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Abstract

We study the problem of learning controllers for discrete-
time non-linear stochastic dynamical systems with formal
reach-avoid guarantees. This work presents the first method
for providing formal reach-avoid guarantees, which combine
and generalize stability and safety guarantees, with a toler-
able probability threshold p ∈ [0, 1] over the infinite time
horizon in general Lipschitz continuous systems. Our method
leverages advances in machine learning literature and it repre-
sents formal certificates as neural networks. In particular, we
learn a certificate in the form of a reach-avoid supermartin-
gale (RASM), a novel notion that we introduce in this work.
Our RASMs provide reachability and avoidance guarantees
by imposing constraints on what can be viewed as a stochastic
extension of level sets of Lyapunov functions for deterministic
systems. Our approach solves several important problems – it
can be used to learn a control policy from scratch, to verify
a reach-avoid specification for a fixed control policy, or to
fine-tune a pre-trained policy if it does not satisfy the reach-
avoid specification. We validate our approach on 3 stochastic
non-linear reinforcement learning tasks.

Introduction
Reinforcement learning (RL) has achieved impressive results
in solving non-linear control problems, resulting in an inter-
est to deploy RL algorithms in safety-critical applications.
However, most RL algorithms focus solely on optimizing
expected performance and do not take safety constraints into
account (Sutton and Barto 2018). This raises concerns about
their applicability to safety-critical domains in which unsafe
behavior can lead to catastrophic consequences (Amodei et al.
2016; García and Fernández 2015). Complicating matters,
models are usually imperfect approximations of real systems
that are obtained from observed data, thus models often need
to account for uncertainty which is modelled via stochastic
disturbances. Formal safety verification of policies learned
via RL algorithms and design of learning algorithms that take
safety constraints into account have thus become very active
research topics.

Reach-avoid constraints are one of the most common and
practically relevant constraints appearing in safety-critical
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applications that generalize both reachability and safety con-
straints (Summers and Lygeros 2010). Given a target region
and an unsafe region, the reach-avoid constraint requires
that a system controlled by a policy converges to the tar-
get region while avoiding the unsafe region. For instance, a
lane-keeping constraint requires a self-driving car to reach its
destination without leaving the allowed car lanes (Vahidi and
Eskandarian 2003). In the case of stochastic control problems,
reach-avoid constraints are also specified by a minimal prob-
ability with which the system controlled by a policy needs to
satisfy the reach-avoid constraint.

In this work, we consider discrete-time stochastic control
problems under reach-avoid constraints. Following the re-
cent trend that aims to leverage advances in deep RL to safe
control, we propose a learning method that learns a control
policy together with a formal reach-avoid certificate in the
form of a reach-avoid supermartingale (RASM), a novel no-
tion that we introduce in this work. Informally, an RASM
is a function assigning nonnegative real values to each state
that is required to strictly decrease in expected value until the
target region is reached, but needs to strictly increase for the
system to reach the unsafe region. By carefully choosing the
ratio of the initial level set of the RASM and the least level
set that the RASM needs to attain for the system to reach the
unsafe region (here we use the standard level set terminology
of Lyapunov functions (Haddad and Chellaboina 2011)), we
obtain a formal reach-avoid certificate. The name of RASMs
is chosen to emphasize the connection to supermartingale
processes in probability theory (Williams 1991). Our RASMs
significantly generalize and unify the stochastic control bar-
rier functions which are a standard certificate for safe control
of stochastic systems (Prajna, Jadbabaie, and Pappas 2007)
and ranking supermartingales that certify probability 1 reach-
ability and stability in (Lechner et al. 2022).

Contributions. This work presents the first control method
that provides formal reach-avoid guarantees for control of
stochastic systems with a specified probability threshold over
the infinite time horizon in Lipschitz continuous systems. In
contrast, the existing approaches to control under reach-avoid
constraints are only applicable to finite horizon settings, poly-
nomial stochastic systems or to deterministic systems (see
the following section for an overview of related work). More-
over, our method simultaneously learns the control policy
and the RASM certificate in the form of neural networks
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and is applicable to general non-linear systems. This con-
trasts the existing methods from the literature that are based
on stochastic control barrier functions, which utilize con-
vex optimization tools to compute control policies and are
restricted to polynomial system dynamics and policies (Pra-
jna, Jadbabaie, and Pappas 2007; Steinhardt and Tedrake
2012; Santoyo, Dutreix, and Coogan 2021; Xue et al. 2021).
Our algorithm draws insight from established methods for
learning Lyapunov functions for stability in deterministic
control problems (Richards, Berkenkamp, and Krause 2018;
Chang, Roohi, and Gao 2019; Abate et al. 2021), which were
demonstrated to be more efficient than the existing convex
optimization methods and were adapted in (Lechner et al.
2022) for probability 1 reachability and stability verification.
Finally, our method learns a suitable policy on demand, or
alternatively, verifies reach-avoid properties of a fixed Lips-
chitz continuous control policy. We experimentally validate
our method on 3 stochastic RL tasks and show that it effi-
ciently learns control policies with probabilistic reach-avoid
guarantees in practice.

Related Work
Deterministic control problems There is extensive literature
on safe control, with most works certifying stability via Lya-
punov functions (Haddad and Chellaboina 2011) or safety
via control barrier functions (Ames et al. 2019). Most early
works rely either on hand-designed certificates, or automate
their computation through convex optimization methods such
as sum-of-squares (SOS) programming (Henrion and Garulli
2005; Parrilo 2000; Jarvis-Wloszek et al. 2003). Automation
via SOS programming is restricted to problems with polyno-
mial system dynamics and does not scale well with dimen-
sion. A promising approach to overcome these limitations
is to learn a control policy together with a safety certificate
in the form of neural networks, for instance see (Richards,
Berkenkamp, and Krause 2018; Sun, Jha, and Fan 2020; Jin
et al. 2020; Chang and Gao 2021; Qin et al. 2021). In partic-
ular, (Chang, Roohi, and Gao 2019; Abate et al. 2021) learn
a control policy and a certificate as neural networks by using
a learner-verifier framework which repeatedly learns a can-
didate policy and a certificate and then tries to either verify
or refine them. Our method extends some of these ideas to
stochastic systems.

Stochastic control problems Safe control of stochastic sys-
tems has received comparatively less attention. Most exist-
ing approaches are abstraction based – they consider finite-
time horizon systems and approximate them via a finite-state
Markov decision process (MDP). The constrained control
problem is then solved for the MDP. Due to accumulation
of the approximation error in each time step, the size of
the MDP state space needs to grow with the length of the
considered time horizon, making these methods applicable
to systems that evolve over fixed finite time horizons. No-
table examples include (Soudjani, Gevaerts, and Abate 2015;
Lavaei et al. 2020; Cauchi and Abate 2019; Vinod, Gleason,
and Oishi 2019; Vaidya 2015; Crespo and Sun 2003). An
abstraction based method for obtaining infinite time horizon
PAC-style guarantees on reach-avoidance in linear stochastic

systems was proposed in (Badings et al. 2022). This method
is applicable to systems with both aleatoric and epistemic
uncertainty. Another line of work considers polynomial sys-
tems and utilizes stochastic control barrier functions and
convex optimization tools to compute polynomial control
policies (Prajna, Jadbabaie, and Pappas 2007; Steinhardt and
Tedrake 2012; Santoyo, Dutreix, and Coogan 2021; Xue et al.
2021; Mazouz et al. 2022). Concurrently to our work, (Math-
iesen, Calvert, and Laurenti 2023) proposed a learning-based
method for formal safety verification in continuous stochastic
control systems over a fixed finite time horizon, by learning
a neural network stochastic control barrier function.
Constrained MDPs Safe RL has also been studied in the con-
text of constrained MDPs (CMDPs) (Altman 1999; Geibel
2006). An agent in a CMDP must satisfy hard constraints
on expected cost for one or more auxiliary notions of cost
aggregated over an episode. Several works study RL algo-
rithms for CMDPs (Uchibe and Doya 2007), notably the
Constrained Policy Optimization (CPO) (Achiam et al. 2017)
or the method (Chow et al. 2018) which proposed a Lya-
punov method for solving CMDPs. While these algorithms
perform well, their constraints are satisfied in expectation
which makes them less suitable for safety-critical systems.
Safe RL via shielding Some approaches ensure safety by
computing two control policies – the main policy that opti-
mizes the expected reward, and the backup policy that the
system falls back to whenever a safety constraint may be vio-
lated (Michalska and Mayne 1993; Perkins and Barto 2002;
Alshiekh et al. 2018; Elsayed-Aly et al. 2021; Giacobbe et al.
2021). The backup policy can thus be of simpler form. Shield-
ing for stochastic linear systems with additive disturbances
has been considered in (Wabersich and Zeilinger 2018). (Li
and Bastani 2020; Bastani and Li 2021) are applicable to
stochastic non-linear systems, however their safety guaran-
tees are statistical – their algorithms are randomized with
parameters δ, ϵ ∈ (0, 1) and they with probability 1− δ com-
pute an action that is safe in the current state with probability
at least 1 − ϵ. The statistical error is accumulated at each
state, hence these approaches are not suitable for infinite or
long time horizons. In contrast, our approach targets formal
guarantees for infinite time horizon problems.
Safe exploration Model-free RL algorithms need to explore
the state space in order to learn high performing actions. Safe
exploration RL restricts exploration in a way which ensures
that given safety constraints are satisfied. The most common
approach to ensuring safe exploration is learning the system
dynamics’ uncertainty bounds and limiting the exploratory
actions within a high probability safety region, with the exist-
ing methods based on Gaussian Processes (Koller et al. 2018;
Turchetta, Berkenkamp, and Krause 2019; Berkenkamp
2019), linearized models (Dalal et al. 2018), deep robust
regression (Liu et al. 2020), safe padding (Hasanbeig, Abate,
and Kroening 2020) and Bayesian neural networks (Lechner
et al. 2021). Recent work has also considered learning stable
stochastic dynamics from data (Umlauft and Hirche 2017;
Lawrence et al. 2020).
Probabilistic program analysis Supermartingales have also
been used for the analysis of probabilistic programs (PPs). In
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particular, RSMs were originally used to prove almost-sure
termination in PPs (Chakarov and Sankaranarayanan 2013)
and (Abate, Giacobbe, and Roy 2021) learns RSMs in PPs.
Supermartingales were also used for probabilistic termination
and safety analysis in PPs (Chatterjee, Novotný, and Zikelic
2017; Chatterjee et al. 2022).

Preliminaries
We consider discrete-time stochastic dynamical systems de-
fined by the equation

xt+1 = f(xt,ut, ωt), x0 ∈ X0.

The function f : X ×U ×N → X defines system dynamics,
where X ⊆ Rm is the system state space, U ⊆ Rn is the con-
trol action space and N ⊆ Rp is the stochastic disturbance
space. We use t ∈ N0 to denote the time index, xt ∈ X
the state of the system, ut ∈ U the action and ωt ∈ N the
stochastic disturbance vector at time t. The set X0 ⊆ X is
the set of initial states. The action ut is chosen according to
a control policy π : X → U , i.e. ut = π(xt). The stochastic
disturbance vector ωt is sampled according to a specified
probability distribution d over Rp. The dynamics function f ,
control policy π and probability distribution d together define
a stochastic feedback loop system.

A sequence (xt,ut, ωt)t∈N0 of state-action-disturbance
triples is a trajectory of the system, if for each t ∈ N0 we have
ut = π(xt), ωt ∈ support(d) and xt+1 = f(xt,ut, ωt). For
each initial state x0 ∈ X , the system induces a Markov
process which gives rise to the probability space over the
set of all trajectories that start in x0 (Puterman 1994). We
denote the probability measure and the expectation in this
probability space by Px0

and Ex0
.

Assumptions We assume that X ⊆ Rm, X0 ⊆ Rm, U ⊆ Rn

and N ⊆ Rp are all Borel-measurable, which is a technical
assumption necessary for the system semantics to be math-
ematically well-defined. We also assume that X ⊆ Rm is
compact and that the dynamics function f is Lipschitz con-
tinuous, which are common assumptions in control theory.
Probabilistic reach-avoid problem Let Xt ⊆ X and Xu ⊆
X be disjoint Borel-measurable subsets of Rm, which we
refer to as the target set and the unsafe set, respectively. Let
p ∈ [0, 1] be a probability threshold. Our goal is to learn a
control policy which guarantees that, with probability at least
p, the system reaches the target set Xt without reaching the
unsafe set Xu. Formally, we want to learn a control policy π
such that, for any initial state x0 ∈ X0, we have

Px0

[
ReachAvoid(Xt,Xu)

]
≥ p

with ReachAvoid(Xt,Xu) = {(xt,ut, ωt)t∈N0
| ∃t ∈

N0.xt ∈ Xt ∧ (∀t′ ≤ t.xt′ ̸∈ Xu)} the set of trajectories
that reach Xt without reaching Xu.

We restrict to the cases when either p < 1, or p = 1 and
Xu = ∅. Our approach is not applicable to the case p = 1
and Xu ̸= ∅ due to technical issues that arise in defining
our formal certificate, which we discuss in the following
section. We remark that probabilistic reachability is a special
instance of our problem obtained by setting Xu = ∅. On

the other hand, we cannot directly obtain the probabilistic
safety problem by assuming any specific form of the target
set Xt, however we will show in the following section that
our method implies probabilistic safety with respect to Xu if
we provide it with Xt = ∅.

Theoretical Results
We now present our framework for formally certifying a
reach-avoid constraint with a given probability threshold. Our
framework is based on the novel notion of reach-avoid super-
martingales (RASMs) that we introduce in this work. Note
that, in this section only, we assume that the policy is fixed.
In the next section, we will present our algorithm for learning
policies that provide formal reach-avoid guarantees in which
RASMs will be an integral ingredient. In what follows, we
consider a discrete-time stochastic dynamical system defined
as in the previous section. For now, we assume that the prob-
ability threshold is strictly smaller than 1, i.e. p < 1. We will
later show that our approach straightforwardly extends to the
case p = 1 and Xu = ∅.
Reach-avoid supermartingales We define a reach-avoid
supermartingale (RASM) to be a continuous function V :
X → R that assigns real values to system states. The name
is chosen to emphasize the connection to supermartingale
processes from probability theory (Williams 1991), which
we will explore later in order to prove the effectiveness of
RASMs for verifying reach-avoid properties. The value of V
is required to be nonnegative over the state space X (Nonneg-
ativity condition), to be bounded from above by 1 over the
set of initial states X0 (Initial condition) and to be bounded
from below by 1

1−p over the set of unsafe states Xu (Safety
condition). Hence, in order for a system trajectory to reach
an unsafe state and violate the safety specification, the value
of the RASM V needs to increase at least 1

1−p times along
the trajectory. Finally, we require the existence of ϵ > 0 such
that the value of V decreases in expected value by at least
ϵ after every one-step evolution of the system from every
system state x ∈ X\Xt for which V (x) ≤ 1

1−p (Expected
decrease condition). Intuitively, this last condition imposes
that the system has a tendency to strictly decrease the value
of V until either the target set Xt is reached or a state with
V (x) ≥ 1

1−p is reached. However, as the value of V needs to
increase at least 1

1−p times in order for the system to reach
an unsafe state, these four conditions will allow us to use
RASMs to certify that the reach-avoid constraint is satisfied
with probability at least p.
Definition 1 (Reach-avoid supermartingales). Let Xt ⊆ X
and Xu ⊆ X be the target set and the unsafe set, and let
p ∈ [0, 1) be the probability threshold. A continuous function
V : X → R is said to be a reach-avoid supermartingale
(RASM) with respect to Xt, Xu and p if it satisfies:
1. Nonnegativity condition. V (x) ≥ 0 for each x ∈ X .
2. Initial condition. V (x) ≤ 1 for each x ∈ X0.
3. Safety condition. V (x) ≥ 1

1−p for each x ∈ Xu.
4. Expected decrease condition. There exists ϵ > 0 such

that, for each x ∈ X\Xt at which V (x) ≤ 1
1−p , we have

V (x) ≥ Eω∼d[V (f(x, π(x), ω))] + ϵ.
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Comparison to Lyapunov functions The defining proper-
ties of RASMs hint a connection to Lyapunov functions for
deterministic control systems. However, the key difference
between Lyapunov functions and our RASMs is that Lya-
punov functions deterministically decrease in value whereas
RASMs decrease in expectation. Deterministic decrease en-
sures that each level set of a Lyapunov function, i.e. a set of
states at which the value of Lyapunov functions is at most
l for some l ≥ 0, is an invariant of the system. However,
it is in general not possible to impose such a condition on
stochastic systems. In contrast, our RASMs only require ex-
pected decrease in the level, and the Initial and the Unsafe
conditions can be viewed as conditions on the maximal initial
level set and the minimal unsafe level set. The choice of a
ratio of these two level values allows us to use existing results
from martingale theory in order to obtain probabilistic avoid-
ance guarantees, while the Expected decrease condition by
ϵ > 0 furthermore provides us with probabilistic reachability
guarantees.
Certifying reach-avoid constraints via RASMs We now
show that the existence of an ϵ-RASM for some ϵ > 0 implies
that the reach-avoid constraint is satisfied with probability at
least p.
Theorem 1. Let Xt ⊆ X and Xu ⊆ X be the target set
and the unsafe set, respectively, and let p ∈ [0, 1) be the
probability threshold. Suppose that there exists an RASM
V with respect to Xt, Xu and p. Then, for every x0 ∈ X0,
Px0

[ReachAvoid(Xt,Xu)] ≥ p.
The complete proof of Theorem 1 is provided in the ex-

tended version of the paper (Žikelić et al. 2022). However,
in what follows we sketch the key ideas behind our proof, in
order to illustrate the applicability of martingale theory to
reasoning about stochastic systems which we believe to have
significant potential for applications beyond the scope of this
work. To prove the theorem, we first show that an ϵ-RASM V
induces a supermartingale (Williams 1991) in the probability
space over the set of all trajectories that start in an initial state
x0 ∈ X0. Intuitively, a supermartingale in a probability space
(Ω,F ,P) is a stochastic process (Xt)

∞
t=0 such that, for each

t ∈ N0, the expected value of Xt+1 conditioned on the value
of Xt is less than or equal to Xt. We formalize this definition
together with the notion of conditional expectation and pro-
vide an overview of definitions and results form martingale
theory that we use in our proof in the extended version of the
paper (Žikelić et al. 2022).

Now, let (Ωx0
,Fx0

,Px0
) be the probability space of tra-

jectories that start in x0. Then, for each time step t ∈ N0, we
define a random variable

Xt(ρ) =



V (xt), if xi ̸∈ Xt and V (xi) <
1

1−p

for each 0 ≤ i ≤ t

0, if xi ∈ Xt for some 0 ≤ i ≤ t

and V (xj) <
1

1−p for each 0 ≤ j ≤ i
1

1−p , otherwise

for each trajectory ρ = (xt,ut, ωt)t∈N0
∈ Ωx0

. In other
words, the value of Xt is equal to the value of V at xt, unless
either the target setXt has been reached first in which case we

set all future values of Xt to 0, or a state in which V exceeds
1

1−p has been reached first in which case we set all future
values ofXt to 1

1−p . Then, since V satisfies the Nonnegativity
and the Expected decrease condition of RASMs, we may
show that (Xt)

∞
t=0 is a supermartingale. in the probability

space (Ωx0
,Fx0

,Px0
).

Next, we show that the nonnegative supermartingale
(Xt)

∞
t=0 with probability 1 converges to and reaches 0 or

a value that is greater than or equal to 1
1−p . To do this, we

first employ the Supermartingale Convergence Theorem (see
the extended version of the paper (Žikelić et al. 2022)) which
states that every nonnegative supermartingale converges to
some value with probability 1. We then use the fact that, in
the Expected decrease condition of RASMs, the decrease
in expected value is strict and by at least ϵ > 0, in order to
conclude that this value is reached and has to be either 0 or
greater than or equal to 1

1−p .
Finally, we use another classical result from martingale

theory (see the extended version of the paper (Žikelić et al.
2022)) which states that, given a nonnegative supermartingale
(Xt)

∞
t=0 and λ > 0,

P
[
sup
i≥0

Xi ≥ λ
]
≤ E[X0]

λ
.

Plugging λ = 1
1−p into the above inequality, it follows that

Px0
[supi≥0 Xi ≥ 1

1−p ] ≤ (1 − p) · Ex0
[X0] ≤ 1 − p. The

second inequality follows since X0(ρ) = V (x0) ≤ 1 for
every ρ ∈ Ωx0

by the Initial condition of RASMs. Hence, as
(Xt)

∞
t=0 with probability 1 either reaches 0 or a value that

is greater than or equal to 1
1−p , we conclude that (Xt)

∞
t=0

reaches 0 without reaching a value that is greater than or
equal to 1

1−p with probability at least p. By the definition of
each Xt and by the Safety condition of RASMs, this implies
that with probability at least p the system will reach the
target set Xt without reaching the unsafe set Xu, i.e. that
Px0 [ReachAvoid(Xt,Xu)] ≥ p.
Probabilistic safety In order to solve the probabilistic safety
problem and verify that a control policy guarantees that the
unsafe set Xu is not reached with probability at least p, we
may modify the Expected decrease condition of RASMs
by setting Xt = ∅. Thus, RASMs are also effective for the
probabilistic safety problem. This claim follows immediately
from our proof of Theorem 1. In this case and if we set ϵ = 0,
then our RASMs coincide with stochastic barrier functions
of (Prajna, Jadbabaie, and Pappas 2007). However, if Xt is
not empty, then we must have ϵ > 0 in order to enforce
convergence and reachability of Xt.
Extension to p = 1 and Xu = ∅ and comparison to RSMs
So far, we have only considered p ∈ [0, 1). The difficulty in
the case p = 1 arises since the value 1

1−p in the Safety and the
Expected decrease conditions in Definition 1 would not be
well-defined. However, if Xu = ∅, then the Safety condition
need not be imposed at any state. Moreover, it follows directly
from our proof that imposing the expected decrease condition
at all states in X\Xt makes RASMs sound for certifying
probability 1 reachability. In fact, in this special case our
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RASMs reduce to the RSMs of (Lechner et al. 2022). The
key novelty of our RASMs over RSMs is that we also employ
level set reasoning in order to obtain probabilistic reach-
avoid guarantees, thus presenting a true stochastic extension
of Lyapunov functions that allow reasoning both about reach-
avoid specifications as well as quantitative reasoning about
the probability with which they are satisfied. In contrast,
RSMs do not reason about level sets and can only certify
probability 1 reachability.

Learning Reach-avoid Policies
We now present our algorithm for learning policies with
reach-avoid guarantees, which learns a policy together with
an RASM certificate. The algorithm consists of two modules
called learner and verifier, which are composed into a loop.
In each loop iteration, the learner learns a policy together
with an RASM candidate as two neural networks πθ and
Vν , with θ and ν being vectors of neural network parame-
ters. The verifier then formally verifies whether the learned
RASM candidate is indeed an RASM for the system and the
learned policy. If the answer is positive, then the algorithm
concludes that the learned policy provides formal reach-avoid
guarantees. Otherwise, the verifier computes a counterexam-
ple which shows that the learned RASM candidate is not an
RASM. The counterexample is passed to the learner and used
to modify the loss function towards learning a new policy
and an RASM candidate. The loop is repeated until either a
candidate is successfully verified or the algorithm reaches a
specified timeout. The algorithm is presented in Algorithm 1.
We note that our algorithm can also verify whether a given
Lipschitz continuous policy provides reach-avoid guarantees,
by fixing the policy only learning the RASM neural network.
Policy Initialization Learning two networks concurrently
with multiple objectives can be unstable due to dependen-
cies between the two networks and differences in the scale
of the objective loss terms. To mitigate these instabilities,
we propose pre-training of the policy network so that our
algorithm starts from a proper initialization. In particular,
from the given dynamical system and the safety specification,
we induce a Markov decision process (MDP) intending to
reach the target set while avoiding the unsafe set. The reward
term rt is given by rt := 1[Xt](xt)− 1[Xu](xt) and we use
proximal policy optimization (PPO) (Schulman et al. 2017)
to train the policy.
State Space Discretization When it comes to verifying
learned candidates, the key difficulty lies in checking the
Expected decrease condition. This is because, in general, it
is not possible to compute a closed form expression for the
expected value of an RASM over successor system states,
as both the policy and the RASM are neural networks. In
order to overcome this difficulty, our algorithm discretizes
the state space of the system. Given a mesh parameter τ > 0,
a discretization X̃ of X with mesh τ is a set of states such
that, for every x ∈ X , there exists a state x̃ ∈ X̃ such
that ||x − x̃||1< τ . Due to X being compact and therefore
bounded, for any τ > 0 it is possible to compute its finite
discretization with mesh τ by simply considering vertices
of a grid with sufficiently small cells. Note that f , πθ and

Algorithm 1: Algorithm for learning reach-avoid policies

1: Input f , d, X , X0,Xt,Xu, Lf , p ∈ [0, 1]
2: Parameters mesh τ > 0, number of samples N ∈ N,

regularization constant λ > 0
3: πθ ← trained by PPO
4: X̃ ← discretization of X with mesh τ
5: Cinit, Cunsafe, Cdecrease ← X̃ ∩X0, X̃ ∩Xu, X̃ ∩ (X\Xt)
6: Vν ← trained by minimizing the loss function
7: while timeout not reached do
8: Lπ, LV ← Lipschitz constants of πθ, Vν

9: K ← LV · (Lf · (Lπ + 1) + 1)

10: X̃e ← vertices of discr. X̃ whose adjacent cells inter-
sect X\Xt and contain x s.t. Vν(x) <

1
1−p

11: CellsX0
, CellsXu

← discr. cells that intersect X0, Xu

12: if ∃x̃ ∈ X̃e∩(X\Xt) s.t. Eω∼d[Vν(f(x̃, π(x̃), ω))] ≥
Vν(x̃)− τ ·K and Vν(x̃) <

1
1−p then

13: Cdecrease ← Cdecrease ∪ {x}
14: else if ∃cell ∈ CellsX0

s.t. supx∈cell Vν(x) > 1 then
15: Cinit ← Cinit ∪ ({vertices of cell} ∩ X0)
16: else if ∃cell ∈ CellsXu s.t. infx∈cell Vν(x) < 1

1−p

then
17: Cunsafe ← Cunsafe ∪ ({vertices of cell} ∩ Xu)
18: else
19: Return Reach-avoid guarantee with probability p
20: end if
21: Vν , πθ,← trained by minimizing the loss function
22: X̃ ← refined discretization
23: end while
24: Return Unknown

Vν are all continuous, hence due to X being compact f , πθ

and Vν are also Lipschitz continuous. This will allow us to
verify that the Expected decrease condition is satisfied by
checking a slightly stricter condition only at the vertices of
the discretization grid. The initial discretization X̃ is also
used to initialize counterexample sets used by the learner. In
particular, the learner initializes three sets Cinit = X̃ ∩ X0,
Cunsafe = X̃ ∩ Xu and Cdecrease = X̃ ∩ (X\Xt). These sets
will later be extended by counterexamples computed by the
verifier. Conversely, the discretization used by the verifier for
checking the defining properties of RASMs will at each itera-
tion of the loop be refined by a discretization with a smaller
mesh, in order to relax the conditions that are checked by the
verifier.

Verifier We now describe the verifier module of our algo-
rithm. Suppose that the learner has learned a policy πθ and
an RASM candidate Vν . Since Vν is a neural network, we
know that it is a continuous function. Furthermore, we de-
sign the learner to apply a softplus activation function to
the output layer of Vν , which ensures that the Nonnegativity
condition of RASMs is satisfied by default. Thus, the verifier
only needs to check the Initial, Safety and Expected decrease
conditions in Definition 1.

Let Lf , Lπ and LV be the Lipschitz constants of f , πθ

and Vν , respectively. We assume that a Lipschitz constant
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Figure 1: Visualization of a neural network RSM (Lechner
et al. 2022) and our RASM on the inverted pendulum task.
The RASM provides better probability bounds of reaching
the unsafe states.

for the dynamics function f is provided, and use the method
of (Szegedy et al. 2014) to compute Lipschitz constants of
neural networks πθ and Vν . To verify the Expected decrease
condition, the verifier collects the superset X̃e of discretiza-
tion points whose adjacent grid cells contain a non-target state
and over which Vν attains a value that is smaller than 1

1−p .
This set is computed by first collecting all cells that intersect
X\Xt, then using interval arithmetic abstract interpretation
(IA-AI) (Cousot and Cousot 1977; Gowal et al. 2018) which
propagates interval bounds across neural network layers in
order to bound from below the minimal value that Vν attains
over each collected cell, and finally collecting vertices of all
cells at which this lower bound is less than 1

1−p . The verifier
then checks a stricter condition for each state x̃ ∈ X̃e:

Eω∼d

[
Vν

(
f(x̃, πθ(x̃), ω)

)]
< Vν(x̃)− τ ·K, (1)

where K = LV · (Lf · (Lπ + 1) + 1). The expected value
in eq. (1) is also bounded from above via IA-AI, where one
partitions the support of d into intervals, propagates intervals
and multiplies each interval bound by its probability weight
in order to bound the expected value of a neural network func-
tion over a probability distribution. Due to space restrictions,
we provide more details on expected value computation in
the extended version of the paper (Žikelić et al. 2022) and
note that this method requires that the probability distribution
d either has bounded support or is a product of independent
univariate distributions.

In order to verify the Initial condition, the verifier collects
the set CellsX0 of all cells of the discretization grid that
intersect the initial set X0. Then, for each cell ∈ CellsX0 , it
checks whether

sup
x∈ cell

Vν(x) > 1, (2)

where the supremum of Vν over the cell is bounded from
above by using IA-AI. Similarly, to verify the Unsafe con-
dition, the verifier collects the set CellsXu

of all cells of the
discretization grid that intersect the unsafe set Xu. Then, for
each cell ∈ CellsXu , it uses IA-AI to check whether

inf
x∈ cell

Vν(x) <
1

1− p
. (3)

If the verifier shows that Vν satisfies eq. (1) for each x̃ ∈
X̃e, eq. (2) for each cell ∈ CellsX0 and eq. (3) for each
cell ∈ CellsXu , it concludes that Vν is an RASM. Otherwise,
if a counterexample x̃ to eq. (1) is found and we have x̃ ∈
X\Xt and Vν(x) < 1

1−p , it is added to Cdecrease. Similarly,
if counterexample cells to eq. (2) and eq. (3) are found, all
their vertices that are contained in X0 and Xu are added to
Cinit and Cunsafe, respectively.

The following theorem shows that checking the above con-
ditions is sufficient to formally verify whether an RASM
candidate is indeed an RASM. The proof follows by exploit-
ing the fact that f , πθ and Vν are all Lipschitz continuous and
that X is compact, and we include it in the extended version
of the paper (Žikelić et al. 2022).
Theorem 2. Suppose that the verifier verifies that Vν satisfies
eq. (1) for each x̃ ∈ X̃e, eq. (2) for each cell ∈ CellsX0 and
eq. (3) for each cell ∈ CellsXu . Then the function Vν is an
RASM for the system with respect to Xt, Xu and p.

Learner A policy and an RASM candidate are learned by
minimizing the loss function

L(θ, ν) =LInit(ν) + LUnsafe(ν) + LDecrease(θ, ν)

+ λ · (LLipschitz(θ) + LLipschitz(ν)).

The first three loss terms are used to guide the learner to-
wards learning a true RASM by forcing the learned candidate
towards satisfying the Initial, Safety and Expected decrease
conditions in Definition 1. They are defined as follows:

LInit(ν) = max
x∈Cinit

{Vν(x)− 1, 0}

LUnsafe(ν) = max
x∈Cunsafe

{ 1

1− p
− Vν(x), 0}

LDecrease(θ, ν) =
1

|Cdecrease|
·∑

x∈Cdecrease

(
max

{ ∑
ω1,...,ωN∼N

Vν(f(x, πθ(x), ωi))

N

− Vθ(x) + τ ·K, 0
})

Each loss term is designed to incur a loss at a state whenever
that state violates the corresponding condition in Definition 1
that needs to be checked by the verifier. In the expression for
LDecrease(θ, ν), we approximate the expected value of Vν by
taking the mean value of Vν at N sampled successor states,
where N ∈ N is an algorithm parameter. This is necessary as
it is not possible to compute a closed form expression for the
expected value of a neural network Vν .

The last loss term λ · (LLipschitz(θ) + LLipschitz(ν)) is the
regularization term used to guide the learner towards a policy
and an RASM candidate with Lipschitz constants below a
tolerable threshold ρ, with λ > 0 being a regularization con-
stant. By preferring networks with small Lipschitz constants,
we allow the verifier to use a wider mesh, which significantly
speeds up the verification process. The regularization term
for πθ (and analogously for Vν) is defined via

LLipschitz(θ) = max
{ ∏

W,b∈θ

max
j

∑
i

|Wi,j |−ρ, 0
}
,
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RSM RASM
Environment (reach-avoid extension) (ours)

2D system 83.4% 93.3%
Inverted pendulum 47.9% 92.1%
Collision avoidance Fail 90.4%

Table 1: Reach-avoid probability obtained by our method and
by the naive extension of RSMs. In each case, we report the
largest probability successfully verified by the method.

where W and b weight matrices and bias vectors for each
layer in πθ. Finally, in our implementation we also add an
auxiliary loss term that does not enforce any of the defining
conditions of RASMs, however it is used to guide the learner
towards a candidate that attains the global minimum in a
state that is contained within the target set Xt. We empirically
observed that this term sometimes helps the updated policy
from diverging from its objective to stabilize the system. Due
to space restrictions, details are provided in the extended
version of the paper (Žikelić et al. 2022).

We remark that the loss function is always nonnegative
but is not necessarily equal to 0 even if Vν satisfies all con-
ditions checked by the verifier and if Lipschitz constants
are below the specified thresholds. This is because the ex-
pected values in LDecrease(θ, ν) are approximated via sample
means. However, in the following theorem we show that in
this case L(θ, ν) → 0 with probability 1 as we add inde-
pendent samples. The claim follows from the Strong Law of
Large Numbers and the proof can be found in the extended
version of the paper (Žikelić et al. 2022).

Theorem 3. Let N be the number of samples used to approx-
imate expected values in LDecrease(θ, ν). Suppose that Vν sat-
isfies eq. (1) for each x̃ ∈ X̃e, eq. (2) for each cell ∈ CellsX0

and eq. (3) for each cell ∈ CellsXu
. Suppose that Lips-

chitz constants of πθ and Vν are below the thresholds speci-
fied by LLipschitz(θ) and LLipschitz(ν) and that the samples in
LDecrease(θ, ν) are independent. Then limN→∞ L(θ, ν) = 0
with probability 1.

Experiments
We experimentally validate our method on 3 non-linear RL
environments. Since no available baseline provides reach-
avoid guarantees of stochastic systems over the infinite time
horizon, as well as sampling and discretization approaches
can only reason over finite time horizons, we aim our experi-
ment as a validation of algorithm 1 in practice 1.

Our first two environments are a linear 2D system with non-
linear control bounds and the stochastic inverted pendulum
control problem. The linear 2D system is of the form xt+1 =
Axt + Bg(ut) + ωt, where g : u 7→ min(max(u,−1, 1))
limits the admissible action of the policy and ωt is sampled
from a triangular noise distribution. The inverted pendulum
environment is taken from the OpenAI Gym (Brockman et al.

1Code is available at https://github.com/mlech26l/neural_
martingales

2016) and made more difficult by adding noise perturbations
to its state. Our third environment concerns a collision avoid-
ance task. The objective of this environment is to navigate an
agent to the target region while avoiding crashing into one
of two obstacles. Further details on all environments an be
found in the extended version (Žikelić et al. 2022).

The policy and RASM networks consist of two hidden
layers (128 units each, ReLU). The RASM network has a
single output unit with a softplus activation. We run our
algorithm with a timeout of 3 hours.

The goal of our first experiment is to empirically evalu-
ate the ability of our approach to learn probabilistic reach-
avoid policies and to understand the importance of combining
reachability with level set reasoning towards safety in stochas-
tic systems. For all tasks, we pre-train the policy networks
using 100 iterations of PPO. To evaluate our approach, we
run our algorithm with several probability thresholds and
report the highest threshold for which a policy together with
an RASM is successfully learned. In order to understand the
importance of simultaneous reasoning about reachability and
level sets, we then compare our approach with a much sim-
pler extension of the method of (Lechner et al. 2022) which
learns RSMs to certify probability 1 reachability but does not
consider any form of safety specifications. In particular, we
run the method of (Lechner et al. 2022) without the safety
constraint and, in case a valid RSM is found, we normalize
the function such that the Nonnegativity and the Initial condi-
tions of RASMs are satisfied. We then bound from below the
smallest value that the RSM attains over the unsafe region,
and extract the corresponding reach-avoid probability bound
according to the Safety condition of RASMs. Note that, even
though this extension also exploits the ideas behind the level
set reasoning in our RASMs, it first performs reachability
analysis and only afterwards considers safety. We remark that
there is no existing method that provides reach-avoid guaran-
tees of stochastic systems over the infinite time horizon, i.e.
there is no existing baseline to compare against, thus we com-
pare our level set reasoning with the extension of (Lechner
et al. 2022) which is the closest related work.

Table 1 shows results of our first experiment. In particu-
lar, in the third column we see that our method successfully
learns policies that provide high probability reach-avoid guar-
antees for all benchmarks. On the other hand, comparison to
the second column shows that simultaneous reasoning about
reachability and safety that is allowed by our RASMs pro-
vides significantly better probabilistic reach-avoid guarantees
than when such reasoning is decoupled. Figure 1 visualizes
the RSM computed by the baseline and our RASM.

In our second experiment, we study how well our algo-
rithm can repair (or fine-tune) an unsafe policy. In particular,
we pre-train the policy network using only 20 PPO iterations.
We then run our algorithm with fixed policy parameters θ,
i.e. we only learn an RASM in order to verify a probabilis-
tic reach-avoid guarantee provided by a pre-trained policy.
Next, we run our Algorithm 1 with both ν and θ as trainable
parameters. Table 2 shows that, compared to a standalone
verification method, our algorithm is able to repair unsafe
policies in practice. However, the inability to repair the in-
verted pendulum policy illustrates that a decent starting policy
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Vν Vν and πθ

2D system Fail (10 iters.) 96.7% (4 iters.)
Collision avoidance Fail (9 iters.) 80.9% (3 iters.)
Inverted pendulum Fail (7 iters.) Fail (7 iters.)

Table 2: Reach-avoid probabilities obtained by repairing un-
safe policies. Verifying a policy by only learning the RASM
Vν times out, while jointly optimizing Vν and πθ yields a
valid RASM. In each case, we report the largest reach-avoid
probability successfully verified by the respective method.

is necessary for our algorithm, emphasizing the importance
of policy initialization. Since the Policy Initialization step
in Algorithm 1 initialises the policy by using PPO with a re-
ward function that encodes the reach-avoid specification, our
second experiment also demonstrates that a policy initialised
by using RL on a tailored reward function is not sufficient
to learn a reach-avoid policy with guarantees and that the
learned policy requires “correction” in order to provide reach-
avoid guarantees. The “correction” is achieved precisely by
keeping the policy parameters trainable in the learner-verifier
framework and fine-tuning them.

Conclusion
In this work, we present a method for learning controllers
for discrete-time stochastic non-linear dynamical systems
with formal reach-avoid guarantees. Our method learns a
policy together with a reach-avoid supermartingale (RASM),
a novel notion that we introduce in this work. It solves sev-
eral important problems, including control with reach-avoid
guarantees, verification of reach-avoid properties for a fixed
policy, or fine-tuning of a given policy that does not satisfy a
reach-avoid property. We demonstrated the effectiveness of
our approach on three RL benchmarks. An interesting future
direction would be to study certified control and verification
of more general properties in stochastic systems. Since the
aim of AI safety and formal verification is to ensure that
systems do not behave in undesirable ways and that safety vi-
olating events are avoided, we are not aware of any potential
negative societal impacts of our work.
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Žikelić, Ð.; Lechner, M.; Henzinger, T. A.; and Chatterjee, K.
2022. Learning Control Policies for Stochastic Systems with
Reach-avoid Guarantees. arXiv preprint arXiv:2210.05308.

11935


