. These two values are chosen
without loss of generality.

Performance criterion. Let r denote a realization of our
generated instance and R as the set of r that we test. We
use empirical competitive ratio (ECR) as our performance
criterion for an algorithm ALG: ECR =

∑
r∈R ALG(r)∑
r∈R OPT(r) where

ALG(r) is the reward if we run ALG for r and OPT(r) is
the hindsight optimal for r. For each parameter setting, we
test |R| = 50 realized sequences.
Runtime. We list the average runtimes of different algo-
rithms in Table 1. The parameters are q = 2.5 and geometric
distribution with PG = 0.5. We use Gurobi (Gurobi Opti-
mization 2022) as our solver. We use a computer with 2.2
GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 mem-
ory and Intel Iris Pro 1536 MB Graphics to run all the exper-
iments. In this parameter setting, the most time-consuming
benchmark is OPT and the runtimes of our algorithm are
comparable with other baselines except the simple GRD al-
gorithm which shows that our algorithms are efficient. Other
parameter settings obtain similar results.

Results
Results are shown in Figures 1 and 2. In general, SAM0.5
outperforms other baselines by at least 10% in most param-
eter settings and SAM can dominate other baselines (except
SAM0.5) in around 1

3 test settings. As discussed earlier, SAM
is too conservative to achieve a good performance in expec-
tation, although it generates a good lower bound of the com-
petitive ratio. SAM0.5 is good in both theoretical analysis
and practice.

12019

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

q

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55
E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(a) Geo. Dist. PG = 0.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

q

0.1

0.2

0.3

0.4

0.5

0.6

E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(b) Bin. Dist. NB = 30

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

q

0.2

0.3

0.4

0.5

0.6

E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(c) Poi. Dist. LP = 10

Figure 1: Performance of different algorithms w.r.t. different distributions and densities, q = 1.0, 1.5, . . . , 5.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PG

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(a) Geo. Dist., PG = 0.1, 0.2, . . . , 0.9

20 30 40 50 60 70 80 90 100
NB

0.1

0.2

0.3

0.4

0.5

0.6
E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(b) Bin. Dist. NB = 20, 30, . . . , 100

2 4 6 8 10 12 14 16 18 20
LP

0.1

0.2

0.3

0.4

0.5

0.6

E
m

p
ir

ic
a
l
C

o
m

p
e
ti

ti
v
e
 R

a
ti

o

RCP

GRD

BAT

SAM0.5

SAM

(c) Poi. Dist., LP = 2, 4, . . . , 20

Figure 2: Performance of different algorithms w.r.t. different distributions, q = 2.5

Sparsity. Figure 1 compares the performance under dif-
ferent distributions and densities with fixed hyperparame-
ters. We can see that our algorithms’ performance is stable
when the density changes and SAM0.5 consistently outper-
forms all the other tested algorithms in all cases. In contrast,
BAT, as the best baseline algorithm, does not perform as ro-
bust as ours. Its performance drops significantly when q de-
creases. However, in practice, the graph is often sparse. For
instance, in ride-sharing, a non-trivial edge only exists be-
tween two vertices with close locations and arrival times. In
other words, the advantage of our algorithms becomes more
significant in applications with a sparse graph.

Diversity. Figure 2 compares the performance under dif-
ferent distributions and hyperparameters when fixing q =
2.5. Recall that the parameter of each vertex’s distribution
for sojourn time is uniformly generated from an interval de-
fined by a hyperparameter (PG, NB , or LP). The change of
the hyperparameter will lead to different levels of diversity
among agents (in terms of their sojourn time). For instance,
for geometric distribution, when PG decreases, the range to
sample pG for sojourn time’s distribution gets larger, which
leads to a higher level of diversity. In this case, BAT and
GRD’s performance drops significantly whereas our algo-
rithms continue their good performance. This pattern is less
significant for the other two distributions. But SAM0.5 con-
sistently performs the best among all cases and outperforms

the second-best algorithm by at least 10%.
In summary, our algorithms perform consistently well in

all test cases and the advantage over the baseline algorithms
is especially significant in a sparse graph with heteroge-
neous agents, which makes our algorithms practically rel-
evant.

7 Conclusions
In this paper, we study a general fully online matching
model with stochastic arrivals and departures. We provide an
LP benchmark for this problem and based on this LP, we de-
sign an algorithm with at least a 0.155 competitive ratio. Our
algorithm applies to a large family of departure distributions
with a performance guarantee. To demonstrate the challenge
of the problem, we further provide several hardness results.
Specifically, we show that no algorithm can achieve a com-
petitive ratio better than 2

3 and no algorithm based on our LP
can achieve a ratio better than 1

3 . Finally, we demonstrate the
effectiveness and efficiency of our algorithm by conducting
extensive numerical studies.

Acknowledgments
The research of Z. Yan was partly supported by Nanyang
Technological University startup grant and MOE Aca-
demic Research Fund Tier 1 [Grant RG17/21] and Tier
2 [Grant MOE2019-T2-1-045] and NOL Fellowship grant
[NOL21RP04].

12020

References
Aggarwal, G.; Goel, G.; Karande, C.; and Mehta, A. 2011.
Online vertex-weighted bipartite matching and single-bid
budgeted allocations. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms,
1253–1264. SIAM.
Aouad, A.; and Saritac, O. 2019. Dynamic Stochastic
Matching Under Limited Time. SSRN Scholarly Paper ID
3497624, Social Science Research Network, Rochester, NY.
Ashlagi, I.; Azar, Y.; Charikar, M.; Chiplunkar, A.; Geri, O.;
Kaplan, H.; Makhijani, R.; Wang, Y.; and Wattenhofer, R.
2016. Min-cost Bipartite Perfect Matching with Delays. 20.
Ashlagi, I.; Burq, M.; Dutta, C.; Jaillet, P.; Saberi, A.;
and Sholley, C. 2019. Edge Weighted Online Windowed
Matching. In Proceedings of the 2019 ACM Conference on
Economics and Computation, 729–742. Phoenix AZ USA:
ACM. ISBN 978-1-4503-6792-9.
Azar, Y.; Chiplunkar, A.; and Kaplan, H. 2017. Polylog-
arithmic bounds on the competitiveness of min-cost per-
fect matching with delays. In Proceedings of the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 1051–
1061. SIAM.
Azar, Y.; and Fanani, A. J. 2020. Deterministic min-cost
matching with delays. Theory of Computing Systems, 1–21.
Collina, N.; Immorlica, N.; Leyton-Brown, K.; Lucier,
B.; and Newman, N. 2021. Dynamic Weighted Match-
ing with Heterogeneous Arrival and Departure Rates.
arXiv:2012.00689 [cs]. ArXiv: 2012.00689.
Eckl, A.; Kirschbaum, A.; Leichter, M.; and Schewior, K.
2021. A stronger impossibility for fully online matching.
Operations Research Letters, 49(5): 802–808.
Emek, Y.; Kutten, S.; and Wattenhofer, R. 2016. Online
matching: haste makes waste! In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing,
333–344.
Feldman, J.; Mehta, A.; Mirrokni, V.; and Muthukrishnan,
S. 2009. Online stochastic matching: Beating 1-1/e. In 2009
50th Annual IEEE Symposium on Foundations of Computer
Science, 117–126. IEEE.
Gurobi Optimization, L. 2022. Gurobi Optimizer Reference
Manual. https://www.gurobi.com. Accessed: 2022-10-01.
Huang, Z.; Kang, N.; Tang, Z. G.; Wu, X.; Zhang, Y.; and
Zhu, X. 2020a. Fully Online Matching. Journal of the ACM,
67(3): 17:1–17:25.
Huang, Z.; Peng, B.; Tang, Z. G.; Tao, R.; Wu, X.; and
Zhang, Y. 2019. Tight Competitive Ratios of Classic Match-
ing Algorithms in the Fully Online Model. In Proceedings
of the 2019 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), Proceedings, 2875–2886. Society for In-
dustrial and Applied Mathematics.
Huang, Z.; and Shu, X. 2021. Online Stochastic Match-
ing, Poisson Arrivals, and the Natural Linear Program.
arXiv:2103.13024 [cs]. ArXiv: 2103.13024.
Huang, Z.; Shu, X.; and Yan, S. 2022. The Power of Multiple
Choices in Online Stochastic Matching. arXiv:2203.02883
[cs]. ArXiv: 2203.02883.

Huang, Z.; Tang, Z. G.; Wu, X.; and Zhang, Y. 2020b. Fully
Online Matching II: Beating Ranking and Water-filling. In
2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS), 1380–1391. ISSN: 2575-8454.
Jaillet, P.; and Lu, X. 2014. Online Stochastic Matching:
New Algorithms with Better Bounds. Mathematics of Oper-
ations Research, 39(3): 624–646.
Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990. An
optimal algorithm for on-line bipartite matching. In Pro-
ceedings of the twenty-second annual ACM symposium on
Theory of computing, 352–358.
Wang, H.; and Bei, X. 2022. Real-Time Driver-Request As-
signment in Ridesourcing. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(4): 3840–3849.

12021

