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Abstract
Recent work on interpretability has focused on concept-based
explanations, where deep learning models are explained in
terms of high-level units of information, referred to as con-
cepts. Concept learning models, however, have been shown
to be prone to encoding impurities in their representations,
failing to fully capture meaningful features of their inputs.
While concept learning lacks metrics to measure such phe-
nomena, the field of disentanglement learning has explored
the related notion of underlying factors of variation in the
data, with plenty of metrics to measure the purity of such
factors. In this paper, we show that such metrics are not ap-
propriate for concept learning and propose novel metrics for
evaluating the purity of concept representations in both ap-
proaches. We show the advantage of these metrics over exist-
ing ones and demonstrate their utility in evaluating the robust-
ness of concept representations and interventions performed
on them. In addition, we show their utility for benchmark-
ing state-of-the-art methods from both families and find that,
contrary to common assumptions, supervision alone may not
be sufficient for pure concept representations.

Introduction
Addressing the lack of interpretability of deep neural net-
works (DNNs) has given rise to explainability methods,
most common of which are feature importance meth-
ods (Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee
2017) that quantify the contribution of input features to cer-
tain predictions (Bhatt et al. 2020). However, input features
may not necessarily form the most intuitive basis for expla-
nations, in particular when using low-level features such as
pixels. Concept-based explainability (Kim et al. 2018; Ghor-
bani et al. 2019; Koh et al. 2020; Yeh et al. 2020; Ciravegna
et al. 2021) remedies this issue by constructing an explana-
tion at a concept level, where concepts are considered inter-
mediate, high-level and semantically meaningful units of in-
formation commonly used by humans to explain their deci-
sions. Recent work, however, has shown that concept learn-
ing (CL) models may not correctly capture the intended se-
mantics of their representations (Margeloiu et al. 2021), and
that their learnt concept representations are prone to encod-
ing impurities (i.e., more information in a concept than what
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is intended) (Mahinpei et al. 2021). Such phenomena may
have severe consequences for how such representations can
be interpreted (as shown in the misleading attribution maps
described by Margeloiu et al. (2021)) and used in practice
(as shown later in our intervention results). Nevertheless, the
CL literature is yet to see concrete metrics to appropriately
capture and measure these phenomena.

In contrast, the closely-related field of disentanglement
learning (DGL) (Bengio, Courville, and Vincent 2013; Hig-
gins et al. 2017; Locatello et al. 2019, 2020b), where meth-
ods aim to learn intermediate representations aligned to dis-
entangled factors of variation in the data, offers a wide ar-
ray of metrics for evaluating the quality of latent representa-
tions. However, despite the close relationship between con-
cept representations in CL and latent codes in DGL, metrics
proposed in DGL are built on assumptions that do not hold
in CL, as explained in our Background and Motivation Sec-
tion, and are thus inappropriate to measure the aforemen-
tioned undesired phenomena in CL.

In this paper, we show the inadequacy of current metrics
and introduce two novel metrics for evaluating the purity of
intermediate representations in CL. Our results indicate that
our metrics can be used in practice for quality assurance of
such intermediate representations for:
1. Detecting impurities (i) concealed in soft representations,

(ii) caused by different model capacities, or (iii) caused
by spurious correlations.

2. Indicating when concept interventions are safe.
3. Revealing the impact of supervisions on concept purity.
4. Being robust to inter-concept correlations.

Background and Motivation
Notation In CL, the aim is to find a low-dimensional inter-
mediate representation ĉ of the data, similar to latent codes
ẑ in DGL. This low-dimensional representation corresponds
to a matrix ĉ ∈ Ĉ ⊆ Rd×k in which the i-th column consti-
tutes a d-dimensional representation of the i-th concept, as-
suming that the length of all concept representations can be
made equal using zero-padding. Under this view, elements
in ĉ(:,i) ∈ Rd are expected to have high values (under some
reasonable aggregation function) if the i-th concept is con-
sidered to be activated. As most CL methods assume d = 1,
for succinctness we use ĉi in place of ĉ(:,i) when d = 1.
Analogously, as each latent code ẑ(:,i) aims to encode an
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Figure 1: (a) Absolute correlation of the top-10 concepts
with the highest label mutual information in CUB dataset.
(b) Two identically-trained CBMs with almost identical ac-
curacies yet different levels of inter-concept correlations.

independent factor of variation (i.e., concept) zi in DGL,
we use ĉ for both learnt concept representations and latent
codes. Similarly, we refer to both ground truth concepts and
factors of variations as c ∈ C ⊆ Rk.

Concept Learning In supervised CL, access to concept
labels for each input, in addition to task labels, is assumed.
Supervised CL makes use of (i) a concept encoder function
g : X 7→ Ĉ that maps the inputs to a concept represen-
tation; and (ii) a label predictor function f : Ĉ 7→ Y that
maps the concept representations to a downstream task’s set
of labels y ∈ Y ⊆ RL. Together, these two functions consti-
tute a Concept Bottleneck Model (CBM) (Koh et al. 2020).
A notable approach that uses the bottleneck idea is Concept
Whitening (CW) (Chen, Bei, and Rudin 2020) which intro-
duces a batch normalisation module whose activations are
trained to be aligned with sets of binary concepts. Unlike
supervised CL, in unsupervised CL concept annotations are
not available and concepts are discovered in an unsupervised
manner with the help of task labels. Two notable data modal-
ity agnostic approaches in this family are Completeness-
aware Concept Discovery (CCD) (Yeh et al. 2020) and Self-
Explainable Neural Networks (SENNs) (Alvarez-Melis and
Jaakkola 2018). We refer to supervision from ground truth
concepts in supervised CL as explicit, while supervision
from task labels alone is referred to as implicit.

On the other hand, generative models (e.g.,
VAEs (Kingma and Welling 2014)) used in DGL assume
that data is generated from a set of independent factors of
variation c ∈ C. Thus, the goal is to find a function g(·)
that maps inputs to a disentangled latent representation. In
the light of recent work (Locatello et al. 2019) showing
the impossibility of learning disentangled representations
without any supervision, as in β-VAEs (Higgins et al. 2017),
recent work suggests using weak supervision for learning
latent codes (Locatello et al. 2020a).

Shortcomings of Current Metrics Generally, the DGL
literature defines concept quality in terms of disentangle-
ment i.e., the more learnt concepts are decorrelated the better
(see Appendix A.1 for a summary of DGL metrics)1. We ar-
gue that existing DGL metrics are inadequate to ensure con-
cept quality in CL as they: (i) Assume that each concept is
represented with a single scalar value, which is not the case

1Appendices can be found in https://arxiv.org/abs/2301.10367.

in some modern CL methods such as CW. (ii) Fail to capture
subtle impurities encoded within continuous representations
(as demonstrated in our Experimental Section). (iii) May as-
sume access to a tractable concept-to-sample generative pro-
cess (something uncommon in real-world datasets). (iv) As-
sume that inter-concept dependencies are undesired, an as-
sumption that may not be realistic in the real world where
ground truth concept labels often are correlated. This can be
observed in Figure 1a where concept labels in the Caltech-
UCSD Birds-200-2011 (CUB) dataset (Wah et al. 2011), a
widely used CL benchmark, are seen to be highly correlated.

Metrics in CL (Yeh et al. 2020; Kazhdan et al. 2020),
on the other hand, mainly define concept quality w.r.t.
the downstream task (e.g., task predictive accuracy), and
rarely evaluate properties of concept representations w.r.t.
the ground truth concepts (except for concept predictive ac-
curacy). Nevertheless, two CL models can learn concept
representations that yield similar task and concept accura-
cies but have vastly different properties/qualities. For exam-
ple, Figure 1b shows a toy experiment in which two CBMs
trained on a dataset with 3 independent concepts, where
“CBM” uses a sigmoidal bottleneck and “CBM-Logits” uses
logits in its bottleneck, generate concept representations
with the same concept/task accuracies yet significantly dif-
ferent inter-concept correlations (details in Appendix A.2).

Measuring Purity of Concept Representations
To address the shortcomings of existing metrics, we pro-
pose two metrics that make no assumptions about (i) correla-
tions between concepts, (ii) the underlying data-generating
process, and (iii) the dimensionality of a concept’s repre-
sentation. Specifically, we focus on measuring the quality
of a concept representation in terms of their “purity”, de-
fined here as whether the predictive power of a learnt con-
cept representation over other concepts is similar to what we
would expect from their corresponding ground truth labels.
We begin by introducing the oracle impurity score (OIS),
a metric that quantifies impurities localised within individ-
ual learnt concepts. Then, we introduce the niche impurity
score (NIP) as a metric that focuses on capturing impurities
distributed across the set of learnt concept representations.

Oracle Impurity
To circumvent the aforementioned limitations of existing
DGL metrics, we take inspiration from (Mahinpei et al.
2021), where they informally measure concept impurity as
how predictive a CBM-generated concept probability is for
the ground truth value of other independent concepts. If the
pre-defined concepts are independent, then the inter-concept
predictive performance should be no better than random.
To generalise this assumption beyond independent concepts,
we first measure the predictability of ground truth concepts
w.r.t. one another. Then we measure the predictability of
learnt concepts w.r.t. the ground truth ones. The divergence
between the former and the latter acts as an impurity met-
ric, measuring the amount of undesired information that is
encoded, or lacking, in the learnt concepts. To formally in-
troduce our metric, we begin by defining a purity matrix.
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Definition 0.1 (Purity Matrix). Given a set of n concept rep-
resentations Γ̂ = {ĉ(l) ∈ Rd×k}nl=1, and corresponding dis-
crete ground truth concept annotations Γ = {c(l) ∈ Nk}nl=1,
assume that Γ̂ and Γ are aligned element-wise: for all i ∈
{1, · · · , k}, the i-th concept representation of ĉ(l) encodes
the same concept as the i-th concept label in c(l). The Pu-
rity Matrix of Γ̂, given ground truth labels Γ, is defined as a
matrix π

(
Γ̂,Γ

)
∈ [0, 1]k×k whose entries are given by:

π
(
Γ̂,Γ

)
(i,j)

:= AUC-ROC
({(

ψi,j(ĉ
(l)
(:,i)

)
, c

(l)
j

)}n

l=1

)
,

where ψi,j(·) is a non-linear model (e.g., an MLP) mapping
the i-th concept’s representation ĉ(:,i) to a probability distri-
bution over all values concept j may take.

The (i, j)-th entry of π
(
Γ̂,Γ

)
contains the AUC-ROC

when predicting the ground truth value of concept j given
the i-th concept representation. Therefore, the diagonal en-
tries of this matrix show how good a concept representation
is at predicting its aligned ground truth label, while the off-
diagonal entries show how good such a representation is at
predicting the ground truth labels of other concepts. Intu-
itively, one can think of the (i, j)-th entry of this matrix as
a proxy of the mutual information between the i-th concept
representation and the j-th ground truth concept. While in
principle other methods could be used to estimate this mu-
tual information (e.g., histogram binning), we choose the
test AUC-ROC of a trained non-linear model primarily for
its tractability, its bounded nature, and its easy generalisation
to non-scalar concept representations. Furthermore, while in
this work we focus on binary concepts, our definition can be
applied to multivariate concepts by using the mean one-vs-
all AUC-ROC score. See Appendix A.3 for implementation
details and Appendix A.4 for a discussion on how the OIS is
robust to the model selected for ψi,j(·).

This matrix allows us to construct a metric for quantifying
the impurity of a concept encoder:
Definition 0.2 (Oracle Impurity Score (OIS)). Let g : X 7→
Ĉ ⊆ Rd×k be a concept encoder and let ΓX := {x(i) ∈
X}ni=1 and Γ := {c(i) ∈ Nk}ni=1 be ordered sets of test-
ing samples and their corresponding concept annotations,
respectively. If, for any ordered set A we define g(A) as
g(A) := {g(a) | a ∈ A}, then the OIS is defined as:

OIS(g,ΓX ,Γ) :=
2
∣∣∣∣∣∣π(g(ΓX),Γ

)
− π

(
Γ,Γ

)∣∣∣∣∣∣
F

k

where ||A||F represents the Frobenius norm of A.
Intuitively, the OIS measures the total deviation of an en-

coder’s purity matrix with the purity matrix obtained from
using the ground truth concept labels only (i.e., the “oracle
matrix”). We opt to measure this divergence using the Frobe-
nius norm of their difference to obtain a bounded output
which can be easily interpreted. Since each entry in the dif-
ference

(
π
(
g(ΓX),Γ

)
− π

(
Γ,Γ

))
can be at most 1/2, the

upper bound of
∣∣∣∣∣∣π(g(ΓX),Γ

)
− π

(
Γ,Γ

)∣∣∣∣∣∣
F

is k/2. There-

fore, the OIS includes a factor of 2/k to guarantee that it

ranges in [0, 1]. This allows interpreting an OIS of 1 as a
complete misalignment between π

(
Γ,Γ

)
and π

(
g(ΓX),Γ

)
(i.e., the i-th concept representation can predict all other
concept labels except its corresponding one even when con-
cepts are independent). An impurity score of 0, on the other
hand, represents a perfect alignment between the two purity
matrices (i.e., the i-th concept representation does not en-
code any unnecessary information for predicting concept i).

Niche Impurity
While the OIS can correctly capture impurities that are lo-
calised within specific and individual concept representa-
tions, it is also possible that information pertinent to unre-
lated concepts is encoded across multiple learnt representa-
tions. To tractably capture such a phenomenon, we propose
the Niching Impurity Score (NIS) inspired by the theory of
niching. In ecology, a niche is considered to be a resource-
constrained subspace of the environment that can support
different types of life (Darwin 1859). Analogously, the NIS
looks at the predictive power of subsets of disentangled con-
cepts. In contrast with the OIS, the NIS is concerned with
impurities encoded in sets of learnt concept representations
rather than impurities in individual concept representations.
The NIS efficiently quantifies the amount of shared informa-
tion across concept representations by looking at how pre-
dictive disentangled subsets of concept representations are
for ground truth concepts. We start by describing a concept
nicher, a function that ranks learnt concepts by how much
information they share with the ground truth ones. We then
define a concept niche for a ground truth concept as a set of
learnt concepts that are highly ranked by the concept nicher,
while the set of concepts outside the niche is referred to as
the concept niche complement. We conclude by constructing
the NIS by looking at how predictable a ground truth con-
cept is from its corresponding concept niche complement.
The collective NIS of all concepts, therefore, represents im-
purities encoded across the entire bottleneck.

Definition 0.3 (Concept nicher). Given a set of concept rep-
resentations Ĉ ⊆ Rd×k, we define a concept nicher as a
function ν : {1, · · · k} × {1, · · · k} 7→ [0, 1] that returns
ν(i, j) ≈ 1 if the i-th concept ĉ(:,i) is entangled with the
j-th ground truth concept cj , and ν(i, j) ≈ 0 otherwise.

Our definition above can be instantiated in various
ways, depending on how entanglement is measured. In
favour of efficiency, we measure entanglement using ab-
solute Pearson correlation ρ, as this measure can effi-
ciently discover (a linear form of) association between vari-
ables (Altman and Krzywinski 2015). We call this instanti-
ation concept-correlation nicher (CCorrN) and define it as
CCorrN(i, j) :=

∣∣ρ({ĉ(l)(:,i)}
N
l=1, {c

(l)
j }Nl=1

)∣∣.
If ĉ(:,i) is not a scalar representation (i.e., d > 1), then

for simplicity, we use the maximum absolute correlation co-
efficient between all entries in ĉ(:,i), and the target concept
label cj as a representative correlation coefficient for the en-
tire representation ĉ(:,i). We then define a concept niche as:

Definition 0.4 (Concept niche). The concept nicheNj(ν, β)
for target concept j, determined by concept nicher ν(·, ·) and
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threshold β ∈ [0, 1], is defined as Nj(ν, β) :=
{
i | i ∈

{1, · · · , k} and ν(i, j) > β
}

.

From this, the Niche Impurity (NI) measures the predic-
tive capacity of the complement of concept niche Ni(ν, β),
referred to as ¬Ni(ν, β) := {1, · · · , k} \ Ni(ν, β), for the
i-th ground truth concept:

Definition 0.5 (Niche Impurity (NI)). Given a clas-
sifier f : Ĉ 7→ C, concept nicher ν, thresh-
old β ∈ [0, 1], and labeled concept representa-
tions {(ĉ(l), c(l))}nl=1, the Niche Impurity of the
i-th output of f(·) is defined as NIi(f, ν, β) :=

AUC-ROC
(
{(f |¬Ni(ν,β)

(
ĉ
(l)
(:,¬Ni(ν,β))

)
, c

(l)
i )}nl=1

)
, where

f |¬Nj(ν,β) is the classifier resulting from masking all entries
in ¬Nj(ν, β) when feeding f with concept representations.

Although f can be any classifier, for simplicity in our
experiments we use a ReLU MLP with hidden layer sizes
{20, 20} (see Appendix A.4 for a discussion on our metric’s
robustness to f ’s architecture). Intuitively, a NI of 1/2 (ran-
dom AUC of niche complement) indicates that the concepts
inside the niche Ni(ν) are the only concepts predictive of
the i-th concept, that is, concepts outside the niche do not
hold any predictive information of the i-th concept. Finally,
the Niche Impurity Score metric measures how much infor-
mation apparently disentangled concepts are sharing:

Definition 0.6 (Niche Impurity Score (NIS)). Given a clas-
sifier f : Ĉ 7→ C and concept nicher ν, the niche impu-
rity score NIS(f, ν) ∈ [0, 1] is defined as the summation of
niche impurities across all concepts for different values of
β: NIS(f, ν) :=

∫ 1

0
(
∑k

i=1 NIi(f, ν, β)/k)dβ.

In practice, this integral is estimated using the trapezoid
method with β ∈ {0.0, 0.05, · · · , 1}. Furthermore, we pa-
rameterise f as a small MLP, leading to a tractable impurity
metric that scales with large concept sets. Intuitively, a NIS
of 1 means that all the information to perfectly predict each
ground truth concept is spread on many different and disen-
tangled concept representations. In contrast, a NIS around
1/2 (random AUC) indicates that no concept can be pre-
dicted by any concept representation subset.

Experiments
We now give a brief account of the experimental setup and
datasets, followed by highlighting the utility of our impurity
metrics and their applications to model benchmarking.

Datasets To have datasets compatible with both CL and
DGL, we construct tasks whose samples are fully described
by a vector of ground truth generative factors. Moreover,
we simulate real-world scenarios by designing tasks with
varying degrees of dependencies in their concept annota-
tions. To achieve this, we first design a parametric binary-
class dataset TabularToy(δ), a variation of the tabular dataset
proposed by Mahinpei et al. (2021). We also construct two
multiclass image-based parametric datasets: dSprites(λ) and
3dshapes(λ), based on dSprites (Matthey et al. 2017) and
3dshapes (Burgess and Kim 2018) datasets, respectively.

They consist of 3D samples generated from a vector con-
sisting of k = 5 and k = 6 factors of variation, respectively.
Both datasets have one binary concept annotation per factor
of variation. Parameters δ ∈ [0, 1] and λ ∈ {0, · · · , k − 1}
control the degree of concept inter-dependencies during gen-
eration: λ = 0 and δ = 0 represent inter-concept indepen-
dence while higher values represent stronger inter-concept
dependencies. For dataset details see Appendix A.6.

Baselines and Setup We compare the purity of concept
representations in various methods using our metrics. We
select representative methods from (i) supervised CL (i.e.,
jointly-trained CBMs (Koh et al. 2020) with sigmoidal
and logits bottlenecks, and CW (Chen, Bei, and Rudin
2020) both when its representations are reduced through
a MaxPool-Mean reduction and when no feature map re-
duction is applied), (ii) unsupervised CL (i.e., CCD (Yeh
et al. 2020) and SENN (Alvarez-Melis and Jaakkola 2018)),
(iii) unsupervised DGL (vanilla VAE (Kingma and Welling
2014) and β-VAE (Higgins et al. 2017)), and (iv) weakly
supervised DGL (Ada-GVAE and Ada-MLVAE (Locatello
et al. 2020a)). For each method and metric, we report the av-
erage metric values and 95% confidence intervals obtained
from 5 different random seeds. We include details on train-
ing and architecture hyperparameters in Appendix A.6.

Results and Discussion
In contrast to DGL metrics, our metrics can meaning-
fully capture impurities concealed in representations.
We begin by empirically showing that our metrics indeed
capture impurities encoded within a concept representation.
For this, we prepare a simple synthetic dataset of ground-
truth concept vectors D := {c(i) ∈ {0, 1}5}3,000i=1 where,
for each sample c(i), its j-th concept is a binary indica-
tor 1

c̃
(i)
j ≥0

of the sign taken by a latent variable c̃(i)j sam-

pled from a joint normal distribution c̃(i) ∼ N (0,Σ) (with
c̃(i) ∈ R5). During construction, we simulate real-world
co-dependencies between different concepts by setting Σ’s
non-diagonal entries to 0.25. To evaluate whether our met-
rics can discriminate between different levels of impuri-
ties encoded in different concept representations, we con-
struct two sets of soft concept representations. First, we con-
struct a baseline “pure” fuzzy representation ĉ(pure) of vec-
tor c ∈ D by sampling ĉ(pure)

j from Unif(0.95, 1) if cj = 1

or from Unif(0, 0.05) if cj = 0. Notice that each dimen-
sion of this representation preserves enough information
to perfectly predict each concept’s activation state without
encoding any extra information. In contrast, we construct
a perfectly “impure” soft concept representation ĉ(impure)

by encoding, as part of each concept’s fuzzy representa-
tion, the state of all other concepts. For this we partition
and tile the sets [0.0, 0.05] and [0.95, 1.0] into 25−1 = 16
equally sized and disjoint subsets {[offi, offi+1)}15i=0 and
{[oni, oni+1)}15i=0, respectively. From here, we generate an
impure representation of ground truth concept vector c ∈ D
by sampling ĉ(impure)

j from Unif(onbin(c−j), onbin(c−j)+1) if
cj = 1 or from Unif(offbin(c−j), offbin(c−j)+1) otherwise,
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OIS (↓) NIS (↓) SAP (↑) MIG (↑) R4 (↑) DCI Dis (↑)
Baseline Soft (%) 4.69 ± 0.43 66.25 ± 2.31 48.74 ± 0.41 99.93 ± 0.03 99.95 ± 0.00 99.99 ± 0.00
Impure Soft (%) 22.58 ± 2.34 72.36 ± 1.26 48.83 ± 0.53 99.93 ± 0.04 99.95 ± 0.00 99.50 ± 0.01

p-value 7.38× 10−5 3.24× 10−3 7.89× 10−1 9.26× 10−1 9.76× 10−1 3.66× 10−9

Table 1: Comparison between our metrics (left of the middle line) and common DGL metrics (right) using hand-crafted soft
concept representations and latent codes. We highlight statistically significant differences (p < 0.05) in scores between the
baseline (i.e., “pure”) and the impure representations. Furthermore, we use ↑/↓ to indicate that a metric is better if its score is
higher/lower and compute all metrics over 5 folds. For statistical significance validation, we include p values (two-sided T-test).

where we use bin(c−j) to represent the decimal represen-
tation of the vector resulting from removing the j-th dimen-
sion of c. Intuitively, each concept in this soft representation
encodes the activation state of every other concept using dif-
ferent confidence ranges. Therefore, one can perfectly pre-
dict all concepts from a single concept’s representation, an
impossibility from ground truth concepts alone.

We hypothesize that if a metric is capable of accurately
capturing undesired impurities within concept representa-
tions, then it should generate vastly different scores for the
two representation sets constructed above. To verify this hy-
pothesis, we evaluate our metrics, together with a selection
of DGL disentanglement metrics, and show our results in
Table 1. We include SAP (Kumar, Sattigeri, and Balakrish-
nan 2017), R4 (Ross and Doshi-Velez 2021), mutual infor-
mation gap (MIG) (Chen et al. 2018), and DCI Disentan-
glement (DCI Dis) (Eastwood and Williams 2018) as repre-
sentative DGL metrics given their wide use in the DGL lit-
erature (Ross and Doshi-Velez 2021; Zaidi et al. 2020). Our
results show that our metrics correctly capture the difference
in impurity between the two representation sets in a statis-
tically significant manner. In contrast, existing DGL met-
rics are incapable of clearly discriminating between these
two impurity extremes, with DCI being the only metric that
generates some statistically significant differences albeit the
scores’ differences are minimal (less than 0.5%). Surpris-
ingly, although MIG is inspired by a similar mutual infor-
mation (MI) argument as our OIS metric, it was unable to
capture any meaningful differences between our two repre-
sentation types. We believe that this is because to compute
the MIG one requires an estimation of the MI which, being
sensitive to hyperparameters, may fail to capture important
differences. These results, therefore, support using a non-
linear model’s test AUC as a proxy of the MI. Further details
can be found in Appendix A.7.

Our metrics can capture impurities caused by differ-
ences in concept representations and model capacities, as
well as by accidental spurious correlations. Impurities
in a CL model can come from different sources, such as dif-
ferences in concept representations, as previously shown in
Figure 1b, or architectural constraints (e.g., a CBM trained
with a partial/incomplete set of concepts). Here, we show
that impurities caused by differences in the nature of con-
cept representations, as well as by inadequate model capac-
ities and spurious correlations, can be successfully captured
by our metrics and thus avoided.

Differences in concept representations: in Figure 2a, we

show the impurities in (1) a CBM with a sigmoidal bottle-
neck (CBM) vs a CBM with logits in its bottleneck (CBM-
Logits) and (2) a CW module with and without feature map
reduction (CW Feature Map vs CW Max-Pool-Mean). Our
metrics show that CBM-Logits and CW Feature Map are
prone to encoding more impurities than their counterparts.
This is because their representations are less constrained,
as logit activations can be within any range (as opposed to
[0, 1] in CBM) and CW Feature Map preserves all informa-
tion from its concept feature map by not reducing it to a
scalar. The exception to this is the failure of NIS to detect
impurities in CBM-Logits for 3dshapes(λ). We hypothesise
that this is due to this task’s higher complexity, forcing both
CBM and CBM-Logits to distribute inter-concept informa-
tion across all representations more than in other datasets.

Differences in model capacity: low-capacity models may
be forced to use their concept representations to encode in-
formation outside their corresponding ground truth concept.
To verify this, we train a CBM in TabularToy(δ = 0) whose
concept encoder and label predictor are three-layered ReLU
MLPs. We vary the capacities of the concept encoder or la-
bel predictor by setting their hidden layers’ activations to
{capacity, capacity/2}, while fixing the number of hidden
units in their corresponding counterpart to {128, 64}. We
then monitor the accuracy of concept representations w.r.t.
their aligned ground truth concepts as well as their OIS. We
observe (Figure 2b) that as the concept encoder and label
predictor capacities decrease, the CBM exhibits significantly
higher impurity and lower concept accuracy. Note that the
concept encoder capacity has a significantly greater effect
on the purity of the representations compared to the label
predictor capacity. Measuring impurities in a systematic way
using our metrics can therefore guide the design of CL ar-
chitectures that are less prone to impurities.

Spurious correlations: we create a variation of
dSprites(λ = 0), where we randomly introduce spurious
correlations by assigning each sample a class-specific back-
ground colour with 75% probability (see Appendix A.8 for
details). We train two identical CBMs on dSprites(λ = 0)
and its corrupted counterpart. During training, we note
that CBM-S (the CBM trained on the corrupted data) has a
higher task validation accuracy than the other CBM (Fig-
ure 3), while having similar concept validation accuracies.
Nevertheless, when we evaluate both models using a test
set sampled from the original dSprites(λ = 0) dataset,
we see an interesting result: both models can predict
ground truth concept labels with similarly high accuracy.
However, unlike CBM, CBM-S struggles to predict the
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CBMs trained on the original and corrupted dSprites(λ =
0). We compute test scores in the uncorrupted data.

task labels. Failure of CBM-S to accurately predict task
labels is remarkable as labels in this dataset are uniquely
a function of their corresponding concept annotations and
CBM-S is able to accurately predict concepts in the original
dSprites(λ = 0) dataset. We conjecture that this is due
to the fact that concepts in CBM-S encode significantly
more information than needed, essentially encoding the
background colour in addition to the original concepts as
part of their representations. To verify this, we evaluate the
OIS and NIS of the concept representations learnt by both
models and observe that, in line with our intuition, CBM-S
indeed encodes significantly more impurity. Our metrics
can therefore expose spurious correlations captured by CL
methods which appear to be highly predictive of concept
labels while underperforming in their downstream task.

Our metrics can indicate when it is safe to perform in-
terventions on a CBM by giving a realistic picture of im-
purities. A major potential consequence of not being able
to measure the impurities faithfully is that concept interven-
tions (Koh et al. 2020), which allow domain experts to ad-
just the model by intervening and fixing predictions at the
concept level, may fail: adjusting a concept ĉ(:,i) may un-
intentionally impact the label predictor’s understanding of
another concept ĉ(:j) if representation ĉ(:,i) encodes unnec-
essary information about concept cj . To see this in prac-
tice, consider a CBM model and a CBM-Logits model both
trained to convergence on dSprites(λ = 0), and both achiev-
ing fairly similar task and concept accuracies (Figure 5). We
then perform interventions at random on their concept rep-
resentations as follows: in CBM, where concept activations
represent probabilities, we intervene on the i-th concept rep-

resentation by setting ĉi to the value of its corresponding
ground truth concept ci. In CBM-Logits, as in (Koh et al.
2020), we intervene on the i-th concept by setting it to the
5%-percentile of the empirical distribution of ĉi if ci = 0,
and we set it to the 95%-percentile of that concept’s distribu-
tion if ci = 1. Interestingly, our results (Figure 5) show that
random interventions cause a significant drop in task accu-
racy of CBM-Logits while leading to an increase in accuracy
in CBM. Looking at the impurities of these two models, we
observe that although the CBM-Logits model has better ac-
curacy, both its OIS and NIS scores are considerably higher
than those for the CBM model, explaining why interventions
had such undesired consequences.

To rule out the difference in intervention mechanism as
the cause of these results, we train two CBM-Logits with
the same concept encoder capacities but with different ca-
pacities in their label predictors and observe the same phe-
nomena as above: performance degradation upon interven-
tion, which occurs in the case of the lower capacity model,
is evidence for higher OIS and NIS scores compared to that
of the higher capacity model. Further details about this ex-
periment are documented in Appendix A.10.

Our metrics can provide insights on the impact of differ-
ent degrees of supervision on concept purity. As mod-
els of various families benefit from varying degrees of su-
pervision ranging from explicit supervision (supervised CL)
to implicit (unsupervised CL), weak (weakly-supervised
DGL) and no supervision at all (unsupervised DGL), dif-
ferent models are expected to learn concept representations
of varying purity. The intuitive assumption is that more su-
pervision leads to better and purer concepts. Here, we com-
pare models from all families using our metrics and show
that, contrary to our intuition, this is not necessarily the case.
Within variants of CBM and CW, we choose CBM without
logits and CW MaxPool-Mean, as they tend to encode fewer
impurities (see Figure 2a). Furthermore, given the tabular
nature of TabularToy(δ), we do not compare DGL methods
in this task. Finally, for details on computing our metrics
when an alignment between ground truth concepts and learnt
representations is missing, see Appendix A.5.

In terms of task accuracy, the overall set of learnt con-
cept representations is equally predictive of the downstream
task across all surveyed methods (see Appendix A.9 for de-
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Figure 4: Evaluation of different models, deployed across various tasks, using our Oracle Impurity Score (left) and Niche
Impurity Score (right) in two extreme cases of no correlation and high concept correlation for each dataset. For all DGL and
unsupervised methods, we learn as many concepts/latent dimensions as known ground truth concepts k.
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Figure 5: Intervening in CBMs with different bottleneck ac-
tivation functions in dSprites(λ = 0).

tails). However, as discussed previously, models with the
same task accuracy can encode highly varied levels of im-
purities in their individual concept representations. Figure 4
(left) shows a comparison of impurities observed across
methods using OIS. CBM’s individual concepts consistently
experience the least amount of impurity due to receiving
explicit supervision, which is to be expected. Unexpect-
edly though, we observe that the same explicit supervi-
sion can lead to highly impure representations in CW. In-
deed, CW impurities are on par or more than those of un-
supervised approaches. Looking into implicit supervision,
we observe that individual concepts in CCD and SENN do
not correspond well to the ground truth ones. This indi-
cates that the information about each ground truth concept
is distributed across the overall representation rather than
localised to individual concepts, leading to relatively high
OIS. We attribute CCD’s lower impurity, compared with
SENN, to the use of a regularisation term that encourages
coherence between concept representations in similar sam-
ples and misalignment between concept representations in
dissimilar samples. More interestingly, however, both CCD
and SENN encode higher impurities than some DGL ap-
proaches, despite benefiting from task supervision. Within
DGL approaches, astonishingly no supervision in unsuper-
vised DGL can result in purer individual concept represen-
tations than those of weakly-supervised DGL methods. This
suggests that concept information may be heavily distributed
in weakly-supervised DGL methods.

Moving from individual concepts, Figure 4 (right) shows
a comparison of impurities observed across subsets of con-
cept representations using our NIS metric. Similar to our
OIS results, the overall set of concept representations in
CBM shows the least amount of impurity. Unlike individ-
ual impurities, however, the overall set of concept repre-
sentations in DGL methods shows a higher impurity than
that of explicitly supervised approaches. This can be ex-

plained by the fact that DGL methods seem to learn rep-
resentations that are not fully aligned with our defined set
of ground truth concepts, yet when taken as a whole they
are still highly predictive of individual concepts. This would
lead to complement niches being highly predictive of indi-
vidual ground truth concepts even when individual repre-
sentations in those niches are not fully predictive of that
concept itself, resulting in relatively high NIS scores and
lower OIS scores. Furthermore, notice that weakly super-
vised DGL methods show a lesser niche impurity than un-
supervised DGL methods, suggesting, as in Locatello et al.
(2020a), that weakly-supervised representations are indeed
more disentangled. We notice, however, that this decrease in
impurity for weakly-supervised methods comes at the cost
of their latent codes being less effective at predicting in-
dividual concepts than unsupervised latent codes (see Ap-
pendix A.11). Finally, within methods benefiting from ex-
plicit supervision, the overall set of learnt concepts in CCD
has fewer impurities than that of SENN, which was similarly
observed with individual concepts above.

Our metrics are robust to concept correlations. As
seen in Figure 4, the preserved method ranking using our
metrics in settings with and without correlations confirms
our metrics’ robustness to concept correlations.

Conclusion
Impurities in concept representations can lead to models
accidentally capturing spurious correlations and can be in-
dicative of unexpected behaviour during concept interven-
tions, which is crucial given that performing safe interven-
tions is one of the main motivations behind CBMs. Despite
this importance, current metrics in CL literature and the re-
lated field of DGL fail to fully capture such impurities. In
this paper, we address these limitations by introducing two
novel robust metrics that can circumvent several limitations
in existing metrics and correctly capture impurities in learnt
concept representations. Indeed, for the first time, we can
systematically compare the purity of concepts in CL and
DGL and show that, contrary to common assumptions, more
explicit supervision does not necessarily translate to better
concept quality in terms of purity. More importantly, beyond
comparison, our experiments show the utility of these met-
rics in designing and training more reliable and robust con-
cept learning models. Therefore, we envision them to be an
integral part of future tools developed for the safe deploy-
ment of concept-based models in real-world scenarios.
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Locatello, F.; Poole, B.; Rätsch, G.; Schölkopf, B.; Bachem,
O.; and Tschannen, M. 2020a. Weakly-Supervised Disen-
tanglement Without Compromises. In International Confer-
ence on Machine Learning (ICML), volume 119 of Proceed-
ings of Machine Learning Research, 6348–6359. PMLR.
Locatello, F.; Tschannen, M.; Bauer, S.; Rätsch, G.;
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