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Abstract

We study the problem of training a principal in a multi-agent
general-sum game using reinforcement learning (RL). Learn-
ing a robust principal policy requires anticipating the worst
possible strategic responses of other agents, which is gener-
ally NP-hard. However, we show that no-regret dynamics can
identify these worst-case responses in poly-time in smooth
games. We propose a framework that uses this policy evalu-
ation method for efficiently learning a robust principal pol-
icy using RL. This framework can be extended to provide
robustness to boundedly rational agents too. Our motivating
application is automated mechanism design: we empirically
demonstrate our framework learns robust mechanisms in both
matrix games and complex spatiotemporal games. In particu-
lar, we learn a dynamic tax policy that improves the welfare
of a simulated trade-and-barter economy by 15%, even when
facing previously unseen boundedly rational RL taxpayers.

Introduction
We study the problem of learning a principal policy in a
general-sum game against boundedly rational agents. Learn-
ing a robust principal policy requires us to anticipate how
these agents may respond to our policy choices, and en-
tails two important challenges (Figure 1). First, the poli-
cies we choose induce a sub-game between the other agents,
a sub-game which may have infinite equilibria. The policy
we choose should perform well regardless of which equilib-
ria the agents respond with. Second, principal policies that
perform well against rational agents may not generalize to
boundedly rational agents, even if they are only infinitesi-
mally irrational (Pita et al. 2010). Our policy should perform
well even if agents act boundedly rational.

We introduce a framework for the reinforcement learn-
ing of robust principal policies that address these two
challenges. This framework evaluates a potential policy
by identifying the worst-case coarse-correlated equilibrium
(CCE) of the sub-game the policy induces. Although iden-
tifying worst-case CCE is generally computationally in-
tractable (Papadimitriou and Roughgarden 2008; Barman
and Ligett 2015), we prove that worst-case CCE can effi-
ciently learned in smooth games. Our framework easily ex-
tends to identify worst-case approximate CCE. This allows
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Figure 1: The orange robot denotes our principal, blue robots
the agents we train against, and human icons the agents
we encounter during test time. Evaluating a policy in a
multi-agent game by naively sampling rational responses
from other agents, e.g. via multi-agent RL, may lead to
overly optimistic reward estimates. We introduce efficient
algorithms for adversarially sampling rational responses in
smooth games. These algorithms can be extended to sample
worst-case boundedly rational responses (bottom-right).

us to learn principal policies that are robust to boundedly
rational agents, such as agents whose incentives differ from
the agents we train against.

Our motivating application is mechanism design (“reverse
game theory”), where a principal implements the rewards
and dynamics (the “mechanism”) that other agents opti-
mize for (Myerson 2016). Traditional mechanism design
has been limited to problems with a convenient mathemati-
cal structure, e.g., simple auctions, where the equilibria be-
havior of agents can be solved in closed-form. Recent re-
search have pursued computational approaches to mecha-
nism design that evaluate potential mechanisms using agent-
based modeling (Holland and Miller 1991; Bonabeau 2002;
Duetting et al. 2019) and multi-agent reinforcement learn-
ing (MARL) (Zheng et al. 2020). This application of multi-
agent learning remains an exciting but understudied topic.
We will outline a modern perspective that formalizes auto-
mated mechanism design and its robustness concerns as an
equilibrium selection problem.

Summary of results. Our primary contributions include:
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1. We motivate a robust learning objective for finding a
principal policy that is robust to agents of differing in-
centives, rationality, and reputation. This objective is a
multi-follower extension of robust Stackelberg games.

2. We show the existence of poly-time algorithms for adver-
sarially sampling the coarse-correlated-equilibria (CCE)
of smooth games, proving that multi-follower Stackel-
berg games can be tractable. This weakens prior findings
that learning welfare-maximizing CCE is NP-hard (Pa-
padimitriou and Roughgarden 2008).

3. We apply our proposed framework to automated mech-
anism design problems where multi-agent RL is used to
simulate the outcomes of mechanisms. In the spatiotem-
poral economic simulations used by the AI Economist
(Zheng et al. 2020), our framework learns robust tax poli-
cies that improve welfare by up to 15% and are robust to
previously unseen and boundedly rational agents.1

Related Work
Finding Equilibria. A goal of multi-agent learning is
finding equilibria (or more generally solution concepts),
i.e., sets of agent policies that are game-theoretically op-
timal (according to the definition of equilibrium). Prior
work has used gradient-based methods, e.g., deep reinforce-
ment learning, to find (approximate) equilibria with great
success in multiplayer games such as Diplomacy (Gray
et al. 2021) and in training Generative Adversarial Networks
(Schäfer, Zheng, and Anandkumar 2020). However, learning
robust principals (or mechanisms) in multi-agent general-
sum games is an open problem: it requires evaluating strate-
gies against worst-case sub-game equilibria, which is com-
putationally hard.

Stackelberg Games. Our principal can be seen as a Stack-
elberg leader; the other agents as Stackelberg followers.
Stackelberg games have had real-world success in security
games used in airports (Pita et al. 2009) and anti-poaching
defense (Nguyen et al. 2016), for example. However, Stack-
elberg analysis is typically limited to a single rational fol-
lower or assuming that the followers do not strategically in-
teract, e.g., as in multi-follower security games (Korzhyk,
Conitzer, and Parr 2011). In contrast, we consider more gen-
eral settings with multiple followers who may strategically
interact with one another. In these settings, finding multi-
follower “best-responses” is a computationally hard equilib-
ria search and an open problem (Barman and Ligett 2015;
Basilico et al. 2020) for which our work provides a tractable
perspective.

Our approach to modeling uncertainty about followers is
inspired by Strict Uncertainty Stackelberg Games that as-
sume a worst-case choice of a follower’s utility function
(Pita et al. 2010, 2012; Kiekintveld, Islam, and Kreinovich
2013). Similarly, Bayesian Stackelberg Games assume a
prior over a space of possible follower utility functions
(Conitzer and Sandholm 2006). We extend this by consid-

1Source code for these experiments are released at https://
github.com/salesforce/strategically-robust-ai.

ering a general setting with multiple, possibly interacting,
followers.

Robustness. Our work is also related in spirit to prior
work on robust reinforcement learning, which we discuss
further in Appendix . We will refer to our notion of robust-
ness as strategic robustness to contrast it from non-game-
theoretic notions of robustness to, for example, noisy ob-
servations (Morimoto and Doya 2000). Strategic robustness
also differs from the topic of “robust game theory”, which
studies the equilibria that arise when all players act robustly
to some uncertainty about game parameters (Aghassi and
Bertsimas 2006). Hereafter, we will simply refer to our no-
tion of strategic robustness as “robustness” for brevity.

Problem Formulation
Notation. Bold variables are vectors of size n, with each
component corresponding to an agent i = 1, . . . , N . For ex-
ample, a ∈ A1:n denotes an action vector over all agents
except our principal, agent 0. a−i denotes the profile of ac-
tions chosen by all agents except agents 0 and i.

Setup. We consider a general-sum game G with N + 1
agents. Our principal, or “ego agent”, is index i = 0 and
the other agents are i = 1, . . . , N . Ai denotes the set of
mi actions available to agent i, and m =

∑N
i=1 mi. P (Ai)

is the set of probability distributions over action set Ai.
The joint action set is A1:n :=

∏
i∈[1,...,N ] Ai. P (A1:n)

denotes the set of joint distributions over strategy profiles
A1:n. P prod(A1:n) denotes the set of product distributions
over strategy profiles A1:n. Every agent i = 0, . . . , N has
a utility function ui : A0 × A1:n → R with bounded pay-
offs. For example, ui(a0,a) denotes the utility of agent i
under action a0 ∈ A0 by our principal and actions a ∈ A
by agents 1, . . . , N . When a0 is clear from context, we’ll
write ui(a), suppressing a0. We denote expected utility as
ui(x0,x) := Ea0∼x0,a∼xui(a0,a); again we write ui(x)
when x0 is clear from context.

Succinct Games. To derive our complexity results, we
will use standard assumptions on our game G so that work-
ing with equilibria is not trivially hard (Papadimitriou and
Roughgarden 2008). We assume G := (I, T, U) is a suc-
cinct game, i.e., has a polynomial-size string representa-
tion. Here, I are efficiently recognizable inputs, and T and
U are polynomial algorithms. T returns n,m0, . . . ,mN

given inputs z ∈ I , while U specifies the utility function
of each agent. We assume G is of polynomial type, i.e.,
n,m0, . . . ,mN are polynomial bounded in |I|. We assume
that G satisfies the polynomial expectation property, i.e.,
utilities u(x0,x) can be computed in polynomial time for
product distributions x. The latter assumption is known to
hold for virtually all succinct games of polynomial type (Pa-
padimitriou and Roughgarden 2008). Without these assump-
tions, simply evaluating the payoff of a coarse-correlated
equilibria can require exponential time. All complexity re-
sults in our work, including Theorem 1 and cited results
from prior works use these assumptions. Later, we will use
additional “smoothness” conditions on G to overcome prior
hardness results about succinct games.
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Problem. Given a game G, we aim to learn a principal
policy x0 ∈ P (Ai) that maximizes our principal’s expected
utility u0(x0,x). Here, x is the strategy that agents in a test
environment respond to our policy x0 with. We will assume
access to a training environment for G. In this training en-
vironment, we assume access to—potentially inaccurate—
estimates of the reward functions of the agents; we will write
these estimates as u1, . . . , uN . For example, the principal
i = 0 may be a policymaker setting a tax policy x0 that max-
imizes social welfare u0. In response, the tax-payers play x,
choosing whether to work and report income.

Objective In order to formalize our robust learning objec-
tive, we must define what uncertainty sets X we want learn-
ing guarantees for. A behavioral uncertainty set X(x0) ⊆
P (A) defines the strategies that the test environment agents
may respond to a principal policy x0 with. For simple agent
behaviors, one can use imitation learning or domain knowl-
edge to construct these uncertainty sets. In this work, we will
study game-theoretic uncertainty sets, for example, where
X(x0) is the set of rational behaviors (see Section ). Fixing
a choice of X , we can write our robust learning objective as:

max
x0

min
x∈X(x0)

u0(x0,x). (1)

This is a challenging objective: it features nested optimiza-
tion and requires searching over behavioral uncertainty sets,
which is a non-trivial task in complicated games.

Finding Uncertainty Sets for Boundedly
Rational Agents

A key challenge in our problem formulation is defining our
behavioral uncertainty set X . In this section, we will first
argue for a uncertainty set of coarse-correlated equilibria
(CCE). We will then prove that in smooth games we can ef-
ficiently approximate worst-case CCE. We will finally pro-
pose a more relaxed uncertainty set that yields robustness to
boundedly rational agents.

Initial Assumptions Our guiding principle for choosing
X is that a robust principal can assume that agents are ra-
tional, but should still perform if agents act somewhat irra-
tionally or have incentives that slightly differ from antici-
pated. We will further assume the following and relax them
later.
1. The incentives (reward functions) of the test agents ex-

actly agree with our training environment’s estimates.
2. All agents are rational expected-utility maximizers. No

agent will settle if they want to unilaterally deviate.
3. We, the principal, can commit to a strategy x0 and will

not react to other agents.

Dominant Strategies. A natural choice of X is to extend
Stackelberg equilibria to a multi-follower setting and define
X(x0) as the set of best responses to x0,

X(x0) = {x | ∀i ∈ [1, . . . , n], x̃−i ∈ P (A)−i :

xi ∈ argmaxxi
ui(x0, xi, x̃−i)}. (2)

However, this set is only non-empty when all agents have
dominant strategies: a strong assumption that rarely holds
when followers interact with one another.

Stability-Based Equilibria. We can also define an uncer-
tainty set X(x0) as the stable equilibria that agents may con-
verge to under our policy x0. This coincides with Equation
2 when it is non-empty. Formally, let

X(x0) = {x ∈ P (A) | (x0,x) ∈ EQ},
where natural choices for EQ include mixed Nash equilibria
(MNE) in which agents do not coordinate:

MNE = {x ∈ P prod(A) | ∀i ∈ [1, . . . , N ], ãi ∈ Ai :

Ea∼x[ui(a)] ≥ Ea−i∼x−i [ui(ãi,a−i)]},
or more general coarse-correlated equilibria (CCE):

CCE = {x ∈ P (A) | ∀i ∈ [1, . . . , N ], ãi ∈ Ai :

Ea∼x[ui(x)] ≥ Ea−i∼x−i
[ui(ãi,x−i)]}.

Here, coarse-correlated equilibria describe more general
joint strategies, such as coordination based on shared infor-
mation.

Computational Hardness. Unfortunately, optimizing the
robustness objective in Equation 1 is neither tractable with
MNE nor CCE. Finding the MNE/CCE that minimizes a
utility function u0 is equivalent to the NP-hard problem of
finding a MNE/CCE that maximizes a linear social wel-
fare objective ν (Daskalakis, Goldberg, and Papadimitriou
2009; Papadimitriou and Roughgarden 2008); we will set
ν = −u0 for convenience. Beyond maximizing ν, simply
finding a CCE that does not minimize ν is NP-hard (Barman
and Ligett 2015). Formally, consider the decision problem Γ
of determining whether a game G (under our assumptions)
admits a CCE x such that the expectation of ν, ν, satisfies:

ν(x) > min
x̃∈CCE

ν(x̃).

This problem is NP-hard for some choices of ν, including
the social welfare function (Barman and Ligett 2015). For
our purposes, this implies that even sampling an approx-
imately worst-case equilibria is intractable. This means it
could be impossible to efficiently evaluate our principal’s
policy as it is intractable to guarantee sampling anything
other than uninformative equilibria behavior.

Smooth Games and Tractable Uncertainty Sets
Smooth games offer a workaround to this hardness result.
Definition 0.1 (Smooth Games). A cost-minimization game
with cost functions ci and objective C is (λ, µ)-smooth if,
for all strategies x,x∗ ∈ P (A),

N∑
i=1

E[ci(x∗
i ,x−i)] ≤ λ · E[C(x∗)] + µ · E[C(x)].

The “robust price of anarchy” (RPOA) is defined ρ := λ
1−µ .

In fact, we can sample a CCE that approximately max-
imizes ν = −u0 with run-time polynomial in the game
size, smoothness (λG, µG) of the original game G and the
smoothness (λG̃, µG̃) of a modified game G̃. Here, G̃ is
identical to G except each agent’s utility is changed from
ui to ν.
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Theorem 1. For succinct n-agent m-action games of
polynomial type and expectation property, there exists a
Poly(1/ϵ, n,m, ρ) algorithm that will find an ϵ-CCE x with

ν(x) ≥ y

ρ
− ϵ.

for any y ≤ maxx∗∈CCE ν(x
∗), where ρ =

λG̃

1−max{µG,µG̃} .

Proof Sketch of Theorem 1. First, we observe that the prob-
lem of finding a ν-maximizing CCE reduces to finding a
halfspace oracle that optimizes some modified social welfare
(Lemma 1). Similar reductions have been described by Jiang
and Leyton-Brown (2011) and Barman and Ligett (2015).

Lemma 1. Fix a 0 < y ≤ maxx∈CCE ν(x). Assume there is
a Poly(1/ϵ, n,m)-time halfspace oracle that, given a vector
β ∈ R1+m

+ with non-negative components, returns an x ∈
P (A) such that βv(x) ≤ 0, where

v(x) =



u1(1,x−1)− u1(x)
...

u1(m1,x−1)− u1(x)
...

uN (1,x−N )− uN (x)
...

uN (mN ,x−N )− uN (x)
y − ν(x)


(3)

Then, there is a Poly(1/ϵ, n,m)-time algorithm that returns
an ϵ-CCE x with ν(x) ≥ y − ϵ.

The halfspace oracle’s optimization task can be reduced to
optimizing social welfare in a game with RPOA of ρ, which
inherits its smoothness from games G and G̃. This upper
bounds the ratio between the smallest objective value ν of a
CCE and the largest objective value ν of any strategy. Thus,
we can use no-regret dynamics (Cesa-Bianchi and Lugosi
2006; Foster and Vohra 1997; Hart and Mas-Colell 2000) in
this smooth game to approximate the half-space oracle.

Lemma 2. Let ρ denote an upper bound on the price of an-
archy of G, G̃. There exists a Poly(1/ϵ, n,m, ρ)-time half-
space oracle that, given a vector β ∈ R1+m

+ and y ≤
ρmaxx∈CCE ν(x), returns an x ∈ P (A) such that βv(x) ≤
ϵ where v is defined as in Equation 3.

Combining Lemmas 1 and 2 constructs our algorithm.

Informally, this theorem states that it is tractable to find
a CCE that maximizes ν up to the price of anarchy. While
this relationship is immediate when ν is the social welfare
function (Roughgarden 2015), our result shows that we can
prove a similar relationship concerning the optimization of
CCE against any linear function. This positive result al-
lows for translation between well-known price-of-anarchy
bounds and bounds on the tractability of CCE optimization.
Corollary 1. In linear congestion games, for any linear
function ν, we can find, in Poly(1/ϵ, n,m) time, an ϵ-CCE
x such that ν(x) ≥ 0.4 ·maxx∈CCE ν(x)− ϵ.

While Barman and Ligett (2015) showed the decision
problem Γ of finding a non-trivial CCE is NP-hard in gen-
eral, our Theorem 1 also shows it is tractable in smooth
games.
Corollary 2. The decision-problem Γ is in P for games
where 1

ρ maxx∈CCE ν(x) > minx∈CCE ν(x).

Remarks. These theoretical conclusions suggest that al-
though using equilibria-based uncertainty sets may be in-
tractable in some cases, there is a broad class of common
problems where CCE uncertainty sets are reasonable and
allow for efficient adversarial sampling. The algorithm we
construct in Theorem 1 also enjoys two nice properties.
First, it only requires oracle access to utility functions (ef-
ficient under polynomial expectation property). Second, in
the algorithm’s self-play subprocedures, each agent can be
trained using only their, and their principal’s, utility infor-
mation.

Weakening Assumptions on Agents and Principal
Robustness Algorithm
We now further refine our choice of uncertainty set to ensure
generalization to agents that violate our behavioral assump-
tions. We now switch to weaker assumptions:
1. Subjective rationality: At test time, an agent’s utility ũi

may differ from the anticipated utility ui (Simon 1976).
Many models of subjective rationality, such as Subjective
Utility Quantal Response (Nguyen et al. 2013), bound the
gap between ui and ũi as ∥ui− ũi∥∞ ≤ γs with γs > 0.

2. Procedural rationality: An agent may not fully succeed
in maximizing their utility (Simon 1976), e.g., they could
gain up to γp > 0 utility if they unilaterally deviate.

3. Myopia: An agent may possess commitment power or
otherwise be non-myopic, factoring in long-term incen-
tives with a discount factor γm ∈ (0, 1). This relates
to notions of exogenous commitment power, e.g., par-
tial reputation, in Stackelberg games (Kreps and Wilson
1982; Fudenberg and Levine 1989).

These variations represent common forms of bounded ra-
tionality. We now show that the sampling scheme we devise
for Theorem 1 can be extended to maintain robustness de-
spite these weaker assumptions. We aim to learn strategies
x0 that perform well even when presented with agents pos-
sessing these variations. Hence, we aim to use uncertainty
sets X that encode such behaviors. The next proposition
suggests it suffices to simply relax our uncertainty set X
to include more approximate equilibria.
Proposition 1. The uncertainty set X ′ of (any combina-
tion of) agents violating assumptions 1-3 with parameters
γm, γs, γp is contained in the set of ε-CCE:

CCEε = {x ∈ P (A) | ∀i ∈ [1, . . . , N ], ãi ∈ Ai :

Ea∼x[ui(a)] + εi ≥ Ea−i∼x−i [ui(ãi,a−i)]},

where εi = max{∥ui∥∞
1−γm

, γs, 2γp}. Hence, we can train poli-
cies robust to such agents by using the following in the ro-
bustness objective of Equation 1:

Xε(x0) = {x ∈ P (A) | ∃x0 ∈ A0 : (x0,x) ∈ CCEε}.
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This proposition motivates us to use approximate CCE as
an uncertainty set rather than exact CCEs. Conveniently, the
algorithm we construct in the proof of Theorem 1 can be
modified to adversarially sample from ϵ-CCE instead of ex-
act CCE. By relaxation of Lemma 1, it yields the same op-
timality and runtime guarantees as Theorem 1, but over the
set of approximate ϵ-CCE. We will refer to this modification
of the Theorem 1 algorithm as Algorithm 2, which we repeat
in full in the Appendix.

Finding Approximate Uncertainty Sets with
Blackbox Optimizers

One challenge with using Algorithm 2 in practice is that it
relies on a no-regret learning subprocedure that does not
scale well. This is a common bottleneck in multi-agent
learning when deriving practical algorithms from algorithms
with strong theoretical guarantees. A common remedy is
to replace the no-regret learning procedure with a standard
learning algorithm (e.g., SGD), usually with no negative im-
pact on empirical behavior or performance. We will do this
to derive a practical variant of Algorithm 2 that still inherits
its theoretical intuitions. This involves two main steps.

Removing binary search. Algorithm 2’s binary search
over y is a theoretically efficient search over possible op-
timal or worst-case values of ϵ-CCE. However, it is ineffi-
cient in a nested optimization like Equation 1. Observing
that y’s value affects only the parameterization of the impor-
tance weight βm+1, we can fix vm+1 to a sufficiently small
value such that βm+1 = 1[v1, . . . , vm ≤ 0].

Replacing Blackwell’s algorithm. During Algorithm 2’s
reduction to halfspace oracles, we can merge components of
v corresponding to the same agent. This yields a functional
equivalent of Eq 3,

v(x) =


maxa1∈A1 u1(a1,x−1)− u1(x)

...
maxan∈An

un(an,x−n)− un(x)
σ → 0

 . (4)

In practice, this choice is more tractable than Eq 3. Eq 4
lends itself to many efficient approximations. For instance,
when A is combinatorially large, we can approximate the re-
gret estimates with local methods rather than explicitly enu-
merating all possible action deviations.

A practical algorithm. Combined, these two modifica-
tions to Algorithm 2 render it equivalent to computing an
upper-bound for the Lagrangian dual problem, L(ϵ), of ad-
versarial sampling (Equation 6),

L(ϵ) = min
x∈P (A)

max
λ

u0(x)−
N∑
i=1

λi [Regi (x)− ϵ] , (5)

Regi (x) := max
ai∈Ai

ui(ai,x−i)− ui(x).

Here, decoupled no-regret dynamics efficiently approximate
the outer optimization minx∈P (A). In this sense, the theoret-
ical results of Section can be interpreted as a formal bound

Algorithm 1: Decoupled sampling of pessimistic
equilibria.

Output: Approximate lower-bound on L(ϵ) (Eq 5).
Input: Number of training steps Mtr and self-play steps
Ms, reward slack ϵ, multiplier learning rate αλ,
uncoupled self-play algorithm B, regret estimators
Ri : P (A)→ R for each agent i.
Initialize mixed strategy x1.
for j = 1, . . . ,Mtr do

for i = 1, . . . , N do
Estimate regret ri as r̂i ← Ri(xj), where

ri := maxx̃i∈P (Ai) ui(x̃i,x−i)− ui(x).
Compute multiplier λi ← λi − αλ (r̂i − ϵ).

end for
Using B, run Ms rounds of self-play with utilities

ûi(a) := (λiui(a)− u0(a))/(1 + λi).
Set xj+1 as the resulting empirical play distribution.

end for
Return 1

Mtr

∑Mtr
t=1 u0(xt).

on how much decoupled approximations of minx∈P (A) af-
fect the lower-bound of this dual problem. Theorem 1 can
thus be interpreted as the implication that, when playing a
sufficiently smooth game, it is reasonable to use decoupled
algorithms to approximate the dual problem. This motivates
our final modification to Algorithm 2: replacing the inner
no-regret learning loop with a blackbox self-play algorithm.
The final algorithm is described in Algorithm 1.

Adversarial Sampling Experiments
Before applying Algorithm 1 to more ambitious mechanism
design tasks, we first benchmark the quality of its adversarial
sampling. As our eventual mechanism design applications
are spatiotemporal games requiring multi-agent reinforce-
ment learning (MARL), for this experiment, we will also use
MARL as the blackbox self-play procedure of Algorithm 1.
In particular, we will use a common multi-agent implemen-
tation of the PPO algorithm (Schulman et al. 2017) and a
Monte-Carlo sampling scheme as our regret estimator.

Game Environment. The game environment for this ex-
periment is a Sequential Bimatrix Game. This is an exten-
sion of the classic repeated bimatrix game (Figure 2), whose
Nash equilibria can be solved efficiently and is well-studied
in game theory. At each timestep t, a row (agent 1) and col-
umn player (agent 2) choose how to move around a 4 × 4
grid, while receiving rewards r1(si, sj), r2(si, sj). The cur-
rent location is at row si and column sj . The row (column)
player chooses whether to move up (left) or down (right).
Each episode is 500 timesteps.

We configure the payoff matrices r1 and r2, illustrated in
Figure 2, so that only one Nash equilibrium exists and that
the equilibrium constitutes a “tragedy-of-the-commons,”
where agents selfishly optimizing their own reward leads to
less reward overall. The principal is a passive observer that
observes the game and receives a payoff r0(si, sj). The prin-
cipal does not take any actions and its payoff is constructed
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Figure 2: Validating our algorithm (Algorithm 3) in constrained repeated bimatrix games. Left: In the repeated bimatrix game,
two agents navigate a 2D landscape. Both agents and the principal receive rewards based on visited coordinates. Brighter squares
indicate higher payoff. The bimatrix reward structure encodes a social dilemma featuring a Nash equilibrium with low reward
for the two agents and high reward for the gambler. Vanilla MARL converges to this equilibrium. Right: Agents trained with
our algorithm deviate from this equilibrium in order to reduce the reward of the principal. ϵ governs the extent of the allowable
deviation. As ϵ increases, the average per-timestep regret experienced by the agents also increases. Each average is taken over
the final 12 episodes after rewards have converged. Each point in the above scatter plots describes the average outcome at the
end of training for the agents (x-coordinate) and the principal (y-coordinate). Error bars indicate standard deviation.

such that its reward is high when the agents are at the Nash
equilibrium. If Algorithm 1 successfully samples realistic
worst-case behaviors, we expect to see agents 1 and 2 learn-
ing to deviate from their tragedy-of-the-commons equilib-
rium in order to (1) reduce the principal’s reward but also
(2) without significantly increasing their own regret.

Algorithm 1 efficiently interpolates between adversarial
and low-regret equilibria. In Figure 2 (middle), we see
the equilibria reached by agents balance the reward of the
principal (y-axis) and themselves (x-axis). In particular, we
see that conventional multi-agent RL discovers the attractive
Nash equilibrium, which is in the top left. At this equilib-
rium, the agents do not cooperate and the principal receives
high reward. Similarly, for small values of ϵ, our algorithm
discovers the Nash equilibrium. Because ϵ constrains agent
regret, with larger values of ϵ, our algorithm deviates farther
from the Nash equilibrium, discovering ϵ-equilibria to the
bottom-right that result in lower principal rewards.

Algorithm 1 has tight control over how much agents sac-
rifice to hurt the principal. We see in Figure 2 (right)
that deviations from the Nash equilibrium yield higher re-
gret for the agents, i.e., regret increases with ϵ. This figure
also confirms that increasing our algorithm’s slack param-
eter correctly increases the incentive of the agents to incur
regret in order to harm the principal.

Optimizing Strategic Robustness
We now apply our adversarial sampling scheme, Algo-
rithm 1, to automated mechanism design problems. In par-
ticular, we will use Algorithm 1 to provide feedback to a
reinforcement learning (RL) procedure that selects mecha-
nisms. This RL procedure, Algorithm 3, is described in the
Appendix for completeness. First, we induce a mechanism
design problem on a repeated n-matrix game. Then, we’ll
seek to learn an optimal tax policy in the AI Economist,
a large-scale spatiotemporal simulation of an economy

(Zheng et al. 2020). Each experiment setting features 4 to
5 agents involved in complex multi-timestep interactions.
They are thus significantly more complex and costly to train
in than traditional multi-agent RL environments.

Repeated Matrix Games
We first extend our repeated bimatrix game to include addi-
tional players and a principal.

Setup. The setting is now a 4-player, general-sum,
normal-form game on a randomly generated 7×7×7×7 pay-
off matrix, with the same action and payoff rules as shown
in Figure 2. Recall that these players will engage one an-
other for 500 timesteps in an episode. Each player i is as-
sociated with an “original” reward function ri; this is the
reward function we will have access to during training. Dur-
ing test time, we may also encounter other categories of
agents that have different reward functions but who are also
themselves learned with RL: (1) Vanilla: ri; (2) Adversarial
(Adv): r′i = ri − Qr0, where larger Q is more adversarial;
and (3) Risk-averse (RiskAv): r′i = (r1−η

i − 1)/ (1− η),
where higher η is more risk averse.

Results. Figure 1 shows the average rewards of princi-
pals trained (rows) and evaluated (columns) on each type
of agents. We observe three key trends. First, principals per-
form better when evaluated on the same type of agent they
were trained trained on (diagonal entries). Second, princi-
pals trained with our adversarial sampling perform better
across the board. Third, the robustness gains of adversar-
ial sampling are stronger when ϵ is large. This is expected
as ϵ parameterizes the adversarial strength of our sampling
scheme. For small ϵ, adversarial sampling reduces to random
sampling as the CCE constraint is so tight it permits no ad-
versarial deviations. We also saw that, even though all meth-
ods were run with 20 seeds and filtered down to 10 seeds
on a validation set, our algorithm’s results remain somewhat
noisy, as it may not converge when badly initialized.
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Training ↓ Testing → Original Adv (Q = 0.25) Adv (Q = 1) RiskAv (η = 0.05) RiskAv (η = 0.2)
MARL 104±50.5 -5.8±34.1 -232±29.3 383±14.4 352±42.6
Adv (Q = 0.25) 143±35.0 ⋆ 64.7±35.1 -191±36.0 236±23.8 292±28.4
Adv (Q = 1) 131±63.1 -23±10.1 ⋆ -47±8.20 286±35.1 290±36.0
RiskAv (η = 0.05) -20±44.2 -112±15.7 -222±29.3 ⋆ 404±47.2 ⋆ 464±0.95
RiskAv (η = 0.2) -53±32.4 -150±20.0 -283±29.8 ⋆ 465±0.61 358±70.9
Ours ϵ = −10 ⋆ 227±50.8 ⋆ 48.9±12.4 -137±43.1 265±41.8 292±38.3
Ours ϵ = 50 ⋆ 221±80.8 ⋆ 48.3±29.7 ⋆ -53±14.0 ⋆ 460±33.9 ⋆ 481±38.6

Table 1: Robust performance in N -agent matrix games. We train an principal in a 7 × 7 × 7 × 7 matrix game with n = 4
agents (including the principal) until convergence. For each method, we train 20 seeds and select the top 10 in a validation
environment. Each row corresponds to a specific agent type that the principal is trained on. ’MARL’ refers to agents trained
using their ‘Original‘ reward definition; ‘Adv’ refers to adversarial agents; ‘RiskAv’ refers to risk-averse agents. The principals
trained on these types of agents tend to perform best when evaluated on the same type seen during training. In contrast, principals
trained against agent behaviors sampled using our algorithm (ϵ = 50) perform within standard error of top-1 on all agent types.
We use the ‘Original‘ reward definition when training with our algorithm.

Training ↓ Testing → Original η = 0.11 η = 0.19 η = 0.27 α = 0.25 α = 2.5
Free Market 326±1 527±2 427±1 162±1 248±2 112±0
Federal 335±8 637±5 497±2 150±2 ⋆ 270±1 121±0
Saez ⋆ 381±1 597±3 487±4 ⋆ 189±1 265±0 127±0
Ours (ϵ = −30) ⋆ 375±9 646±6 514±12 164±9 266±2 131±2
AI Economist (Original) ⋆ 386±2 628±5 515±1 123±13 267±0 129±1
AI Economist (η = 0.11) 253±5 ⋆ 683±7 506±1 140±1 255±2 129±0
AI Economist (η = 0.19) 308±17 665±9 ⋆ 543±6 82±29 256±3 131±1
AI Economist (η = 0.27) 339±11 603±3 477±1 137±10 266±0 129±0
AI Economist (α = 0.25) 324±2 625±10 501±7 121±25 263±0 128±0
AI Economist (α = 2.5) 104±27 636±3 246±33 49±10 251±4 ⋆ 135±1

Table 2: Robust dynamic tax policies in a spatiotemporal economy. First 3 rows are classic tax baselines: “Free Market” has
no taxes; “US Federal” uses the 2018 US Federal progressive income tax rates; “Saez” uses an adaptive, theoretical formula
to estimate optimal tax rates. Bottom rows correspond to learned policies trained to optimize, and evaluated on, the social
welfare metric swf of equality and productivity. ‘Ours’ and ‘AI Economist (Original)’ are trained on the ‘Original’ settings
(risk aversion η = 0.23; entropy bonus α = 0.025). Naive multi-agent reinforcement learning tax policies, including (Zheng
et al. 2020)’s original AI Economist, fail to generalize to previously unseen agent types. In contrast, our algorithm performs
within standard error of top-1 on all agent types.

Taxing a Simulated Economy
We now apply our algorithm to designing dynamic (multi-
timestep) tax policies for a simulated trade-and-barter econ-
omy with strategic taxpayers that interact with one another
(Zheng et al. 2020). See Appendix for a screenshot.

Setup. In this simulated economy, the principal sets a tax
policy and the agents play a partially observable game, given
the tax policy. Each episode is 1,000 timesteps of economic
activity. Taxpayers earn income zi,t from labor li,t and pay
taxes T (zi,t). They optimize their expected isoelastic utility:

z̃i,t = zi,t − T (zi,t), ri,t(x̃i,t, li,t) =
x̃1−η
i,t − 1

1− η
− li,t,

where x̃i,t is the post-tax endowment of agent i, and η > 0
sets the degree of risk aversion (higher η means higher risk
aversion) (Arrow 1971). Players expend labor and earn in-
come by participating in a rich simulated grid-world with
resources and markets. The principal optimizes for social
welfare swf =

(
1− N

N−1gini(z)
)
·
(∑N

i=1 zi

)
, the product

of equality (Gini 1912) and productivity. The taxpayers are
also themselves learned with multi-agent RL, using a PPO
algorithm entropy hyperparameter α (Schulman et al. 2017).

Results. Figure 2 shows the social welfare achieved by our
algorithm, naive dynamic RL policies (Zheng et al. 2020),
and static baseline tax policies (Saez, US Federal). Naive
RL policies achieve good test performance when evaluated
on the same agents seen in training, but perform poorly with
agents with different η and noise level. They are often out-
performed by the baseline taxes, which perform surprisingly
well under strong risk aversion (η = 0.27) and noisy agents
(entropy bonus α = 0.25, 2.5). We see that the static base-
line taxes may be more robust than dynamic ones, even in
complex environments. However, our algorithm closes this
robustness gap, consistently outperforming or tying both AI
Economists and baseline taxes.

Future Work
Efficient sampling of worst-case equilibria is a key chal-
lenge for robust decision-making, and by extension, auto-
mated mechanism design. As we’ve explored uncertainty
sets based on game-theoretic concepts, future work may
build uncertainty sets that use domain knowledge or histori-
cal data and that may yield robustness to other types of do-
main shifts, e.g., in game dynamics.
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