
Learning-Augmented Algorithms for Online TSP on the Line

Themistoklis Gouleakis1, Konstantinos Lakis2, Golnoosh Shahkarami3

1National University of Singapore
2ETH Zürich

3Max Planck Institute for Informatics, Universität des Saarlandes
tgoule@nus.edu.sg, klakis@student.ethz.ch, gshahkar@mpi-inf.mpg.de

Abstract

We study the online Traveling Salesman Problem (TSP) on
the line augmented with machine-learned predictions. In the
classical problem, there is a stream of requests released over
time along the real line. The goal is to minimize the makespan
of the algorithm. We distinguish between the open variant and
the closed one, in which we additionally require the algorithm
to return to the origin after serving all requests. The state of
the art is a 1.64-competitive algorithm and a 2.04-competitive
algorithm for the closed and open variants, respectively. In
both cases, a tight lower bound is known.
In both variants, our primary prediction model involves pre-
dicted positions of the requests. We introduce algorithms that
(i) obtain a tight 1.5 competitive ratio for the closed variant
and a 1.66 competitive ratio for the open variant in the case
of perfect predictions, (ii) are robust against unbounded pre-
diction error, and (iii) are smooth, i.e., their performance de-
grades gracefully as the prediction error increases.
Moreover, we further investigate the learning-augmented set-
ting in the open variant by additionally considering a predic-
tion for the last request served by the optimal offline algo-
rithm. Our algorithm for this enhanced setting obtains a 1.33
competitive ratio with perfect predictions while also being
smooth and robust, beating the lower bound of 1.44 we show
for our original prediction setting for the open variant. Also,
we provide a lower bound of 1.25 for this enhanced setting.

Introduction
The Traveling Salesman Problem (TSP) is one of the most
fundamental and widely studied problems in computer sci-
ence, both in its offline version (Lawler 1985), where the
input is known in advance, and the online version (Ausiello
et al. 2001) where it arrives sequentially. In this paper, we
consider the online Traveling Salesman Problem (TSP) on
the real line. This version of the problem arises in real-world
scenarios such as one dimensional delivery/collection tasks.
Such tasks include the operation of elevator systems, robotic
screwing/welding, parcel collection from massive storage
facilities and cargo collection along shorelines (Ascheuer
et al. 1999; Psaraftis et al. 1990). An illustrative example,
which was also described in (Chen et al. 2019), is the fol-
lowing. Consider a robot that is used in a row of storage

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shelves in an intelligent warehouse of a large shipping com-
pany. This robot is tasked with moving left and right on the
aisle to collect the items ordered by customers. However,
these orders arrive online, meaning that the release time and
location of the item are only revealed at the time of order.
The goal is to route the robot such that it collects and returns
all the items as soon as possible, minimizing the makespan
as it is called. This practically interesting task is indeed cap-
tured by the theoretical framework of online TSP on the line.
The offline version of the problem can be solved in quadratic
time (Bjelde et al. 2021), therefore the difficulty lies in the
late availability of the input, such as the locations of the re-
quests. However, the great availability of data as well as the
improved computer processing power and machine learning
algorithms can make it possible for predictions to be made
on these locations (e.g combining information from histor-
ical data, events that may affect demand of stored items,
etc). In a line of work that started a few years ago (Lykouris
and Vassilvtiskii 2018) and sparked a huge interest (Purohit,
Svitkina, and Kumar 2018; Antoniadis et al. 2020a; Golla-
pudi and Panigrahi 2019; Wang and Li 2020; Angelopoulos
et al. 2020; Wei 2020; Rohatgi 2020), it has been demon-
strated that such prior knowledge about the input of an on-
line algorithm has the potential to achieve improved perfor-
mance (i.e competitive ratio) compared to known algorithms
(or even lower bounds) that do not use (resp. assume the ab-
sence of) any kind of prediction. Therefore, it is natural to
consider ways to utilize this information in this problem us-
ing a so-called learning-augmented approach.

The input to our online algorithm consists of a set of re-
quests, each associated with a position on the real line as
well as a release time. An algorithm for this problem faces
the task of controlling an agent that starts at the origin and
can move with at most unit speed. The agent may serve a
request at any time after it is released. The algorithm’s ob-
jective is to minimize the makespan, which is the total time
spent by the agent before serving all requests. We have two
different variants of the problem, depending on whether the
agent is required to return to the origin after serving all the
requests or not. This requirement exists in the closed vari-
ant, while it does not in the open variant. The makespan in
the closed variant is the time it takes the agent to serve the
requests and return to the origin.

We quantify the performance of an online algorithm by its

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11989

competitive ratio, i.e., the maximum ratio of the algorithm’s
cost to that of an optimal offline algorithm OPT , over all
possible inputs. We say that an algorithm with a competitive
ratio of c is c-competitive. Under this scope, the online TSP
on the line has been extensively studied and there have been
decisive results regarding lower and upper bounds on the
competitive ratio for both variants of the problem. Namely, a
tight bound of≈ 1.64 was given for the closed variant, while
the corresponding value for the open variant was proven to
be ≈ 2.04 (Ausiello et al. 2001; Bjelde et al. 2021). How-
ever, no previous work exists for the learning-augmented
setting of the problem, and neither does for the learning-
augmented setting of any other restriction of the online TSP
on general metric spaces. We address this shortcoming in
this work.

Our Setup
First of all, to define our prediction model and algorithms,
it is necessary to know the number of requests n1. This set-
ting shows up in various real world scenarios. For exam-
ple, in the case of item collection from a horizontal/vertical
storage facility, the capacity of the receiving vehicle, which
awaits the successful collection of all items in order to de-
liver them to customers, dictates the number of items to be
collected. We note that since n is known, we can assume
that each prediction corresponds to a specific request de-
termined by a given labeling, which is shared by both sets
(requests and predictions). Under this assumption, we de-
fine the LOCATIONS prediction model. In this model,
the predictions are estimates for the positions of the requests.
The error η increases along with the maximum distance of
a predicted location to the actual location of the identically
labeled request and is normalized by the length of the small-
est interval containing the entire movement of the optimal
algorithm. We also define an enhanced prediction model for
the open variant named LOCATIONS + FINAL (LF
in short) that additionally specifies a request which is pre-
dicted to be served last by OPT . In this model, we addi-
tionally consider the error metric δ, which increases with
the distance of the predicted request to the request actually
served last by OPT . We also normalize δ in the same way
as η. These models and their respective errors are defined
formally in the Preliminaries section.

Properties of Learning-Augmented Algorithms. In the
following we formalize the consistency, robustness and
smoothness properties. We say that an algorithm is:

1) α-consistent, if it is α-competitive with no prediction
error.

2) β-robust, if it is β-competitive with any prediction er-
ror.

3) γ-smooth for a continuous function γ(err), if it is
γ(err)-competitive, where err is the prediction error. Note

1Since this (slightly) modifies the original problem definition,
the previous competitive ratio lower bound results for the classical
problem do not necessarily hold for our setup even without predic-
tions. We show in the full version of the paper that the lower bound
of 1.64 still holds for the closed variant and that a tight lower bound
of 2 holds for the open variant.

that err could potentially be a tuple of different errors.
In general, if c is the best competitive ratio achievable

without predictions, it is desirable to have α < c, β ≤ k · c
for some constant k and also the function γ should increase
from α to β along with the error err. We note that c, α, β
and the outputs of γ may be functions of the input and not
constant in that regard.

Our Contributions
Throughout this paper, we give upper and lower
bounds for our three different settings (closed variant-
LOCATIONS, open variant-LOCATIONS, and open
variant-LOCATIONS + FINAL). These settings are
deterministic, i.e. the algorithms do not have access to
random numbers. We do not consider any randomized
settings in this work. The lower bounds refer to the case
of perfect predictions and are established via different
attack strategies. That is, we describe the actions of an
adversary ADV , who can control only the release times of
the requests and has the goal of maximizing the competitive
ratio of any algorithm ALG. We emphasize that ADV is
given the power to observe ALG’s actions and act accord-
ingly. In more detail, ADV does not need to specify the
release times in advance, but can release a request at time
t, taking the actions of ALG until time t into account. This
is, in fact, the most powerful kind of adversary. The upper
bounds are established via our algorithms and are defined
for every value of the error(s). Recall that η and δ refer
to the two types of error we consider. Our algorithms and
attack strategies are intuitively described in their respective
sections. We now present the main ideas and our results.

Closed Variant under LOCATIONS. We will start by in-
tuitively describing our algorithm for this setting and then
continue with our lower bound. We design the algorithm
FARFIRST . The main idea is that we first focus entirely
on serving the requests on the side with the furthest extreme,
switching to the other side when all such requests are served.
When serving the requests on one side, we prioritize them by
order of decreasing amplitude. The intuition is that we have
the least possible amount of leftover work for our second
departure from the origin, which limits the ways in which
an adversary may attack us. We obtain the theorem below.
More details are given in the ”Closed Variant” section.
Theorem 1 FARFIRST is min {f(η), 3}-competitive,
where f(η) is the following function.

f(η) =
3(1 + η)

2

We emphasize that for η = 0, this competitive ra-
tio remarkably matches our lower bound of 1.5, making
FARFIRST optimal.

Our lower bound for this setting is accomplished via an at-
tack strategy that is analogous to a cunning magician’s trick.
Suppose that the magician keeps a coin inside one of their
hands. They then ask a pedestrian to make a guess for which
hand contains the coin. If the pedestrian succeeds, they get
to keep the coin. However, the magician can always make it
so that the pedestrian fails, for example by having a coin up

11990

each of their sleeves and producing the one not chosen by the
pedestrian. One can draw an analogy from this trick to our
attack strategy, which is described in the ”Closed Variant”
section in more detail.

Theorem 2 For any ϵ > 0, no algorithm can be (1.5− ϵ)-
competitive for closed online TSP on the line under the
LOCATIONS prediction model.

Open Variant under LOCATIONS. The algorithm we
present for this setting is named NEARFIRST . This al-
gorithm first serves the requests on the side opposite to
the one FARFIRST would choose. Another divergence
from FARFIRST that should be noted is that for the
side focused on second, NEARFIRST prioritizes requests
that are predicted to be closer to the origin, since there is
no requirement to return to it, thus avoiding unnecessary
backtracking. More details about the algorithm and a proof
sketch of the following theorem are given in the relevant sec-
tion further in the paper, in the section ”Open Variant”.

Theorem 3 NEARFIRST is min {f(η), 3}-competitive,
for the following function f(η).

f(η) =

{
1 + 2(1+η)

3−2η , for η < 2
3

3, for η ≥ 2
3

As in the previous setting, we utilize the ”magician’s
trick” in order to design a similar attack strategy. We de-
scribe exactly how this is done in the corresponding section
for the open variant under LOCATIONS. This leads to the
establishment of a lower bound, as stated below.

Theorem 4 For any ϵ > 0, no algorithm can be
(
1.44− ϵ

)
-

competitive for open online TSP on the line under the
LOCATIONS prediction model.

Open Variant under LOCATIONS+FINAL. Our algo-
rithmic approach to this setting is again similar to the one
implemented in NEARFIRST . The difference is that in-
stead of choosing the side with the near extreme first, we
choose the side whose extreme is further away from the pre-
dicted endpoint of OPT . We name this algorithm PIV OT ,
to emphasize that the prediction for the last request acts as a
pivot for the algorithm to decide the first side it will serve.
A theorem about PIV OT is presented below, for which a
proof sketch has been given in the corresponding section.

Theorem 5 PIV OT is min {f(η, δ), 3}-competitive, for
the function f(η, δ) below.

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0

For this setting, we reuse the attack strategy initially de-
signed for the closed variant. The only difference is that we
add another request at the origin with a release time of 4.
We explain how we derive the following theorem in the cor-
responding section.

Theorem 6 For any ϵ > 0, no algorithm can be (1.25− ϵ)-
competitive for open online TSP on the line under the LF
prediction model.

Setting L.B. U.B. Best known

Closed 1.64 1.64 1.64

Closed - LOC. 1.5 1.5 min
{

3(1+η)
2

, 3
}

Open 2 2 2

Open - LOC. 1.44 1.66 min
{
1 + 2(1+η)

3−2η
, 3
}

Open - L.F. 1.25 1.33 min
{
1 + 1+2(δ+3η)

3−2(δ+2η)
, 3
}

Table 1: Summary of results. L.B. and U.B. stand for lower
and upper bound respectively. LOC. stands for LOCA-
TIONS and L.F. stands for LOCATIONS+FINAL.

We briefly summarize our results in Table 1. Note that the
lower and upper bound entries correspond to the no error
case. We strongly emphasize that these results are for the
case where the number of requests n is known. All missing
proofs can be found in the full version of the paper along
with an assessment of our algorithms using synthetic data.

Related Work
Online TSP. The online TSP for a general class of metric
spaces has been studied in (Ausiello et al. 2001), where the
authors show lower bounds of 2 for the open variant and 1.64
for the closed variant. These bounds are actually shown on
the real line. Additionally, a 2.5-competitive algorithm and a
2-competitive algorithm are given for the general open and
closed variants respectively. A stronger lower bound of 2.04
was shown for the open variant in (Bjelde et al. 2021), where
both bounds are also matched in the real line. For the restric-
tion of the closed online TSP to the non-negative part of the
real line, (Blom et al. 2001) give a tight 1.5-competitive al-
gorithm. By imposing a fairness restriction on the adversary,
they also obtain a 1.28-competitive algorithm. In (Jaillet and
Wagner 2006), the authors introduce the ”online TSP with
disclosure dates”, where each request may also be commu-
nicated to the algorithm before it is released. The authors
show improvements to the competitive ratio of various pre-
vious algorithms as a function of the difference between dis-
closure and release dates.

Learning-Augmented Algorithms. Learning-augmented
algorithms have received significant attention since the sem-
inal work of (Lykouris and Vassilvtiskii 2018), where they
investigated the online caching problem with predictions.
Based on that model, (Purohit, Svitkina, and Kumar 2018)
proposed algorithms for the ski-rental problem as well as
non-clairvoyant scheduling. Subsequently, (Gollapudi and
Panigrahi 2019), (Wang and Li 2020), and (Angelopoulos
et al. 2020) improved the initial ski-rental problem. The lat-
ter also proposed algorithms with predictions for the list
update and bin packing problem and demonstrated how to
show lower bounds for algorithms with predictions. Several
works, including (Rohatgi 2020), (Antoniadis et al. 2020a),
and (Wei 2020), improved the initial results regarding the
caching problem.

11991

The scheduling problems with machine-learned advice
have been extensively studied in the literature. In (Moseley
et al. 2020), the makespan minimization problem with re-
stricted assignments was considered, while (Mitzenmacher
2020) used predicted job processing times in different
scheduling scenarios. The works of (Bamas et al. 2020)
and (Antoniadis, Ganje, and Shahkarami 2021) focused on
the online speed scaling problem using predictions for work-
loads and release times/deadlines, respectively.

There is literature on classical data structures. Examples
include the indexing problem, (Kraska et al. 2018), bloom
filters, (Mitzenmacher 2018). Further learning-augmented
approaches on online selection and matching problems (An-
toniadis et al. 2020b; Dütting et al. 2021) and a more general
framework of online primal-dual algorithms (Bamas, Mag-
giori, and Svensson 2020) also emerged, and there is a sur-
vey (Mitzenmacher and Vassilvitskii 2020).

Independent Work. Compared to the problem considered
in this paper, a more general one, the online metric TSP, as
well as a more restricted version in the half-line, have been
studied in (Bernardini et al. 2022) under a different setting,
concurrently to our work. We note that only the closed vari-
ant is considered in (Bernardini et al. 2022). Since the pre-
diction model is different (predictions for the positions as
well as release times of the requests are given) and a differ-
ent error definition is used, the results are incomparable.

Preliminaries
The Problem Definition. In the online TSP on the line,
an algorithm controls an agent that can move on the real line
with at most unit speed. We have a set Q = {q1, . . . , qn} of
n requests. We emphasize that for this problem definition,
the algorithm receives the value n as input. Each request
q has an associated position and release time. To simplify
notation, whenever a numerical value is expected from a re-
quest q (for a calculation, finding the minimum of a set etc.)
the term q will refer to the position of the request. When-
ever we need the release time of a request, we shall use
rel(q). Additionally, the algorithm receives as input a set
P = {p1, . . . , pn} of predictions regarding the positions of
the requests. That is, each pi attempts to approximate qi. We
assume without loss of generality that Q always contains a
request q0 at the origin with release time 0 and that P con-
tains a perfect prediction p0 = 0 for this request2.

We use t to quantify time. To describe the position of
the agent of an algorithm ALG at time t ≥ 0, we use
posALG(t). We may omit this subscript when ALG is clear
from context. We can assume without loss of generality that
pos(0) = 0. The speed limitation of the agent is given for-
mally via |pos(t′) − pos(t)| ≤ |t′ − t|, ∀t, t′ ≥ 0. A re-
quest q is considered served at time t if ∃ t′ : pos(t′) =
q, rel(q) ≤ t′ ≤ t, i.e., the agent has moved to the request
no earlier than it is released. We will say that a request q

2This can be seen to be without loss of generality by
considering a ”handler” algorithm ALG0 which adds this re-
quest/prediction pair to any input and copies the actions of any
of our algorithms ALG for the modified input. We observe that
|OPT | is unchanged and |ALG0| = |ALG|.

is outstanding at time t, if ALG has not served it by time t,
even if rel(q) > t, i.e. q has not been released yet. Let tserve
denote the first point in time when all requests have been
served by the agent. Also, let |ALG| denote the makespan
of an algorithm ALG, for either of the two variants. Then,
for the open variant |ALG| = tserve while for the closed one
|ALG| = min{t : pos(t) = 0, t ≥ tserve}. For any sen-
sible algorithm, this is equivalent to tserve + |pos(tserve)|,
since the algorithm knows the number of requests and will
immediately return to the origin after serving the last one.
The objective is to minimize the value |ALG|, utilizing the
predictions.

Notation. We define L = min(Q) and R = max(Q). Re-
call that Q contains a request at the origin and thus L ≤ 0
and R ≥ 0. We refer to each of these requests as an extreme
request. If |L| > |R|, we define Far = L,Near = R. Oth-
erwise, Far = R,Near = L. That is, Far is the request
with the largest distance from the origin out of all requests.
Then, Near is simply the other extreme. We will also refer
to the value |q| as q’s amplitude. We will say that a prediction
p is (un)released/outstanding/served if the associated request
q is (un)released/outstanding/served.

The LOCATIONS Prediction Model. We now introduce
the LOCATIONS prediction model. Let q1, ..., qn be a la-
beling of the requests in Q. The predictions consist of the
values p1, ..., pn, where each pi attempts to predict the posi-
tion of qi.

Error Definition for the LOCATIONS Prediction Model.
To give an intuition for the metric we will introduce, let us
first describe what it means for a prediction to be bad. In any
well-posed definition, the further pi is from qi, the worse it
should be graded. However, we must also take into account
the ”scale” of the problem, meaning the length of the inter-
val [L,R] that must be traveled by any algorithm, including
OPT . The larger this interval, the more lenient our penalty
for pi should be. Therefore, we define the error as

η[Q,P] =
maxi{|qi − pi|}
|L|+ |R|

.

Additionally, we define M = η · (|L|+ |R|).

An Important Lemma for the LOCATIONS Prediction
Model. We now present a lemma about this prediction
model that will be used widely in our proofs and that con-
tains intuitive value.

Lemma 1 Let LP = min(P), RP = max(P). Then,
|LP | ≥ |RP | implies |L| ≥ |R| − 2M , and |RP | ≥ |LP |
implies |R| ≥ |L| − 2M .

Enhanced Prediction Model for the Open Variant. Mo-
tivated by the performance of our algorithm under the
LOCATIONS prediction model, we enhance it with a pre-
diction f ′ which attempts to guess the label f of a request on
which OPT may finish. We name this new model LF (short
for LOCATIONS + FINAL). The error η is unchanged.
We also introduce a new error metric δ. Let qf ′ be the re-
quest associated with the prediction pf ′ . We then choose qf

11992

to be a request on which OPT may finish that minimizes the
distance to qf ′ . We then define the new error as

δ[Q, qf , qf ′] =
|qf ′ − qf |
|L|+ |R|

.

Similarly to before, we define ∆ = δ · (|L|+ |R|).

Justification of the LOCATIONS + FINAL Model.
This prediction model might in first glance seem arbitrary,
but we argue that it is a natural one and that a machine
learning model for it can be trained in practice. As we have
previously mentioned, the offline version of the TSP on the
line admits a quadratic time solution. Therefore, the optimal
solutions of past instances can easily be calculated in retro-
spect. From these solutions we can extract the final request
served by OPT . We can then use this in our training data
along with any other information deemed relevant.

Closed Variant
In this section, we consider the closed variant under
the LOCATIONS prediction model. We provide the
FARFIRST algorithm, which obtains a competitive ratio
of 1.5 with perfect predictions and is also smooth and ro-
bust. Additionally, we give an attack strategy that implies a
lower bound of 1.5 for the competitive ratio of any algorithm
in this setting, making FARFIRST optimal. The formal
proofs are deferred to the full version of the paper.

The FARFIRST Algorithm. Before giving the algo-
rithm, we define the FARFIRST ordering on the predic-
tions of an input. For simplicity, we assume that the furthest
prediction from the origin is positive. Let r1, . . . , ra be the
positive predictions in descending order of amplitude and
l1, . . . , lb be the negative predictions ordered in the same
way. The FARFIRST ordering is r1, . . . , ra, l1, . . . , lb.
Any predictions on the origin are placed in the end. Ties are
broken via an arbitrary label ordering.

We present the algorithm through an update function used
whenever a request is released. This update function re-
turns the plan of moves to be executed until the next re-
lease of a request. Note that ext(side, set) returns the ex-
treme element of the input set in the side specified, where
side = true means the right side. Also, the ⊕ symbol is
used to join moves one after another. When all the moves
are executed, the agent waits for the next release. This only
happens when waiting on a prediction.

In order to give some further intuition on FARFIRST ,
we first give the definition of a phase.

Definition 1 A phase of an algorithm ALG is a time inter-
val [ts, te] such that posALG(ts) = 0, posALG(te) = 0 and
posALG(t

′) ̸= 0, ∀ t′ ∈ (ts, te). That is, ALG starts and
ends a phase at the origin and does not cross the origin at
any other time during the phase.

In the following, when we refer to the far side, we mean the
side with the furthest prediction from the origin. The near
side is the one opposite to that. We see that FARFIRST
works in at most three phases. The first phase ends when all
predictions on the far side have been released and the agent

Algorithm 1: FARFIRST update function.
Input : Current position pos, set O of unserved

released requests, first unreleased prediction
p in FARFIRST ordering or 0 if none
exist, the side farSide with the furthest
prediction from the origin.

Output: A series of (unit speed) moves to carry out
until the next request is released.

posSide← (pos > 0);
pSide← (p > 0);
if pos = 0 then posSide← farSide ;
if p = 0 then pSide← posSide ;
return move(ext(posSide,O ∪ {pos}))⊕
move(ext(pSide,O ∪ {p}))⊕move(p);

has managed to return to the origin with no released and out-
standing request on the far side. During this phase, any re-
quest on the far side is served as long as FARFIRST does
not move closer to the origin than the far side’s extreme un-
released prediction. Note that some surprise requests may
appear, i.e., far side requests that were predicted to lie on
the near side. These requests are also served in this phase.
The second phase lasts while at least one prediction is un-
released. During this phase, the agent serves any request re-
leased on the near side, using the predictions as guidance,
similarly to the first phase. Requests released on the far side
are ignored during this phase. Note that no surprises can oc-
cur here, since all far side predictions were released during
the first phase. A third phase may exist if some requests were
released on the far side during the second phase. These re-
quests’ amplitudes are bounded by M , since they were pre-
dicted to be positioned on the near side. This simple algo-
rithm is consistent, smooth and robust, as implied by the
following theorem.
Theorem 1 FARFIRST is min {f(η), 3}-competitive,
where f(η) is the following function.

f(η) =
3(1 + η)

2

We now give a proof sketch that covers the intuition be-
hind our formal proof. The 3-robustness is seen using an ab-
solute worst case scenario in which FARFIRST is |OPT |
units away from the origin at time |OPT | (due to the unit
speed limitation), and all the requests to serve are on the
opposite side. For the consistency and smoothness, we note
that |OPT | ≥ 2(|Near| + |Far|). It is therefore sufficient
to prove that |FARFIRST |− |OPT | ≤ |Near|+ |Far|+
3η · (|Near|+ |Far|) = |Near|+ |Far|+ 3M.

We refer to the left hand side as the delay of
FARFIRST . We now see why this bound holds intuitively.
We first describe a worst case scenario. In this scenario,
OPT first serves the near side completely, and then does
the same for the far side, without stopping. Let te denote the
end time of the first phase. We see that te ≤ |OPT |+M , be-
cause FARFIRST follows the fastest possible route serv-
ing the requests on the far side, except for a possible de-
lay of M attributable to a misleading prediction. Note that

11993

in this worst case, all requests on the near side must have
been released by te. Therefore, FARFIRST accumulates
an extra delay of at most 2 times the maximum ampli-
tude of these requests. By Lemma 1, this value is at most
|Near|+|Far|+2M . There are also other possibilities than
this worst case, but they also can incur a delay of at most
|Near|+ |Far|+3M , because |OPT | and |FARFIRST |
both increase when such cases occur.

A 1.5-Attack. We now describe an attack strategy that
imposes a lower bound of 1.5 on the competitive ratio of
any algorithm ALG. For the sake of exposition, we assume
that there is a request on every real number in the interval
[−1, 1]. This is approximated by a limiting process in the
formal proof. These requests are released in two phases. The
first phase lasts while posALG(t) has not exited the interval
[LU (t), RU (t)], where LU (t), RU (t) are the leftmost and
rightmost unreleased requests respectively at time t. Dur-
ing this phase, any request with distance d from the origin
is released at time 2 − d. Note that OPT could start serv-
ing requests in either side immediately and without stopping
during the first phase. This phase ends when posALG(t) first
exits the aforementioned interval. Assuming without loss of
generality that the interval is exited from the left side (which
corresponds to choosing the left hand in the magician anal-
ogy given in a previous section), the unreleased requests on
the left side have their release time delayed to 4 − d while
the requests on the right side are released as in the first phase
(which corresponds to the magician producing the coin in
the right hand). Note that OPT can finish by t = 4 by mov-
ing to 1, then to −1 and then back to the origin with full
speed. At the start of the second phase, ALG can either wait
for the delayed requests on the side it chose or travel some
extra distance to first serve the other side. It turns out that
|ALG| can be shown to be arbitrarily close to 6 via the lim-
iting process we mentioned, yielding the theorem below.

Theorem 2 For any ϵ > 0, no algorithm can be (1.5− ϵ)-
competitive for closed online TSP on the line under the
LOCATIONS prediction model.

Open Variant
In this section, we consider the open variant. We have
two prediction models for this variant. The first one is the
LOCATIONS prediction model and the second is the en-
hanced LOCATIONS + FINAL model (LF in short).
For both settings, we give algorithms and lower bounds.

The LOCATIONS Prediction Model
Under the LOCATIONS prediction model, we design the
NEARFIRST algorithm, which achieves a competitive
ratio of 1.66 with perfect predictions and is also smooth and
robust. We complement this result with a lower bound of
1.44 using a similar attack strategy to the one used for the
closed variant.

The NEARFIRST Algorithm. As we mentioned in the
introduction, NEARFIRST is similar to FARFIRST
and actually slightly simpler. In essence, NEARFIRST
simply picks a direction in which it will serve the requests.

Then, it just serves the requests either from left to right or
from right to left, using the predictions as guidance. The
pseudocode for NEARFIRST is given below. Recall that
move(x)⊕move(y) is used to indicate a move to x followed
by a move to y. We present the following theorem regarding

Algorithm 2: NEARFIRST update function.
Input : Current position pos, set O of unserved

released requests, set P of predictions.
Output: A series of (unit speed) moves to carry out

until the next request is released.
P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2 then return

move(min(O))⊕move(max(O)) ;
else return move(max(O))⊕move(min(O)) ;

end
if |min(P)| < |max(P)| then return
move(min(P ′ ∪O))⊕move(min(P ′)) ;

else return
move(max(P ′ ∪O))⊕move(max(P ′)) ;

the competitive ratio of NEARFIRST .
Theorem 3 NEARFIRST is min {f(η), 3}-competitive,
for the following function f(η).

f(η) =

{
1 + 2(1+η)

3−2η , for η < 2
3

3, for η ≥ 2
3

We now give an intuitive proof sketch for this theorem. As
in the case of FARFIRST , the 3-robustness holds because
at time |OPT |, NEARFIRST has ”leftover work” of at
most 2|OPT | time units (to return to the origin and then
copy OPT). For the consistency/smoothness, we draw our
attention to the request qf served last by OPT . For the fol-
lowing, we assume that NEARFIRST serves the requests
left to right. Let d = |qf−R|. We will show that the delay of
NEARFIRST is bounded by M + d. Let tqf be the time
when NEARFIRST has served all requests to the left of
qf , including qf . It turns out that tqf ≤ |OPT |+M , because
NEARFIRST serves this subset of requests as fast as pos-
sible, except for a possible delay of M due to a misleading
prediction. Then, in this worst case, NEARFIRST accu-
mulates an extra delay of at most d, proving our claim.

Finally, we bound OPT from below as a function of d.
We see that OPT can either serve the requests L,R, qf in
the order L,R, qf or in the order R,L, qf . The worst case is
the latter, where we see that |OPT | ≥ 2|R| + |L| + (|L| +
|R| − d) = 3|R|+2|L| − d. Since d ≤ |L|+ |R|, we obtain

|NEARFIRST |
|OPT |

= 1 +
|NEARFIRST | − |OPT |

|OPT |
≤

1 +
M + |L|+ |R|
2|R|+ |L|

.

Because NEARFIRST considers L the near extreme
due to the predictions, by Lemma 1 we find that |R| ≥
1−2η

2 (|L|+ |R|), which in turn proves our bound.

11994

A 1.44-Attack. The logic of our attack is the same as
that used for the attack described in the section for the
closed variant. There are two technical differences. The first
phase here ends when posALG(t) first exits the interval
[3LU (t) + 2, 3RU (t)− 2], where LU (t), RU (t) are the left-
most and rightmost unreleased request respectively at time
t. The other difference lies in the release times of the second
phase. We again delay the release times of the requests in
the side chosen by ALG, i.e. the side from which the inter-
val was exited. But now, each request with distance d from
the origin has its release time delayed to 2 + d instead of
4 − d. Note that OPT can finish by t = 3 by first going to
the side not chosen by ALG. However, |ALG| can be seen
to be arbitrarily close to 4 + 1

3 , yielding the theorem below.

Theorem 4 For any ϵ > 0, no algorithm can be
(
1.44− ϵ

)
-

competitive for open online TSP on the line under the
LOCATIONS prediction model.

The LOCATIONS+FINAL Prediction Model
In our final setting we consider the open variant under
the LF prediction model. We give the PIV OT algorithm,
which is 1.33-competitive with perfect predictions and is
also smooth and robust. We also reuse the attack strategy
described for the closed variant to achieve a lower bound of
1.25.

The PIV OT Algorithm. The final algorithm we present
works in the same way as NEARFIRST , except for the
order in which it focuses on the two sides of the origin. In-
stead of heading to the near extreme first, PIV OT priori-
tizes the side whose extreme is further away from the pre-
dicted endpoint of OPT , which is provided by the LF pre-
diction model. The pseudocode for PIV OT is given below.
Note that Pf ′ refers to the element in P with label f ′.

Algorithm 3: PIV OT update function.
Input : Current position pos, set O of unserved

released requests, set P of predictions, label
f ′ of OPT ’s predicted endpoint.

Output: A series of (unit speed) moves to carry out
until the next request is released.

P ′ ← the unreleased predictions in P ;
if P ′ is empty then

if pos < max(O)+min(O)
2 then return

move(min(O))⊕move(max(O)) ;
else return move(max(O))⊕move(min(O)) ;

end
if Pf ′ > max(P)+min(P)

2 then return
move(min(P ′ ∪O))⊕move(min(P ′)) ;

else return
move(max(P ′ ∪O))⊕move(max(P ′)) ;

As for the previous algorithms, we show a theorem that
pertains to PIV OT ’s competitive ratio for different values
of the η and δ errors.

Theorem 5 PIV OT is min {f(η, δ), 3}-competitive, for
the function f(η, δ) below.

f(η, δ) =

{
1 + 1+2(δ+3η)

3−2(δ+2η) , 3− 2(δ + 2η) > 0

3, 3− 2(δ + 2η) ≤ 0

We provide a proof sketch of this theorem. The proof is
very similar to the one used for NEARFIRST ’s competi-
tive ratio. In fact, the robustness is shown in exactly the same
way. For the consistency/smoothness, the delay is bounded
by M+d in the same way, where d is the distance of the last
request qf served by OPT to the extreme served second by
PIV OT . The same lower bounds for |OPT | hold as well.
We additionally bound d as a function of the error-dependent
values ∆ and M . When there is no error, we can bound d to
be at most |L|+|R|

2 instead of |L| + |R|, which gives a bet-
ter competitive ratio than that of NEARFIRST . An im-
portant distinction is that we do not make use of Lemma 1,
since the algorithm does not consider the values |L| and |R|.
A 1.25-Attack. The attack strategy we employ in the cur-
rent setting is almost the same as the one used for the closed
variant. The only difference is that a special request is placed
at the origin with a release time of 4. This request is also the
last request served by OPT (and thus the optimal solution
of the open variant also works for the closed variant) and
ALG is informed of this by the LF prediction model. The
idea of the proof is that if ALG were to finish before t = 5,
then another algorithm ALG′ could solve the closed vari-
ant of this input in less than 6 time units, contradicting our
first lower bound of 1.5 for the closed variant. This attack
strategy implies the following theorem.
Theorem 6 For any ϵ > 0, no algorithm can be (1.25− ϵ)-
competitive for open online TSP on the line under the LF
prediction model.

Conclusion
We have examined the online TSP on the line and pro-
vided lower bounds as well as algorithms for three differ-
ent learning-augmented settings. An immediate extension of
our results would be to bridge the gap between the lower
and upper bounds we have shown for the open variant.
Also, it would be interesting to establish error-dependent
lower bounds and/or optimal consistency-robustness trade-
offs. Moreover, an improvement would be to remove the as-
sumption of knowing the number of requests n. A technique
that could perhaps allow an algorithm to achieve that is to
periodically make sure that the algorithm terminates in case
no new requests appear. Another interesting direction is for
more general versions of online TSP to be investigated, like
the case of trees. Finally, we believe that the combination
of learning-augmented techniques along with randomization
would lead to much better results, and therefore suggest this
direction as future work.

References
Angelopoulos, S.; Dürr, C.; Jin, S.; Kamali, S.; and Renault,
M. P. 2020. Online Computation with Untrusted Advice. In
ITCS.

11995

Antoniadis, A.; Coester, C.; Eliás, M.; Polak, A.; and Simon,
B. 2020a. Online metric algorithms with untrusted predic-
tions. In ICML.
Antoniadis, A.; Ganje, P. J.; and Shahkarami, G. 2021. A
Novel Prediction Setup for Online Speed-Scaling. CoRR.
Antoniadis, A.; Gouleakis, T.; Kleer, P.; and Kolev, P. 2020b.
Secretary and Online Matching Problems with Machine
Learned Advice. In NeurIPS.
Ascheuer, N.; Grötschel, M.; Krumke, S. O.; and Rambau,
J. 1999. Combinatorial Online Optimization. In Operations
Research Proceedings.
Ausiello, G.; Feuerstein, E.; Leonardi, S.; Stougie, L.; and
Talamo, M. 2001. Algorithms for the On-Line Travelling
Salesman. Algorithmica.

Bamas, É.; Maggiori, A.; Rohwedder, L.; and Svensson, O.
2020. Learning Augmented Energy Minimization via Speed
Scaling. In NeurIPS.

Bamas, É.; Maggiori, A.; and Svensson, O. 2020. The
Primal-Dual method for Learning Augmented Algorithms.
In NeurIPS.
Bernardini, G.; Lindermayr, A.; Marchetti-Spaccamela, A.;
Megow, N.; Stougie, L.; and Sweering, M. 2022. A Univer-
sal Error Measure for Input Predictions Applied to Online
Graph Problems. CoRR.
Bjelde, A.; Hackfeld, J.; Disser, Y.; Hansknecht, C.; Lip-
mann, M.; Meißner, J.; SchlÖter, M.; Schewior, K.; and
Stougie, L. 2021. Tight Bounds for Online TSP on the Line.
ACM Trans. Algorithms.
Blom, M.; Krumke, S. O.; De Paepe, W. E.; and Stougie, L.
2001. The Online TSP Against Fair Adversaries. INFORMS
journal on computing.
Chen, P.-C.; Demaine, E. D.; Liao, C.-S.; and Wei, H.-T.
2019. Waiting is not easy but worth it: the online TSP on the
line revisited. CoRR.
Dütting, P.; Lattanzi, S.; Leme, R. P.; and Vassilvitskii, S.
2021. Secretaries with Advice. In EC.
Gollapudi, S.; and Panigrahi, D. 2019. Online Algorithms
for Rent-Or-Buy with Expert Advice. In ICML.
Jaillet, P.; and Wagner, M. R. 2006. Online Routing Prob-
lems: Value of Advanced Information as Improved Compet-
itive Ratios. Transportation Science.
Kraska, T.; Beutel, A.; Chi, E. H.; Dean, J.; and Polyzotis, N.
2018. The Case for Learned Index Structures. In SIGMOD.
Lawler, E. 1985. The Travelling Salesman Problem:
A Guided Tour of Combinatorial Optimization. Wiley-
Interscience series in discrete mathematics and optimiza-
tion. John Wiley & Sons.
Lykouris, T.; and Vassilvtiskii, S. 2018. Competitive caching
with machine learned advice. In ICML.
Mitzenmacher, M. 2018. A Model for Learned Bloom Fil-
ters and Optimizing by Sandwiching. In NeurIPS.
Mitzenmacher, M. 2020. Scheduling with Predictions and
the Price of Misprediction. In ITCS.

Mitzenmacher, M.; and Vassilvitskii, S. 2020. Algorithms
with Predictions. In Beyond the Worst-Case Analysis of Al-
gorithms. Cambridge University Press.
Moseley, B.; Vassilvitskii, S.; Lattanzi, S.; and Lavastida, T.
2020. Online Scheduling via Learned Weights. In SODA.
Psaraftis, H. N.; Solomon, M. M.; Magnanti, T. L.; and Kim,
T.-U. 1990. Routing and Scheduling on a Shoreline with
Release Times. Management Science.
Purohit, M.; Svitkina, Z.; and Kumar, R. 2018. Improving
Online Algorithms via ML Predictions. In NeurIPS.
Rohatgi, D. 2020. Near-optimal bounds for online caching
with machine learned advice. In SODA.
Wang, S.; and Li, J. 2020. Online Algorithms for Multi-shop
Ski Rental with Machine Learned Predictions. In AAMAS.
Wei, A. 2020. Better and Simpler Learning-Augmented On-
line Caching. In APPROX/RANDOM.

11996

