
Fairness in Contextual Resource Allocation Systems:
Metrics and Incompatibility Results

Nathanael Jo*, Bill Tang*, Kathryn Dullerud, Sina Aghaei, Eric Rice, Phebe Vayanos
USC Center for AI in Society, Los Angeles, CA

nathanael.jo@gmail.com, {yongpeng, kdulleru, saghaei, ericr, phebe.vayanos}@usc.edu

Abstract

We study critical systems that allocate scarce resources to sat-
isfy basic needs, such as homeless services that provide hous-
ing. These systems often support communities disproportion-
ately affected by systemic racial, gender, or other injustices,
so it is crucial to design these systems with fairness consider-
ations in mind. To address this problem, we propose a frame-
work for evaluating fairness in contextual resource allocation
systems that is inspired by fairness metrics in machine learn-
ing. This framework can be applied to evaluate the fairness
properties of a historical policy, as well as to impose con-
straints in the design of new (counterfactual) allocation poli-
cies. Our work culminates with a set of incompatibility results
that investigate the interplay between the different fairness
metrics we propose. Notably, we demonstrate that: 1) fairness
in allocation and fairness in outcomes are usually incompat-
ible; 2) policies that prioritize based on a vulnerability score
will usually result in unequal outcomes across groups, even
if the score is perfectly calibrated; 3) policies using contex-
tual information beyond what is needed to characterize base-
line risk and treatment effects can be fairer in their outcomes
than those using just baseline risk and treatment effects; and
4) policies using group status in addition to baseline risk and
treatment effects are as fair as possible given all available
information. Our framework can help guide the discussion
among stakeholders in deciding which fairness metrics to im-
pose when allocating scarce resources.

1 Introduction
Many of our social and health service systems that operate
in high-stakes settings are severely under-resourced. These
systems allocate scarce resources that satisfy basic human
needs, such as hospitals that provide treatments, social ser-
vices that offer preventive care, or homeless services that
provide shelter and housing. Inadequate allocation in these
systems can have grave consequences; for instance, a social
service program may exclude those most at risk of suicide
from an appropriate preventive intervention.

Since these systems often support communities dispro-
portionately affected by systemic racial, gender, or other in-
justices, they must be sensitive to the worsening of preex-
isting inequalities. As such, the fairness of a high-stakes re-
source allocation system must be easily scrutinized and un-
derstood by key stakeholders, which include policymakers
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and community members the system is designed to help. In-
deed, even the perception of bias or lack of transparency can
result in a loss of trust and participation. Systems that do
not align with the values of their stakeholders may even get
defunded, further exacerbating resource scarcity.

Our goals in this paper are a) to establish a simple frame-
work for stakeholders to evaluate the fairness of such high-
stakes resource allocation systems, and b) to guide policy-
makers in choosing which fairness requirements to impose
in the design of new (counterfactual) allocation policies. In
these systems, a central decision maker makes recommen-
dations for how resources should be allocated. Such policies
rely on contextual information, i.e., they are based on an in-
dividual’s intrinsic characteristics (or covariates) which are
validated by case managers, as opposed to an individual’s
preferences (as in the mechanism design literature). There-
fore, our learning problem closely resembles that of the clas-
sical machine learning framework. Instead of predicting out-
comes from features, however, we additionally consider the
causal effect of resources (or treatments) on covariates.

We first present a menu of options for evaluating fairness
at different stages of the allocation process that are inspired
by popular fairness notions in the machine learning litera-
ture. We then present incompatibility results between these
notions that illuminate the concrete decisions that policy-
makers need to make in deciding how to allocate resources.
For instance, is it acceptable to use protected characteristics
like race in deciding which resource an individual should
receive? Is it sufficient to only use a vulnerability score to
prioritize individuals for resources, or should one necessar-
ily include more context (e.g., information on treatment ef-
fects)?

Our results in this paper apply to many high-stakes re-
source allocation systems. To streamline exposition, we fo-
cus on one concrete application, that of allocating scarce
housing resources to people experiencing homelessness.

Housing Allocation for People Experiencing Home-
lessness in Los Angeles. Many cities face dramatic short-
ages of housing resources used to support those experi-
encing homelessness. In Los Angeles County, for example,
there are over 69,000 homeless persons and only around
30,000 permanent housing units as of the latest counts in
2022 (Authority 2022a,b). Communities have attempted to
address this problem by creating Coordinated Entry Systems
(CES) where agencies pool their housing resources in a cen-
tralized system called a Continuum of Care (CoC). Agencies
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then distribute housing and services funding for people ex-
periencing homelessness from this pooled resource. In Los
Angeles, the CoC is directed by the Los Angeles Homeless
Services Authority (LAHSA), who conducts the following
process for allocating housing resources:

1. Assessment – Persons seeking housing are first as-
sessed for eligibility and vulnerability by filling out a
self-reported survey known as the Vulnerability Index
- Service Prioritization Decision Assistance Tool (VI-
SPDAT), which gives a score from 0 to 17. A higher score
indicates higher vulnerability.

2. Enrollment – Case managers then use this score to “en-
roll” the individual into a housing resource, which may
be one of the following interventions: Permanent Sup-
portive Housing (PSH) or Rapid Re-Housing (RRH),
which are intended for individuals with severe and mod-
erate housing needs, respectively.

3. Allocation – Finally, individuals may receive a resource.
Note the important distinction between what the individ-
ual has been enrolled in and what they have been given.
Policymakers can only recommend connections to par-
ticular resources; the actual allocation depends on a vari-
ety of factors, including the availability of the resource,
whether or not a landlord is willing to accept certain in-
dividual to their housing community, and many more.

4. Outcome – The impact of that resource is evaluated.
While this step is not explicitly part of the matching pro-
cess, we include it in order to be able to quantify the
performance of a housing allocation policy. For example,
the outcome being tracked may correspond to whether or
not a homeless person returns to homelessness within 24
months of receiving a resource.

In recent years, the fairness of CES has been put to ques-
tion. In 2018, the Los Angeles Homeless Services Author-
ity’s Ad Hoc Committee on Black People Experiencing
Homeless published their report mentioning that while CES
seems to match Black individuals to housing resources at
equal rates to their White counterparts, they still “experi-
ence a higher rate of returns to homelessness than all other
race and ethnic groups” (Authority 2018). Our work aims to
contextualize these claims by providing various metrics to
evaluate the fairness of a resource allocation system that are
more nuanced than the ones practitioners traditionally use.

1.1 Contributions
Our key contributions are:

• We propose a unifying framework for measuring fair-
ness in high-stakes resource allocation systems which
has several advantages: it is intuitive, in that any decision
maker with little to no knowledge of algorithmic fairness
can understand the fairness concepts; it is adaptable, in
that our framework allows for the evaluation of arbitrary
counterfactual policies; it is also comprehensive in con-
sidering the various sources of discrimination that could
be present in a complex allocation system. Throughout
this paper, we present our fairness framework in the gen-
eral sense but will specifically focus on the motivating

example of allocating resources for people experiencing
homelessness in Los Angeles.

• We present incompatibility results showing that 1) fair-
ness in allocation and fairness in outcomes are usually
incompatible; 2) policies that prioritize based on a vul-
nerability score will usually result in unequal outcomes
across groups, even if the score is perfectly calibrated;
3) policies using contextual information beyond what is
needed to characterize baseline risk and treatment ef-
fects can be fairer in their outcomes than those using just
baseline risk and treatment effects; and 4) policies using
group status in addition to baseline risk and treatment
effects are as fair as possible given all available informa-
tion.

The remainder of this paper is organized as follows. The
rest of Section 1 positions our paper within the related lit-
erature. In Section 2, we formalize our proposed notions of
group fairness. Section 3 presents our incompatibility results
when using a combination of these fairness notions together.
Finally, we discuss the practical implications of our incom-
patibility results in Section 4. 1

1.2 Literature Review
Our work is closely related to the fields of fairness in ma-
chine learning and resource allocation. We now position our
work in these two literature streams.

Fairness in Machine Learning. The literature on algo-
rithmic fairness is extensive. Of particular relevance to our
work is enforcing “group fairness”, i.e., statistical fairness
over segments of the population. This is in contrast to “in-
dividual” fairness, which requires that individuals with sim-
ilar covariates be classified in the same way (Dwork et al.
2012). We focus on group fairness notions because they are
intuitive and are more aligned with how practitioners evalu-
ate fairness. There are a number of fairness metrics that have
been proposed in the literature. For instance, statistical par-
ity enforces that the probability of receiving a positive class
is equal across all sensitive groups (Dwork et al. 2012). As
an extension to statistical parity, conditional statistical par-
ity was introduced by Corbett-Davies et al. (2017), which
stipulates that a classifier should assign a positive class at
equal rates across all protected groups, conditional on some
legitimate feature(s) that affect the outcome.

Other fairness notions incorporate the quality of a classi-
fier’s decisions, such as equalized odds where all protected
groups should have the same true positive rates (TPR) and
false positive rates (FPR) (Hardt, Price, and Srebro 2016). A
simpler version of equalized odds is equality of opportunity,
where only equal TPR is enforced. Approaches that include
these two notions include Hardt, Price, and Srebro (2016);
Zafar et al. (2017); Agarwal et al. (2018).

There are many other notions of fairness such as er-
ror rate balance (Feldman et al. 2015), predictive par-
ity (Chouldechova 2017), well-calibration (Crowson, Atkin-
son, and Therneau 2016; Flores, Bechtel, and Lowenkamp
2016), and balance of positive (negative) class (Kleinberg,
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Mullainathan, and Raghavan 2016). We refer the interested
reader to Barocas, Hardt, and Narayanan (2019); Mehrabi
et al. (2021) for in-depth reviews of the literature.

An important line of work in fair machine learning in-
vestigates incompatibility/impossibility results among dif-
ferent notions of fairness. For instance, Kleinberg, Mul-
lainathan, and Raghavan (2016) show the incompatibility of
well-calibration and balance of positive/negative class and
Chouldechova (2017) shows that well-calibration and error
rate balance are incompatible except in trivial cases.

Another relevant branch of research in fair machine learn-
ing is the study of how “race-blind” practices might actually
hinder fairness. Huq (2018) provides a perspective on how
including group membership could work in a legal setting
and Kleinberg et al. (2018) show that race-aware predictors
outperform race-blind predictors in terms of fairness. Our
work adds another dimension to this literature by expanding
this stream of work into the resource allocation setting.

Fairness in Resource Allocation. Within the literature on
fairness in resource allocation, works that are most closely
related to ours are those that have attempted to bridge the
gap between fair machine learning and fair resource alloca-
tion/mechanism design (Finocchiaro et al. 2021; Das 2021).
However, these papers largely provide guiding frameworks
for how problems connecting machine learning and resource
allocation should be approached rather than defining fairness
notions that bridge the two.

There are several papers that approach the problem of
fair resource allocation through a central decision maker.
Rodolfa et al. (2020) use the distribution of recall across
protected groups to improve fairness, while also adjusting
for how their measure of fairness might affect long-term out-
comes. Rodolfa, Lamba, and Ghani (2021) build on the pre-
vious work by showing they do not sacrifice accuracy in ap-
plying their notion of fairness. Elzayn et al. (2019) present a
notion of allocative fairness inspired by equality of opportu-
nity in the classification setting, and Donahue and Kleinberg
(2020) extend this work by providing an upper bound on the
price of fairness. However, these papers focus on just one
notion of fairness and thus none examine possible incom-
patibilities between different fairness notions.

Another line of work in this literature focuses on design-
ing policies that satisfy fairness notions through linear con-
straints. Some applications include kidney allocation (Bert-
simas, Farias, and Trichakis 2013) and allocation of hous-
ing resources (Azizi et al. 2018; Rahmattalabi et al. 2022).
Some of the fairness notions imposed in these works over-
lap with the ones we propose in our framework. However,
none of these papers study the interplay between different
notions of fairness. Vayanos et al. (2021) propose a prefer-
ence elicitation algorithm and show how it can be used to
elicit the preferences of policymakers over various notions
of fairness and efficiency. Yet, they do not present any in-
compatibility results between these fairness notions. There
are also other works that compare fairness notions in non-
contextual resource allocation problems such as facility lo-
cation (Kumar and Kleinberg 2000), scheduling (Kumar and
Kleinberg 2000; Baruah et al. 1993), and bandwidth assign-

ments in networks (Kumar and Kleinberg 2000; Lan et al.
2010).

There are a number of papers that focus on fairness in
mechanism design. However, they focus on the utility de-
rived from allocating a resource to an individual. For exam-
ple, Freeman, Shah, and Vaish (2020) develop algorithms
for constructing allocation policies that are simultaneously
exactly fair ex-ante and approximately fair ex-post and com-
pare fairness notions such as envy-freeness, group fairness,
and proportionality. Mashiat et al. (2022) outline several no-
tions of fairness related to equalizing average regret and im-
provement in allocation across groups. Kash, Procaccia, and
Shah (2014) and Benabbou, Chakraborty, and Zick (2019)
focus on the incompatibility of fairness and efficiency in
terms of envy-freeness and pareto-optimality. Other works
model the allocation system using self-interested agents try-
ing to obtain a good(s) through a market (Conitzer et al.
2019; Scarlett, Teh, and Zick 2021; Benabbou, Chakraborty,
and Zick 2019; Benabbou et al. 2019; Barman et al. 2018;
Fain, Munagala, and Shah 2018; Raman, Shah, and Dick-
erson 2021). Our work focuses specifically on the interplay
of fairness notions at different phases of allocation and on
contextual resource allocation systems.

2 Statistical Fairness
We consider a system that allocates scarce resources of dif-
ferent (finite) types, which we index in the set T (e.g., PSH
or RRH). These resources must be allocated to individuals
who are characterized by their feature vector X ∈ X ⊆ Rn,
which includes their sensitive attribute(s) G ∈ G, where G
comprises the levels of (potentially intersection of multiple)
sensitive attribute(s) (e.g., race or sex). Each individual is
also characterized by their potential outcomes Y t ∈ Y ⊆ R
under each resource t ∈ T . These potential outcomes could
be interpreted as one’s utility given treatment (e.g., long-
term health or return to homelessness), though they are
not a function of an individual’s preferences. The system
uses a (possibly randomized) recommendation policy to as-
sign each individual a treatment, T = π(X) ∈ T , i.e.,
π : X → T . This recommendation may not be the same as
the treatment that the individual is given, denoted by A ∈ T ,
which is determined by a (possibly randomized) allocation
rule µ : X → T . While we have defined our policies π
and µ in the general case for X , which includes G, in many
sensitive settings using protected characteristics is prohib-
ited to prevent discrimination. Therefore, we also define
X−G ∈ X−G as the collection of features excluding group
status G. Finally, for given π and µ, we assume an unknown
joint distribution P over (X,T,A, {Y t}t∈T ). Note that the
random quantity π(x) is specified by the conditional proba-
bilities P(π(x) = t|X = x) that each individual is assigned
treatment t conditional on covariates x and µ(x) is specified
by the conditional probabilities P(µ(x) = t|X = x) that
each individual receives treatment t conditional on covari-
ates x. Furthermore, deterministic policies are a special case
of the randomized policies we have defined where the con-
ditional probabilities P(π(x) = t|X = x) and P(µ(x) =
t|X = x) equal 1 for a single treatment and 0 for all other
treatments. Finally, we define uniformly randomized poli-
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cies as the special case where P(π(x) = t|X = x) = p or
P(µ(x) = t|X = x) = p for some constant p ∈ [0, 1] and
for all x ∈ X .

2.1 Enrollment Fairness
We now outline several fairness considerations during the
enrollment stage, i.e., the results following a recommenda-
tion rule π.

Definition 2.1 (Statistical Parity in Enrollments). Statisti-
cal parity in enrollments is satisfied if the probabilities of
enrolling in any given treatment are equal across sensitive
groups, i.e.,

P(π(X) = t|G = g) = P(π(X) = t|G = g′)

∀g, g′ ∈ G, t ∈ T .

As mentioned in the introduction, statistical parity is per-
haps one of the most well-known fairness notions in the ma-
chine learning literature and used in evaluating many real-
world systems, see e.g., LAHSA’s Ad Hoc Committee on
Black People Experiencing Homelessness report (Authority
2018). While it is simple and intuitive, this notion may not
sufficiently protect groups that are more vulnerable at base-
line. For instance, recall that people experiencing homeless-
ness in Los Angeles are assigned a risk score from 0 to 17
that characterizes how vulnerable they are. Suppose now that
we design a policy satisfying statistical parity on race as the
sensitive attribute. Since we do not condition on risk score, it
is possible that such an allocation policy disproportionately
assigns treatments to those with lower vulnerability within
each racial group, which is undesirable. This observation
motivates us to introduce the following notion of fairness.

Definition 2.2 (Conditional Statistical Parity in Enroll-
ments). Conditional statistical parity in enrollments is sat-
isfied if the probabilities of enrolling in any given treatment
are equal across sensitive groups, conditional on some “le-
gitimate feature(s)”, i.e.,

P(π(X) = t|G = g, L = ℓ) = P(π(X) = t|G = g′, L = ℓ)

∀g, g′ ∈ G, t ∈ T , ℓ ∈ L,

where L = f(X), f : X → L, collects all legitimate fea-
tures and takes values in the set L.

In our motivating example, L, which is a function of co-
variates collected from a survey assessment, is the risk score
from 0 to 17. Policies that assign or recommend based on
a risk score are used in many applications (see Ustun and
Rudin (2019) for examples within medicine, criminal jus-
tice, and finance). Beyond conditioning on vulnerability, we
also propose considering features measuring treatment ef-
fects as legitimate features since policymakers may be inter-
ested in targeting treatment effects to achieve outcome re-
lated fairness, which is detailed in Section 2.3.

2.2 Allocative Fairness
After being enrolled in a treatment, an individual may not
actually receive their recommended treatment. We there-
fore define separate fairness notions for the allocation stage.

While most of the definitions are similar to that of the enroll-
ment stage, we include one more definition that is inspired
by equalized odds. This is motivated by the need to ensure
that the discrepancy between enrollment and allocation is
roughly equal among all groups.
Definition 2.3 (Equalized Faithfulness in Allocation).
Equalized faithfulness in allocation is satisfied if the prob-
abilities of receiving treatments other than the one initially
recommended are equal across groups, i.e.,

P(µ(X) = t′|G = g, π(X) = t) =

P(µ(X) = t′|G = g′, π(X) = t)

∀g, g′ ∈ G, t, t′ ∈ T .

Equalized faithfulness in allocation may be a useful
mechanism when there are unaccounted biases towards cer-
tain groups between the enrollment and allocation stages. In
our motivating problem of homelessness in Los Angeles, for
example, some resources require that a housing complex’s
landlord approves of the person experiencing homelessness.
Unfortunately, caseworkers have shared numerous cases of
Black individuals being recommended a resource but not re-
ceiving it because no landlord is willing to accept them (Mil-
burn et al. 2021).

Simply requiring equalized faithfulness between groups
may lead to undesirable results when there are distributional
differences in vulnerability between groups. For example,
suppose group g is generally more vulnerable than group g′.
Imposing equalized faithfulness may result in an allocation
where individuals from g receive their recommended re-
source at much lower rates than their counterparts in g′ with
the same vulnerability. This is possible so long as faithful-
ness is overall the same across the two groups. A more rea-
sonable policy might instead be more likely to allocate the
recommended resource to more vulnerable individuals. We
therefore introduce the notion of conditional equalized faith-
fulness, which accounts for vulnerability.
Definition 2.4 (Conditional Equalized Faithfulness in Al-
location). Conditional equalized faithfulness in allocation
is satisfied if the probabilities of receiving treatments other
than the one initially recommended are equal across groups,
conditional on some “legitimate feature(s)”, i.e.,

P(µ(X) = t′|G = g, π(X) = t, L = ℓ) =

P(µ(X) = t′|G = g′, π(X) = t, L = ℓ)

∀g, g′ ∈ G, t, t′ ∈ T , ℓ ∈ L.
We may also alter the definitions in Section 2.1 to get sim-

ilar notions in the allocation setting.
Definition 2.5 (Statistical Parity in Allocation). Statistical
parity in allocation is satisfied if the probabilities of allocat-
ing any given treatment are equal across groups, i.e.,

P(µ(X) = t|G = g) = P(µ(X) = t|G = g′)

∀g, g′ ∈ G, t ∈ T .

Definition 2.6 (Conditional Statistical Parity in Allocation).
Conditional statistical parity in allocation is satisfied if the
probabilities of allocating any given treatment are equal
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across groups, conditional on some legitimate feature(s),
i.e.,

P(µ(X) = t|G = g, L = ℓ) = P(µ(X) = t|G = g′, L = ℓ)

∀g, g′ ∈ G, t ∈ T , ℓ ∈ L.
While fairness in enrollment is something that policymak-

ers control (because they assign the interventions), allocative
fairness may not be possible to control since the actual allo-
cation might depend on external factors like the availability
of resources or discrimination (e.g., landlords might reject
certain individuals from their housing communities). How-
ever, one may be able to affect allocative fairness by chang-
ing enrollment fairness assuming that faithfulness in alloca-
tion remains unchanged. Despite these challenges, allocative
fairness is nonetheless important to measure because it re-
flects which resources individuals truly receive. We thus in-
troduce these definitions separately to highlight the distinct
challenges faced in the allocation stage versus the enroll-
ment stage.

2.3 Outcome Fairness
Lastly, we may impose similar notions of fairness from the
outcome perspective, where outcomes could be some per-
sonal utility upon receiving treatment (e.g., a return to home-
lessness or health outcome). These definitions are useful in
situations where imposing fairness in allocation is inappro-
priate because they exacerbate existing inequalities. For in-
stance, Black individuals experiencing homelessness in Los
Angeles may be assigned housing resources at equal rates to
their White counterparts, but they still “experience a higher
rate of returns to homelessness than all other race and ethnic
groups” (Authority 2018).

For simplicity, we introduce these fairness notions assum-
ing that potential outcome Y is binary, where Y = 1 (resp.
0) corresponds to a positive (resp. negative) outcome. This
assumption will carry over to our incompatibility results in
Section 3. Note, however, that the proposed definitions can
be amended to reflect (conditional) expectations or higher
order moments when Y ∈ R.
Definition 2.7 (Statistical Parity in Outcomes). Statistical
parity in outcomes is satisfied if the probabilities of experi-
encing a positive outcome are equal across groups, i.e.,

P(Y (µ(X)) = 1|G = g) = P(Y (µ(X)) = 1|G = g′)

∀g, g′ ∈ G.
Definition 2.8 (Conditional Statistical Parity in Outcomes).
Conditional statistical parity in outcomes is satisfied if the
probabilities of experiencing a positive outcome are equal
across sensitive groups, conditional on some legitimate fea-
ture(s), i.e.,

P(Y (µ(X)) = 1|G = g, L = ℓ) =

P(Y (µ(X)) = 1|G = g′, L = ℓ)

∀g, g′ ∈ G, ℓ ∈ L.
When the distribution of legitimate features vary widely

between protected groups, we have discussed that condi-
tional statistical parity is often preferable over statistical

parity in the enrollment and allocation stages. This is not
the case, however, when we want to ensure fairness in out-
comes. We argue that statistical parity in outcomes is in fact
the stronger condition for an allocation policy to satisfy. In
the housing allocation problem, Black people are more often
classified as being at higher risk to homelessness than White
people. Enforcing conditional statistical parity merely pro-
tects the subpopulation in both groups who happen to have
the same risk scores. However, we are more interested in
seeing that both races overall have an equal probability of
experiencing a positive outcome, which may require allo-
cating better/more resources to Black people because they
are more at risk of homelessness in the first place. In gen-
eral, our argument holds when there is existing and apparent
discrimination between two or more groups, and ultimately
our goal in enforcing statistical parity is to repair said dis-
crimination.

The aforementioned definitions can be amended in multi-
ple ways depending on the allocation setting. For instance,
they can be altered so that one (historically marginalized)
group has a higher probability of success than others. This
change may be particularly helpful in settings involving af-
firmative action or reparations.

3 Incompatibility Results
3.1 Incompatibility of Allocation and Outcome

Fairness
In this section, we present incompatibility results between
fairness in allocation and fairness in outcomes by defining
necessary conditions for different metrics to jointly hold and
then providing intuitions as to why these conditions would
not hold in general. Such results are important since poli-
cymakers may often want to see if they can achieve both
allocation and outcome fairness between groups. Through-
out this section, our results focus on the binary treatment
case, i.e., T = {0, 1}, where t = 0 corresponds to the no-
treatment case (control). Each condition for the binary case
can be extended to multiple treatments at the cost of compli-
cating notation. While we do not explicitly consider budget
constraints in deriving incompatibility results and in study-
ing the fairness behavior of policies under various metrics,
budget constraints are captured by the assignment probabili-
ties. For example, P(µ(X) = 1), the population treatment
probability, is bounded by the budget. For simplicity, we
assume non-negative conditional average treatment effects,
i.e., E[Y 1 − Y 0 | X = x] ≥ 0 ∀x ∈ X , which in our
motivating example means that giving someone (anybody) a
housing resource is expected to help them. We discuss the
incompatibility of allocation and outcomes in terms of the
allocation rule µ and not the recommendation policy π since
the actual allocation is what affects the outcomes. Finally,
our focus is on the case where policymakers can only influ-
ence outcomes through the allocation rule µ of limited re-
sources and cannot improve the actual intervention effects.
All proofs can be found in the Supplementary Materials.

First, we look at when we can expect statistical parity
in allocation and statistical parity in outcomes to jointly
hold. For a policy µ to satisfy statistical parity in alloca-
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tion (Definition 2.5), it must be that group level assignment
probabilities are equal across groups, P(µ(X) = 1|G =
g) = P(µ(X) = 1|G = g′) ∀g, g′ ∈ G, or equivalently,
P(µ(X) = 1) = P(µ(X) = 1|G = g) ∀g ∈ G. Note that
such a µ always exists since we can take µ to be a uniformly
randomized policy, which will satisfy statistical parity in al-
location. The following result shows that statistical parity in
allocation and statistical parity in outcome will hold jointly
only in exceptional circumstances.
Proposition 1. A policy µ satisfies both statistical parity in
allocation (Definition 2.5) and statistical parity in outcomes
(Definition 2.7) if and only if[{

P(Y 1 = 1|G = g, µ(X) = 1)−

P(Y 0 = 1|G = g, µ(X) = 0)
}
−{

P(Y 1 = 1|G = g′, µ(X) = 1)−

P(Y 0 = 1|G = g′, µ(X) = 0)
}]

P(µ(X) = 1) =

E[Y 0|G = g′, µ(X) = 0]− E[Y 0|G = g, µ(X) = 0]

∀g, g′ ∈ G.

(1)

In the special case where µ is a uniformly randomized pol-
icy, condition (1) simplifies to

(E[Y 1 − Y 0|G = g′]− E[Y 1 − Y 0|G = g])P(µ(X) = 1)

= E[Y 0|G = g]− E[Y 0|G = g′] ∀g, g′ ∈ G.
(2)

We provide some intuition in the case where µ is uni-
formly randomized since such a policy always exists and sat-
isfies statistical parity in allocation. Condition (2) requires
that the probability of treatment assignment of the uniformly
randomized policy µ, when scaled by the treatment effect
differences between g and g′, is equal to the baseline out-
come differences under no treatment between g and g′. Since
the probability of assignment is between 0 and 1, in order
for (2) to hold, it must be that group g′ has greater treatment
effects than g in order to make up for group g having higher
outcomes under no treatment. However, policymakers have
no control over baseline outcomes and average treatment ef-
fects, and g could have both better outcomes under no treat-
ment and better treatment effects. Therefore, in general there
may not exist a policy µ that satisfies condition (1).

Since we may not be able to have statistical parity in both
allocation and outcomes, perhaps we can have both condi-
tional statistical parity (CSP) in allocation, where we con-
dition on a set of legitimate features or risk scores, and sta-
tistical parity in outcomes. This is of practical interest since
in our motivating example, under the U.S. Department of
Housing and Urban Development’s (HUD) guidance of pri-
oritizing the most vulnerable populations (U.S. Department
of Housing and Urban Development 2014), scarce housing
allocations are made based on risk scores measuring vulner-
ability under no treatment like the VI-SPDAT (Greater Los
Angeles Coordinated Entry System 2018).

Let L0 denote the set of risk scores/levels that capture an
individual’s risk and L0, which is just a function of the co-
variates as defined in Section 2, denote a random variable

that can take on values ℓ0 ∈ L0. We assume L0 is “well cho-
sen” such that baseline outcomes under no treatment are in-
dependent of group membership for each score, i.e., P(Y 0 =
1|L0 = ℓ) = P(Y 0 = 1|G = g, L0 = ℓ) ∀g ∈ G, ℓ0 ∈ L0.
While this “well chosen” property may not hold for existing
deployed risk scores, it is possible to construct risk scores
that satisfy this property with well-calibrated probabilis-
tic estimates. As in our motivating example where the risk
scores are discrete, we also assume that L0 is a discrete set.
We can then decompose group outcomes under no treatment
for each group g as P(Y 0 = 1|G = g) =

∑
ℓ0∈L0

P(Y 0 =
1|L0 = ℓ)P(L0 = ℓ|G = g), which suggests group out-
come differences are a result of group distribution differ-
ences across the risk scores in L0. It is natural then to en-
force CSP in allocation conditioned on L0 while trying to
achieve outcome parity because we are accounting for dis-
tributional differences in vulnerability between groups. Let
µL0

be a policy that satisfies conditional statistical parity
in allocation conditional on L0. In particular, assume that
µL0

: L0 → T since in practice many policies are often sim-
ply a function of L0 as described after Definition 2.2. Also
for ease of notation, let τℓ,g := E[Y 1 − Y 0|G = g, L0 = ℓ]
be the average treatment effect for individuals in group g
with L0 = ℓ. We have the following incompatibility result.

Proposition 2. A policy µL0
satisfies conditional statistical

parity in allocation (Definition 2.6) and statistical parity in
outcome (Definition 2.7) if and only if the following holds∑

ℓ0∈L0
P(µL0(ℓ) = 1) (τℓ,gP(L0 = ℓ|G = g) −

τℓ,g′P(L0 = ℓ|G = g′)) =

P(Y 0 = 1|G = g′)− P(Y 0 = 1|G = g)

∀g, g′ ∈ G.

(3)

We emphasize that Proposition 2 holds even if L0 is
not “well-chosen” since the proof does not depend on this
property. What is interesting is that the result holds even
if L0 satisfies the desirable “well-chosen” property. Simi-
lar to Proposition 1, there is no guarantee in general that
there exists µL0

satisfying (3). While policymakers can tar-
get specific risk groups through a µL0

policy, they cannot
control the treatment effects within each level, τℓ,g . There-
fore it might make sense to explicitly account for treatment
effects as well.

We propose another type of conditional statistical parity
policy that uses an additional set of legitimate features L1 in
addition to L0, µL0,L1

: L0 × L1 → T , where L1 is “well
chosen” to capture individuals’ treatment effects such that
treatment effects are independent of G and X conditioned
on L1, i.e., E[Y 1−Y 0|L1 = ℓ1] = E[Y 1−Y 0|G = g,X =
x, L1 = ℓ1] ∀g ∈ G, x ∈ X , ℓ1 ∈ L1. Since the treatment
effect can be captured by just L1, for ease of notation we
let τl := E[Y 1 − Y 0|L1 = ℓ1] denote the treatment effect
for individuals with treatment effects defined by L1 = ℓ1.
In practice, L1 could be estimated via a heterogeneous treat-
ment effects model, see e.g., Wager and Athey (2018). While
µL0

is commonly used in practice for allocation, we show
that µL0,L1

can mitigate disparities as well as, if not bet-
ter than, µL0 . Intuitively this is because µL0 , as can be seen
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in (3), does not account for treatment effects. By incorpo-
rating information about treatment effects, we can hope to
further mitigate outcome disparities.
Proposition 3. For any given conditional statistical par-
ity policy µL0

, and under any distribution P over
(X,T,A, {Y t}t∈T ), there exists µL0,L1

such that

P(Y (µL0,L1(L0, L1)) = 1|G = g)−
P(Y (µL0,L1

(L0, L1)) = 1|G = g′)

≤ P(Y (µL0
(L0)) = 1|G = g)−

P(Y (µL0(L0)) = 1|G = g′) ∀g, g′ ∈ G.

(4)

Moreover, there exists a joint distribution P such that the
inequality in (4) is strict for at least one pair g, g’.

Proposition 3 suggests that using more contextual infor-
mation about group distributions or treatment effects may al-
low us to define conditional statistical parity policies that are
more fair in terms of outcomes. While we have explicitly de-
fined L0 for baseline outcomes and L1 for treatment effects,
we can simply define L := {(ℓ0, ℓ1) | ℓ0 ∈ L0, ℓ1 ∈ L1}
and relabel each (ℓ0, ℓ1) combination as some ℓ instead with
the understanding that we are really partitioning our popu-
lation by L0 and L1. In the remaining results, we use the
combined L and define τℓ := E[Y 1 − Y 0|L = ℓ]. We also
use µL to denote a CSP in allocation policy conditioned on
our new L. While using both L0 and L1 gives us more infor-
mation and allocation flexibility, we show in the proposition
below that incorporating both baseline outcome information
and treatment effects may still not be enough to achieve sta-
tistical parity in outcomes across all groups.
Proposition 4. An allocation policy µL satisfies conditional
statistical parity in allocation (Definition 2.6) and statistical
parity in outcome (Definition 2.7) if and only if the following
holds:∑

ℓ∈LP(µL(ℓ) = 1)τℓ×
[P(L = ℓ|G = g)− P(L = ℓ|G = g′)] =

P(Y 0 = 1|G = g′)− P(Y 0 = 1|G = g)

∀g, g′ ∈ G.

(5)

To gain some intuition on the implications of Proposi-
tion 4 and when there exists µL such that (5) holds, let us
look at a simple example. Suppose |G| = 2, |L| = 2, that is,
there are only two groups and risk levels, P(Y 0 = 1|G =
g) = 0.6, and P(Y 0 = 1|G = g′) = 0.4. Let us also define
aℓ := τℓ[P(L = ℓ|G = g)− P(L = ℓ|G = g′)], ℓ ∈ {1, 2}.
Then in order for µL to satisfy CSP in allocation conditional
on L and outcome parity, it follows from Proposition 4 that

P(µL(1) = 1)a1 + P(µL(2) = 1)a2 =

P(Y 0 = 1|G = g′)− P(Y 0 = 1|G = g) = −0.2

if our allocation satisfies both CSP in allocation and out-
come parity. Without loss of generality, let us assume P(L =
1|G = g) > P(L = 1|G = g′) and thus P(L = 2|G = g) <
P(L = 2|G = g′), so that a1 > 0 and a2 < 0. We then have
two possibilities: (i) a2 ≤ −0.2 ≤ 0 or (ii) −0.2 < a2. In
case (i), since a1 and a2 have opposite signs, we can easily

find values 0 < P(µL(1) = 1),P(µL(2) = 1) < 1 such that
CSP in allocation and outcome parity are satisfied. However,
in case (ii), there does not exist such CSP allocation. The
closest we could come to satisfying our conditions would be
to set P(µL(1) = 1) = 0 and P(µL(2) = 1) = 1. From this
example, we see that if the baseline difference in outcome
between our two groups |P(Y 0 = 1|G = g) − P(Y 0 =
1|G = g′)| is very large, then it becomes harder to find an
allocation that satisfies both CSP in allocation and outcome
parity. This makes sense – as the disparity in outcome under
no treatment becomes very large, it becomes harder to make
up this difference by allocation.

3.2 Policies with Outcome Fairness
In Section 3.1, we established that in general there may not
exist allocation policies that satisfy fairness in allocation (as
measured by statistical and conditional statistical parity) and
parity in outcomes. However, if a policymaker wants parity
in outcomes, it is not immediately clear that a policy can
even achieve this since outcomes depend on treatment ef-
fects and distribution of baseline risk within each group. In
this section, we show that using feature information with-
out group status, X−G, in a policy can lead to policies with
less outcome disparity than just using risk scores alone, but
in general outcome parity may not be possible unless a pol-
icy explicitly uses group status. Let µL,X−G

be a (possibly)
randomized policy that uses X−G and L for assignment. In
the propositions that follow, for each inequality of outcome
disparity between g, g′ under different policies, we use g to
denote the group with better outcomes under no treatment
compared to those of g′. Therefore we do not have absolute
values below since we only consider pairs of g, g′ where the
outcome difference between g and g′ is positive. Proposi-
tion 5 shows that using extra information in the form of X−G

leads to same, if not lower, disparities than policies relying
only on L across each comparison g, g′ ∈ G, g ̸= g′.

Proposition 5. For any given policy µL, and under any dis-
tribution P over (X,T,A, {Y t}t∈T ), there exists µL,X−G

such that

P(Y (µL,X−G
(L,X−G)) = 1|G = g)−

P(Y (µL,X−G
(L,X−G)) = 1|G = g′) ≤

P(Y (µL(L)) = 1|G = g)− P(Y (µL(L)) = 1|G = g′)
(6)

for all g, g′ ∈ G, g ̸= g′ where P(Y 0 = 1|G = g) >
P(Y 0 = 1|G = g′) and there exists a joint distribution P
such that the inequality (6) is strict for at least one pair g,
g’.

The difficulty of reducing all pairwise outcome disparities
lies in the fact that under any policy that does not explicitly
use group status, outcomes for each group will have inter-
dependencies. For example, we may reduce the outcome dis-
parity between g and g′ but also increase the outcome dispar-
ity between g and g′′ at the same time. Given this, we show
below that a policy explicitly using group status will do bet-
ter than a policy using all available features except for group
status. Let µL,G denote a (possibly randomized) policy that
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uses L and G for assignment and emphasize that µL,G does
not use the features X .

Proposition 6. For any given policy µL,X−G
, and under any

distribution P of (X,T,A, {Y t}t∈T ), there exists µL,G such
that

P(Y (µL,G(L,G)) = 1|G = g)−
P(Y (µL,G(L,G)) = 1|G = g′) ≤
P(Y (µL,X−G

(L,X−G)) = 1|G = g)−
P(Y (µL,X−G

(L,X−G)) = 1|G = g′)

(7)

for all g, g′ ∈ G, g ̸= g′ where P(Y 0 = 1|G = g) >
P(Y 0 = 1|G = g′) and there exists a joint distribution P
such that the inequality (7) is strict for at least one pair g,
g’.

While the inequality in Proposition 6 may not always be
strict, one advantage of using group status is that if treatment
effects are sufficient to reduce baseline outcome disparity,
then there exists µL,G that can lead to outcome parity across
all groups. To formalize this, let g(0), g(1), . . . , g(|G|−1) de-
note an ordering of our protected groups such that P(Y 0 =
1|G = g(0)) ≥ P(Y 0 = 1|G = g(1)) ≥ · · · ≥ P(Y 0 =
1|G = g(|G|−1)) so that the groups are ordered from highest
to lowest of group outcome under no treatment.

Proposition 7. If E[Y 1 − Y 0|G = g(i)] ≥ P(Y 0 = 1|G =

g(0)) − P(Y 0 = 1|G = g(i)) ∀i > 0, then there exists µL,G
such that

P(Y (µL,G(L,G)) = 1|G = g)−
P(Y (µL,G(L,G)) = 1|G = g′) = 0

∀g, g′ ∈ G, g ̸= g′.

(8)

Proposition 7 implies that if we could treat all individu-
als in group g(i), i ̸= 0, and the groupwise treatment effect
was more than baseline differences under no treatment, then
it is possible to allocate resources based on group status to
achieve outcome parity.

4 Discussion
In this paper we introduced a framework of measuring fair-
ness in resource allocation systems at various stages of the
allocation process. In settings like our motivating example,
decision makers may desire a policy that is fair (e.g., im-
posing statistical parity) both in terms of allocation and out-
comes. Our results show this is in general impossible. This
incompatibility introduces tension between equality (which
comes from allocative fairness) and equity (which comes
from outcome fairness), leaving policymakers to have to
choose between the two fairness goals. To add further nu-
ance to this tension, we show that policies that are fair in
allocation can result in better outcome fairness when that al-
locative fairness is achieved conditional on features measur-
ing treatment effects rather than conditional on vulnerability.
This provides a compromise of sorts where we could achieve
allocative fairness while also inching toward better outcome
fairness. However, doing so comes at the cost of not prior-
itizing the most vulnerable, which is often a desirable goal.

Such ethical concerns need to be addressed by policymakers
to determine the appropriate metrics of fairness evaluation.

We also show that using contextual information beyond
baseline risk and treatment effects – but without considering
group status – can lead to lower pairwise group disparities in
terms of outcomes. On the other hand, explicit use of group
status in addition to baseline risk and treatment effects can
produce policies that are most outcome fair, which is often a
desirable goal. However, using group status may pose prac-
tical and ethical issues since it is usually prohibited and it
may be difficult to ensure such policies are not discrimina-
tory even if well intended.

In the context of housing in Los Angeles, there is a de-
sire on the part of community stakeholders to see fairness
in all three stages: enrollment, allocation, and outcomes. As
we have demonstrated, however, this desire is likely not pos-
sible. Furthermore, while HUD seeks to prioritize based on
vulnerability scores, we also show this does not guarantee
equitable outcomes. Thus, policymakers will have to make
difficult decisions as to which stage of the allocation process
they value most to impose fairness constraints. It is also in-
cumbent upon the research community to help community
stakeholders understand why such decisions must be made
(i.e., the logical impossibilities presented above) and the rel-
ative trade-offs in opting for fairness in different stages of
the allocation process.
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