
Explaining Model Confidence Using Counterfactuals

Thao Le, Tim Miller, Ronal Singh, Liz Sonenberg
School of Computing and Information Systems, The University of Melbourne

thaol4@student.unimelb.edu.au, {tmiller, rr.singh, l.sonenberg}@unimelb.edu.au

Abstract

Displaying confidence scores in human-AI interaction has
been shown to help build trust between humans and AI sys-
tems. However, most existing research uses only the con-
fidence score as a form of communication. As confidence
scores are just another model output, users may want to un-
derstand why the algorithm is confident to determine whether
to accept the confidence score. In this paper, we show that
counterfactual explanations of confidence scores help study
participants to better understand and better trust a machine
learning model’s prediction. We present two methods for un-
derstanding model confidence using counterfactual explana-
tion: (1) based on counterfactual examples; and (2) based on
visualisation of the counterfactual space. Both increase un-
derstanding and trust for study participants over a baseline of
no explanation, but qualitative results show that they are used
quite differently, leading to recommendations of when to use
each one and directions of designing better explanations.

Introduction
Explaining why an AI model gives a certain prediction can
promote trust and understanding for users, especially for
non-expert users. While recent research (Zhang, Liao, and
Bellamy 2020; Wang, Zhang, and Lim 2021) has used con-
fidence (or uncertainty) measures as a way to improve AI
model understanding and trust, the area of explaining why
the AI model is confident (or not confident) in its prediction
is still underexplored (Tomsett et al. 2020).

In Machine Learning (ML), the confidence score indicates
the chances that the ML model’s prediction is correct. In
other words, it shows how certain the model is in its pre-
diction, which can be defined as the predicted probability
for the best outcome (Zhang, Liao, and Bellamy 2020). An-
other way to define the confidence score is based on un-
certainty measures, which can be calculated using entropy
(Bhatt et al. 2021) or using uncertainty sampling (Lewis and
Gale 1994), (Monarch 2021, p93).

In this paper, we complement prior research by applying
a counterfactual (CF) explanation method to generate ex-
planations of the confidence of a predicted output. It is in-
creasingly accepted that explainability techniques should be
built on research in philosophy, psychology and cognitive
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science (Miller 2019; Byrne 2019) and that the evaluation
process of explanation should involve human-subject stud-
ies (Miller, Howe, and Sonenberg 2017; Förster et al. 2021;
Kenny et al. 2021; van der Waa et al. 2021). We therefore
evaluate our explanation to know whether counterfactual ex-
planations can improve understanding, trust, and user satis-
faction in two user studies using existing methods for assess-
ing understanding, trust and satisfaction. We present the CF
explanation using two designs: (1) providing counterfactual
examples (example-based counterfactuals); and (2) visualis-
ing the counterfactual space for each feature and its effect
on model confidence (visualisation-based counterfactuals).

Our contributions are:

• We formalise two approaches for the counterfactual ex-
planation of confidence score: one using counterfactual
examples and one visualising the counterfactual space.

• Through two user studies we demonstrate that show-
ing counterfactual explanations of confidence scores can
help users better understand and trust the model.

• Using qualitative analysis, we observe limits of the two
explainability approaches and suggest directions for im-
proving presentations of counterfactual explanations.

Background and Related Work
In this section, we review related work on counterfactual ex-
planations and confidence (or uncertainty) measures.

Counterfactual Explanations
Counterfactual explanation is described as the possible
smallest changes in input values in order to change the
model prediction to a desired output (Wachter, Mittelstadt,
and Russell 2017). It has been increasingly used in explain-
able AI (XAI) to facilitate human interaction with the AI
model (Miller 2019, 2021; Byrne 2019; Förster et al. 2021).
Counterfactual explanations can be expressed in the follow-
ing example: “You were denied a loan because your annual
income was $30,000. If your income had been $45,000, you
would have been offered a loan”. To generate counterfactu-
als, (Wachter, Mittelstadt, and Russell 2017) suggest finding
solutions of the following loss function.

argmin
x′

max
λ

λ(f(x′)− y′)2 + d(x, x′) (1)
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where x′ is the counterfactual solution; (f(x′) − y′)2

presents the distance between the model’s prediction output
of counterfactual input x′ and the desired counterfactual out-
put y′; d(x, x′) is the distance between the original input and
the counterfactual input; and λ is a weight parameter. A high
λ means we prefer to find counterfactual point x′ that gives
output f(x′) close to the desired output y′, a low λ means we
aim to find counterfactual input x′ that is close to the orig-
inal input x even when the counterfactual output f(x′) can
be far away from the desired output y′. In this model, f(x)
would be the predicted output, such as a denied loan, and y′

would be the desired output – the loan is granted. The coun-
terfactual x′ would be the properties of a similar customer
that would have received the loan. Equation 1 can be solved
by using the Lagrangian approach. However, this approach
has stability issues (Russell 2019). Therefore, Russell (2019)
proposes another search algorithm to generate counterfac-
tual explanations based on mixed-integer programming, as-
sumed where input variables can be continuous or categori-
cal values. They defined a set of linear integer constraints,
which is called mixed polytope. These constraints can be
given to Gurobi Optimization (Gurobi Optimization, LLC
2023) and then an optimal solution is generated.

Antorán et al. (2021) propose Counterfactual Latent Un-
certainty Explanations (CLUE), to identify features respon-
sible for the model’s uncertainty. Their idea for showing
counterfactual examples is similar to ours, however we go
further by considering ways to visualise the counterfactual
space, run a more comprehensive user study to measure un-
derstanding, satisfaction, and trust, and undertake a qualita-
tive analysis to identify limitations of current approaches.

There are many other approaches to solving counterfactu-
als for tabular (Mothilal, Sharma, and Tan 2020; Keane and
Smyth 2020), image (Goyal et al. 2019; Dhurandhar et al.
2018), text (Jacovi et al. 2021; Riveiro and Thill 2021) and
time series data (Delaney, Greene, and Keane 2021a). None
of these are for explaining model confidence, however, the
underlying algorithms could be modified to search over the
model confidence instead of the model output.

Confidence (Uncertainty) Measures
A confidence score measures how confident a ML model is
in its prediction; or inversely, how uncertain it is. A com-
mon method of measuring uncertainty is to use the predic-
tion probability (Delaney, Greene, and Keane 2021b; Bhatt
et al. 2021). Specifically, uncertainty sampling (Lewis and
Gale 1994) is an approach that queries unlabelled instance
x with maximum uncertainty to get human feedback. There
are four types of uncertainty sampling (Monarch 2021, p70):
Least confidence, Margin of confidence, Ratio of confidence
and Entropy. Zhang, Liao, and Bellamy (2020) demonstrate
that communicating confidence scores can support trust cal-
ibration for end users. Wang, Zhang, and Lim (2021) also
argue that showing feature attribution uncertainty helps im-
prove model understanding and trust.

van der Waa et al. (2020) propose a framework called In-
terpretable Confidence Measures (ICM) which provides pre-
dictable and explainable confidence measures based on case-
based reasoning (Atkeson, Moore, and Schaal 1997). Case-

based reasoning provides prediction based on similar past
cases of the current instance. This approach however did not
address counterfactual explanations of model confidence.

Formalising Counterfactual Explanation of
Confidence

This section describes two methods for CF explanation: one
based on counterfactual examples (Antorán et al. 2021) and
one based on counterfactual visualisation as in Figure 1.

Generating Counterfactual Explanation of
Confidence
In this section, we show how to generate counterfactual ex-
planations of the confidence score in data where input vari-
ables can take either categorical or continuous values. The
counterfactual model can generate explanations to either in-
crease or decrease the confidence score of a specific class.
For example, when the AI model predicts that an employee
will leave the company with confidence of 70%, a person
may ask: Why is the model 70% confident instead of 40%
confident or less?. This person could ask why the model
prediction did not have a lower confidence score when they
were sceptical about the high confidence score. We aim
to generate counterfactual inputs that bring the confidence
score to 40% or lower. An example of counterfactual expla-
nation in this case is: “One way you could have got a con-
fidence score of 40% instead is if Daily Rate had taken the
value 400 rather than 300”. Therefore, from this counter-
factual explanation, we know that we can achieve lowering
of the confidence of them resigning from the company by
increasing the employee’s daily rate.

We now describe our approach to generate counterfactuals
for confidence scores. We follow Russell (2019) in propos-
ing an algorithm to search for counterfactual points of out-
put confidence. Importantly, we modify this approach to find
counterfactual points that change the confidence score but do
not change the predicted class.

Formally, given a question: “Why does the model pre-
diction have a confidence score of U(x) rather than greater
than (or less than) T ?” where T is a user-defined confidence
threshold, x is the input instance, U(x) is the confidence
score of the original prediction, we want to find the counter-
factual explanation of confidence U(x′) generated by data
point x′ such that U(x′) > T or U(x′) < T depending
on the question. In case the user cannot give a threshold T,
the default threshold T value is the original confidence score
U(x) of the prediction. We seek the counterfactual point x′

by solving Equation 2:

argmin
x′

(||x− x′||1,w + |U(x′)− T |) (2)

such that:

U(x′) > T if T > U(x) (3)

U(x′) < T if T < U(x) (4){
P (y = k | x′) < D if P (y = k | x) < D

P (y = k | x′) ≥ D if P (y = k | x) ≥ D
(5)
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Attribute Alternative 1 Alternative 2 Original

Marital status - - Married
Years of education - - 9
Occupation Manager Skilled Service

Specialty
Age - - 63
Any capital gains - - No
Working hours - - 12
per week
Education - - High School

Confidence score 30.1% 42.1% 57.8%

AI prediction Lower than $50,000

Table 1: Example-based counterfactual explanation pre-
sented in a table. In alternative columns, notation (-) means
the value is unchanged from the original value, we only
highlight the values that changed.

where ||.||1,w is a weighted l1 norm with weight w defined
as the inverse median absolute deviation (MAD) (Wachter,
Mittelstadt, and Russell 2017); D is the decision boundary
that classifies the class.

We apply Equation 3 when we want to find counterfac-
tual x′ that increases the confidence score, and Equation 4
for a counterfactual x′ that decreases the confidence score.
Since x and x′ will give the same output prediction as class
k but different confidence scores U(x) and U(x′), P (x) and
P (x′) must be in the same space according to the decision
boundary, defined as Equation 5.

Example-Based Counterfactual Explanation
Given the original instance input shown in column Original
Value in Table 1, the AI model predicts that this person has
an income of Lower than $50, 000 with a confidence score
of 57.8%. We choose a factual confidence score T = 45%
and search for x′ where U(x′) < T . An example of coun-
terfactual explanation generated using our method is: “One
way you could have got a confidence score of less than 45%
(30.1%) instead is if Occupation had taken value Manager
rather than Service.”

We presented counterfactuals in a table, such as in Ta-
ble 1. We show the details of a person in column Origi-
nal Value and the prediction that their income is lower than
$50, 000. When we change the value of feature Occupation
as in columns Alternative 1 and Alternative 2, the confidence
score changes but the prediction is still lower than $50, 000.
From this table, we can find the correlation between the Oc-
cupation and the confidence score; the occupation Service
gives the prediction with the highest confidence score among
all three occupations.

Visualisation-Based Counterfactual Explanation
In this section, we propose a method for visualising the
counterfactual space of a model and how this affects the
model’s confidence as shown in Figure 1 and 2. The idea is
to visualise how varying a single feature affects the model’s
confidence, relative to the factual input x. For example, Fig-
ure 1 shows the visualisation based on Table 1 in the income

Figure 1: Counterfactual visualisation: Categorical variable

Figure 2: Counterfactual visualisation: Continuous variable

prediction task. Here we can see the prediction reaches max-
imum confidence score at Service occupation. The title of
this graph shows the output prediction Lower than $50, 000
and the feature name Occupation which we used to change
the values.

This visualisation technique is based on the idea of In-
dividual Conditional Expectation (ICE) (Goldstein et al.
2015). ICE is often used to show the effect of a feature value
on the predicted probability of an instance. In our study, we
show how changing a feature value can change the confi-
dence score instead of changing the predicted probability as
in the original ICE. There are two types of variables in the
dataset: (1) categorical variable, and (2) continuous variable.
So we define the ICE for confidence score of a single feature
xi of instance x such that F (xi) = U(xi) for all xi, where:
• xi ∈ D if xi is a categorical value and D is the categori-

cal set
• xi ∈ [cmin, cmin+t, . . . , cmax] if xi is a continuous value;
cmin and cmax are the minimum and maximum values of
a continuous range and t is a fixed increment.

If we use only a 2-dimensional graph, we can visualisa-
tion the changes of only one feature, whereas counterfac-
tual examples can explain how changing multiple features
simultaneously affect the confidence. However, visualising
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Control (C) Treatment - Example-Based (E) Treatment - Visualisation-Based (V)

Phase 1 Participants are given plain language statement, consent form and demographic questions (age, gender)
Phase 2 Participants are provided with

Input instances Input instances Input instances
AI model’s prediction class AI model’s prediction class AI model’s prediction class

Counterfactual examples Counterfactual visualisation
Phase 3 Nothing 10-point Likert Explanation Satisfaction Scale
Phase 4 10-point Likert Trust Scale

Table 2: Summary of participants’ tasks in our three experimental conditions

the counterfactual space allows us to easily identify the low-
est and highest confidence values for categorical values and
the trend of continuous values.

Human-Subject Experiments
Our user experiments test the following hypotheses.
• Hypothesis 1a/b (H1a/b): Example-

based/Visualisation-based counterfactual explanations
help users better understand the AI model than when
they are not given explanations.

• Hypothesis 2a/b (H2a/b): Example-
based/Visualisation-based counterfactual explanations
help users better trust the AI model than when they are
not given explanations.

It is necessary to test against the baseline of no expla-
nation because providing explanations is not always use-
ful compared to not providing any explanations (Lai and
Tan 2019; Bansal et al. 2021). We then evaluate the dif-
ference between example-based counterfactual explanations
and visualisation-based counterfactual explanations based
on the following hypotheses.
• Hypothesis 3a/b/c (H3a/b/c): Visualisation-based

counterfactual explanations help users better un-
derstand/trust/be satisfied with the AI model than
example-based counterfactual explanations.

To evaluate understanding, i.e., H1a, H1b and H3a, we
use task prediction (Hoffman et al. 2018, p11). Participants
are given some instances and their task is to decide for which
instance the AI model will predict a higher confidence score.
Thus, task prediction helps evaluate the user’s mental model
about their understanding in model confidence.

To evaluate trust, i.e., H2a, H2b and H3b, we use the 10-
point Likert Trust Scale from (Hoffman et al. 2018, p49). For
satisfaction, i.e., H3c, we use the 10-point Likert Explana-
tion Satisfaction Scale from (Hoffman et al. 2018, p39).

Experimental Design
Dataset We ran the experiment on two different domains
from two different datasets, which are income prediction do-
main and HR domain. Both datasets are selected so that ex-
periments can be conducted on general participants with no
requirement of particular expertise. The data used for the in-
come prediction task is the Adult Dataset published in UCI
Machine Learning Repository (Dua and Graff 2017) that in-
cludes 32561 instances and 14 features. This dataset clas-
sifies a person’s income into two classes (below or above

Attribute Employee 1 Employee 2 Employee 3

Marital status Married Married Married
Years of education 15 15 15
Occupation Service Manager Skilled

Specialty
Age 25 25 25
Any capital gains No No No
Working hours 30 30 30
per week
Education Bachelors Bachelors Bachelors

AI model prediction Lower than $50,000

Table 3: Example input instances provided in the question.
The question is: “For which employee the AI model predicts
with the highest confidence score?”

$50K) based on personal information such as marital status,
age, and education. In the second domain, we use the IBM
HR Analytics Employee Attrition Performance dataset pub-
lished in Kaggle (Pavansubhash 2017), which includes 1470
instances and 34 features. This dataset classifies employee
attrition as yes or no based on some demographic informa-
tion (job role, daily rate, age, etc.). We selected the seven
most important features for both datasets by applying the
Gradient Boosting Classification model over all data.

Model Implementation In our experiments, we use lo-
gistic regression to calculate the probability of a class, so
P (x) = 1

1+e−y where y = wx is a linear function of point
x. We chose logistic regression because of its simplicity so
that we can easily define the confidence score. Moreover,
although logistic regression models are considered intrinsi-
cally interpretable models (Molnar 2019), it is still challeng-
ing to reason about their behaviour when we want to have a
lower (or higher) confidence score. In future work, our stud-
ies can be extended to using counterfactual tools for more
complex models, such as CLUE (Antorán et al. 2021).

We choose margin of confidence, which is the differ-
ence between the first and the second highest probabili-
ties (Monarch 2021, p93) as the formula of confidence score
U(x). The higher the difference between two class proba-
bilities, the more confident the prediction is in the highest
probability class.

Procedure Before conducting the experiments, we re-
ceived ethics approval from our institution. We recruited par-
ticipants on Amazon Mechanical Turk (Amazon MTurk), a
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popular crowd-sourcing platform for human-subject experi-
ments (Buhrmester, Kwang, and Gosling 2016). The exper-
iment was designed as a Qualtrics survey1 and participants
can navigate to the survey through the Amazon MTurk in-
terface. We allowed participants 30 minutes to finish the ex-
periment and paid each participant a minimum of USD $7
for their time, plus a maximum of up to USD $2 depending
on their final performance.

We use a between-subject design such that participants
were randomly assigned into one of three groups: (1) Con-
trol (C); (2) Treatment with Example-Based Explanation
(E); or (3) Treatment with Visualisation-Based Explanation
(V). For each group, there are four phases that are described
in Table 2. The difference between the control group and
the treatment group is that in the control group, partici-
pants were not given any explanations. In the task prediction
(phase 2), participants in the control group were only shown
input values along with the AI model prediction class as in
Table 3. In the treatment group, participants were provided
with either example-based explanations (e.g. Table 1) or
visualisation-based explanations (e.g. Figure 1). The partic-
ipants each received the same 10 questions. For each ques-
tion, they were asked to select an input instance out of 3
instances that the AI model would predict with the highest
confidence score. A question can have either one or two ex-
planations depending on the number of modified attributes
in the question. For instance, the question in Table 3 changes
only one attribute Occupation so participants were given a
single explanation in treatment conditions. An explanation
can either present a categorical variable (e.g. Figure 1) or a
continuous variable (e.g. Figure 2).

We scored each participant using: 1 for a correct answer,
-2 for a wrong answer and 0 for selecting “I don’t have
enough information to decide”. To imitate high-stake do-
mains, the loss for a wrong choice is higher than the reward
for a correct choice (Bansal et al. 2019, p2433). They are
also asked to briefly explain why they choose that option in
a text box, which is analysed later in the qualitative analy-
sis. The final compensation was calculated based on the final
score — a score of 0 or less than 0 received $7 USD and no
bonus. A score greater than 0 received a bonus of $0.2 for
each additional score.

Participants We recruited a total of 180 participants for
two domains, that is 90 participants for each domain from
Amazon MTurk. Then 90 participants were evenly randomly
allocated into three groups (30 participants in each group).
All participants were from the United States. We only re-
cruited Masters workers, who achieved a high degree of
success in their performance across a large number of Re-
questers 2. For the income prediction domain, 41 participants
were women, 1 was self-specified as non-binary, 48 were
men. Between them, 4 participants were between Age 18
and 29, 34 between Age 30 and 39, 27 between Age 40 and
49, 25 over Age 50. For the HR domain, 43 participants were
women, 47 were men. Age wise, 4 participant was between

1https://www.qualtrics.com/
2https://www.mturk.com/worker/help

Understanding Trust Satisfaction

H1a H1b H3a H2a H2b H3b H3c
E V E vs V E V E vs V E vs V

Domain 1 ×
Domain 2 × × ×

Table 4: Summary of hypothesis tests in two domains.
represents the hypothesis is supported, × represents the hy-
pothesis is rejected.

Figure 3: Domain 1 (Income)

Figure 4: Domain 2 (HR)

Age 18 and 19, 37 between Age 30 and 39, 26 between Age
40 and 49, 23 over Age 50.

We performed power analysis for two independent sam-
ple t-test to determine the needed sample sizes. We calcu-
late the Cohen’s d between control and treatment group and
obtain the effect size of 0.7 and 0.67 in income and HR do-
main. Using power of 0.8 and significant alpha of 0.05, we
get sample sizes of 26 and 29 in the two domains. Thus, we
determine the sample size needed for a group is 30 and the
total number of samples needed is 90 for one domain.

Results: Summary of Both Domains
In this section, we present the results from our experiment
for two domains that used the income and HR datasets. We
tested for data normality by using the Shapiro-Wilks test
and found that our data was not normally distributed. There-
fore, we applied the Mann–Whitney U test, which is a non-
parametric test equivalent to the independent samples t-test
to perform pairwise comparisons between two groups. Ta-
ble 4 summarises our results of testing the seven hypotheses.
Figure 3 and 4 show the results of the two studies.

The results show that counterfactual explanations of
confidence scores help users understand and trust the AI
model more than those who were not given counterfac-
tual explanations. We conclude that H1a, H1b, H2a and
H2b are supported in both studies (p < 0.005, r > 0.41).

There is no statistically significant difference in im-

11860



Code Definition

W-Reversed category (CAT) The participant selected the instance that has a lowest confidence score instead of a highest confidence
score among all instances

W-Linear assumption (CAT) Assumed the correlation between confidence score and attribute values was linear when it was not (e.g.
the feature was categorical)

W-Small differences (CAT &
CON)

Selected a wrong answer due to small differences in the explanation and/or the question

W-Reversed correlation (CON) Reversed the trend of the explanation of a continuous variable
W-Case-based (CON) Used case-based reasoning when the correlation was linear

D-No correlation (CAT & CON) Could not find the trend of the confidence score
D-Different attribute values
(CAT & CON)

Argued that the values of instances in the explanations are not the same as values in the question

D-Outside range (CON) The modified values in the question are beyond the lowest and highest values in the explanation

C-Correlation-based (CON) Found the correlation in the explanation
C-Case-based (CAT) Got the correct answer based on examples in the explanation without mentioning about the correlation

Table 5: The codebook for participants’ responses to evaluate how they understand the provided explanations. CAT, CON
mean the code is applied for categorical variables and continuous variables, respectively. W corresponds to wrong answers. D
corresponds to the “do not have enough information to decide”. C corresponds to correct answers.

proving users’ understanding between example-based
explanations and visualisation-based explanations —
H3a is rejected. In domain 1, the difference in the task pre-
diction between the two treatment groups is larger than that
in domain 2. Specifically, effect size in domain 1 is r = 0.23
(p = 0.13) and in domain 2 is r = 0.03 (p = 0.86).

There are some discrepancies between domain 1 and 2
when comparing example-based and visualisation-based
explanations in terms of trust and satisfaction. In the
first domain, H3b (p < 0.001, r = 0.26) and H3c (p <
0.001, r = 0.28) are supported. However, in domain 2, H3b
(p = 0.1 > 0.05) and H3c (p = 0.06 > 0.05) are both re-
jected. We envision the discrepancies of H3b and H3c may
be because prior knowledge of participants could affect them
doing the tasks in two different domains. Future work could
test this idea further.

As observing no statistically significant difference be-
tween example-based and visualisation-based explanations,
we then use qualitative analysis to find the limits of both de-
signs and suggest directions to design effective explanations.

Qualitative Analysis
We perform the thematic analysis (Braun and Clarke 2006)
from the text written by participants after each mutiple-
choice question to know why they selected an option. The
text is a response to “Can you please explain why you se-
lected this option?”. We followed Nowell et al. (2017) who
gave a step-by-step approach for doing trustworthy thematic
analysis. Three authors were involved in the qualitative anal-
ysis. The first author identified and documented the themes
and the codes. Through multiple discussion meetings, two
other authors critically analysed the codes and verified them.
Finally, we decided on the final codes as in Table 5.

Every participant did the same 10 questions so we have
30 (participants) × 10 (questions) is 300 (texts) for a condi-
tion. Given that we have two treatment conditions and two

datasets, we analysed a total of 1,200 texts and each text is
assigned to one code or more than one code depending on
the number of explanations in that response. Each code is
classified as one of: (1) a correct answer (C); (2) a wrong
answer (W); or (3) “not enough information” (D). The fi-
nal analysis includes 1,112 texts after removing 88 texts due
to poor quality. We found the following observations, which
suggest future improvements.

Use text labels instead of numbers to present categori-
cal variables.. A categorical variable can be shown in num-
bers or text labels. In Table 6, the majority of wrong codes in
HR domain is W-Linear assumption (78% and 95%) because
most explanations using categorical variables are written in
numbers. There was no linear assumption codes in the in-
come dataset since all explanations used text labels.

When the labels of categorical features indicate ordi-
nal data, visualise counterfactuals help to reduce the er-
ror “linear assumption”, making it easier for people to
interpret the highest or lowest values. According to Ta-
ble 6 (HR dataset), 95% (39) of wrong responses happened
due to linear assumption in the example-based condition;
however, we found only 78% (21) of linear assumption in
the visualisation-based condition. For instance, in a question
where the job level is a categorical variable and is not corre-
lated with the confidence score, a participant in the example-
based condition mentioned: “Those with a higher job level
had a higher confidence rating”. In contrast, another partic-
ipant in the visualisation-based condition could identify the
highest confidence value at job level 2 without mentioning
about the linear trend: “The AI predicted job level 2 has the
highest chance of staying”.

It is hard for people to interpret the example-based
explanations when the differences between counterfac-
tual outputs and categorical attributes are minimal. Ac-
cording to Table 6 (wrong answer, income dataset, categor-
ical variables), we observe 28% (5) of W-Small difference

11861



Income HR

E V E V

Wrong Answer

Categorical Variables
W-Linear assumption 0 (0%) 0 (0%) 39 (95%) 21 (78%)
W-Small difference 5 (28%) 0 (0%) 2 (5%) 2 (7%)
W-Reversed category 13 (72%) 11 (100%) 0 (0%) 4 (15%)

Continuous Variables
W-Case-based 1 (4%) 0 (0%) 7 (64%) 0 (0%)
W-Small difference 0 (0%) 2 (18%) 0 (0%) 2 (12%)
W-Reversed correlation 23 (96%) 9 (82%) 4 (36%) 14 (88%)

Not Enough Information
Categorical Variables D-Different attribute values 6 (100%) 0 8 (80%) 0

D-No correlation 0 (0%) 0 2 (20%) 0

Continuous Variables
D-Outside range 1 (6%) 9 (64%) 2 (13%) 6 (46%)
D-Different attribute values 4 (24%) 0 (0%) 3 (19%) 0 (0%)
D-No correlation 12 (70%) 5 (36%) 11 (68%) 7 (54%)

Correct Answer Categorical Variables C-Correlation-based 17 (11%) 20 (11%) 18 (10%) 0 (0%)
C-Case-based 133 (89%) 159 (89%) 157 (90%) 186 (100%)

Continuous Variables C-Correlation-based 97 (98%) 118 (100%) 81 (98%) 99 (100%)
C-Case-based 2 (2%) 0 (0%) 2 (2%) 0 (0%)

Table 6: Frequencies and Percentages of Codes for Explanations

codes in the example-based condition. For example, in a
question where Manager occupation has the highest confi-
dence score, some participants mistakenly selected Skilled
Specialty as the highest even though this occupation is the
second highest. In this case, the difference in confidence val-
ues between Manager and Skilled Specialty is only 2% (93%
and 91%). This small difference made 5 participants chose a
wrong answer in the example-based condition.

Using visualisation-based explanations is easier to un-
derstand correlations; however, many participants were
not willing to extrapolate the correlation beyond the
lowest and highest values. In Table 6 (Not Enough In-
formation), we have fewer codes of D-No correlation in
visualisation-based explanations. However, we record a
higher number of codes of D-Outside range in this visualisa-
tion condition. This issue suggests that we should not expect
participants to extrapolate the correlation, and all counter-
factual points should be shown in the explanations.

Regardless of variables, if the counterfactual exam-
ples in the example-based explanations are not the same
as the values in the question, many participants argued
that they do not have enough information to decide (D-
Different attribute values). For example, a participant said:
“Because the position is different, lab tech versus sale rep,
I feel that even though the AI chose the one with the high-
est confidence as the one with the lowest daily rate, I am
not sure if the job description would change that confidence
level”. In this question, we provided the example-based
explanation for Sales Representative job, but the question
shows instances of Lab Tech job. Even though the daily rate
increases linearly in all cases, some participants did not feel
confident to apply this observation when we change the in-
stance values in the question. They applied case-based rea-
soning when interpreting the example-based explanation of
a linear model rather than interpreting the linear correlation
in this explanation. That is, they found the closest example in
the counterfactual explanation presented, and compared that

example with the question. Similarly, we found an overall
8 codes of W-Case-based where participants applied case-
based reasoning to do the task with example-based explana-
tions of continuous values. A participant wrote: “It really is
a tough call but I chose employee 1 because the 400 range
has the highest percentage of leaving”. In this example, the
participant saw that the daily rate of 400 has the highest con-
fidence of leaving, therefore, they selected the value that is
close to 400 rather than interpreting the linear correlation
between the daily rate and the confidence score (lower daily
rate indicates higher confidence of leaving). Specifically, the
question has three daily rate options of 200, 201 and 247,
they eventually selected 247 as the final answer, arguing that
247 is closest to 400 in the example-based explanation. In
general, it is clear that participants in the example-based
condition used a ‘case-based reasoning’ approach to un-
derstanding the model. This led participants to overlook
the linear trend between the confidence score and the fea-
ture values. This finding suggests that we should be careful
when using example-based explanations to interpret contin-
uous variables for models, except for cases when the under-
lying model is itself a case-based model. Using graphs to
visualise continuous variables can mitigate this issue.

Conclusion
This paper proposes two approaches for counterfactual ex-
planation of model confidence: (1) example-based coun-
terfactuals; and (2) visualisation-based counterfactuals.
Through a human-subject study, we show that the counter-
factual explanation of model confidence helped users im-
prove their understanding and trust in the AI model. Further-
more, the qualitative analysis suggests directions of design-
ing better counterfactual explanations. In the future, we plan
to perform more extensive user studies to evaluate whether
we can improve decision making using such explainability
techniques.
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