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Abstract

Learning for efficient coordination in large-scale multiagent
systems suffers from the problem of the curse of dimensional-
ity due to the exponential growth of agent interactions. Mean-
Field (MF)-based methods address this issue by transform-
ing the interactions within the whole system into a single
agent played with the average effect of its neighbors. How-
ever, considering the neighbors merely by their average may
ignore the varying influences of each neighbor, and learning
with this kind of local average effect would likely lead to
inferior system performance due to lack of an efficient co-
ordination mechanism in the whole population level. In this
work, we propose a Hierarchical Mean-Field (HMF) learn-
ing framework to further improve the performance of existing
MF methods. The basic idea is to approximate the average
effect for a sub-group of agents by considering their differ-
ent influences within the sub-group, and realize population-
level coordination through the interactions among different
sub-groups. Empirical studies show that HMF significantly
outperforms existing baselines on both challenging coopera-
tive and mixed cooperative-competitive tasks with different
scales of agent populations.

Introduction
In many real-world Multi-Agent System (MAS) applications,
such as city-level traffic light control (Wang et al. 2020;
Chen et al. 2020), fleet management (Yu et al. 2019), multi-
robot systems (Zhou and Xu 2020; Xia, Yu, and Wu 2021),
and epidemics control (Libin et al. 2021; Dong, Yu, and Xia
2020), a large number of agents interact with each other to
achieve a certain goal in the same environment. Learning
for an optimal performance in this kind of large-scale sys-
tems is fundamentally challenging: each agent learning in-
dividually would normally perform poorly due to the high
non-stationarity caused by concurrent interactions and pol-
icy updates of the agents, while learning jointly over the
whole interactions would rapidly fail due to the huge joint
state-action space which grows exponentially in the scale of
agent population (Nguyen, Nguyen, and Nahavandi 2020).

Mean Field Reinforcement Learning (MFRL) meth-
ods (Luo et al. 2020; Yang et al. 2018; Guo et al. 2019;
Carmona, Laurière, and Tan 2019; Subramanian et al. 2020)

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approximate the interactions within the population of agents
by pair-wise interactions between each central agent and the
average of its neighbors (or the overall population in the ex-
treme case). While significantly reducing the complexity of
interactions among agents, the existing MFRL methods still
face the following downside issues. First, since all the ex-
isting methods approximate an agent’s interactions with its
neighbors merely by their average, the different influences
of each individual neighbor cannot be distinguished. This
can be problematic in some scenarios either when the agents
are not necessarily fully homogeneous, or when they are
homogeneous in terms of observations, action choices and
rewarding mechanisms etc., but possess different roles and
thus distinct importance in influencing their neighbors. For
example, in the prey and predator game, the importance of
each predator in the group can differ to a large extent during
the hunting process due to the dynamic change of their posi-
tions related to the prey. As such, it would be more efficient
for the predators to distinguish their dynamic influences dur-
ing their collective decision-making process. Second, since
the MF approximation in the existing methods involves local
Taylor expansion with respect to each central agent and ig-
nores the high-order terms, in principle it is only applicable
to modeling local interactions such that the approximation
error can be maintained in an acceptable range. As a result,
there lacks efficient coordination among those agents that
are not within the neighborhood of each other, leading to po-
tentially inferior performance in the whole population level.
Last but not the least, the existing MFRL methods require
the availability of the global state or the actions of neighbors
for action selection in the execution process (Zhang et al.
2021). This premise significantly limits their applicability to
scenarios with prefect communication or global observabil-
ity of the agents.

In this paper, we propose a Hierarchical Mean-Field
(HMF) deep reinforcement learning framework to alleviate
the overall large-scale MAS coordination problem by de-
composing the whole population into a number of groups
and enabling two levels of coordinated learning processes
among the agents: the bottom level for intra-group coor-
dination and the top level for inter-group coordination. In
specific, the value function of each agent is factorized into
the combination of a local part and a group-interaction MF
part. The agents take actions solely based on their local
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value functions using locally accessible information, mak-
ing our method applicable to wider scenarios when agents
only have partial observability or their communication ca-
pabilities are constrained. Unlike all the existing methods
that each agent maintains a specific neighbor-interaction
MF function and learns directly over this function, we only
model a Group MF (GMF) function for each group, thus
capturing the overall learning characteristics for the agents
in this group. Then, the top level in HMF enables coordi-
nated learning among different groups over their GMF func-
tions, in order to achieve system-level coordination of the
whole population. The highlight of HMF lies in its capabil-
ity of modeling multi-scale coordination in an agent system,
ranging from individuals, to groups and the whole popula-
tion, thus ensuring more efficient learning performance as
well as better scalability.

Based on HMF, we then propose a dynamic grouping
mechanism, Information and Policy Consistency (IPC), to
align the new agents’ policies with the group mean pol-
icy such that the overall approximation errors during the
dynamic grouping process can be reduced. We assess the
performance of our method by comparing it against some
benchmark algorithms on cooperative tasks including the
particle environments (Mordatch and Abbeel 2018) and the
MAgent environment (Zheng et al. 2018), as well as a mixed
cooperative-competitive task in the social dilemma Bar
Game (Arthur 1994). Empirical studies show that HMF sig-
nificantly outperforms existing baselines in different scales
of agent populations.

Background
Stochastic Game

An MAS coordination problem can be modelled as an N -
agent (or, N -player) stochastic game, defined as a tuple
⟨S,A1, ..., AN , r1, .., rN , p, γ⟩, where S is the state space,
and Ak is the action space of agent k, and γ ∈ [0, 1) is a
discount factor. The reward function rk : S × A1 × ... ×
AN → R provides real-valued rewards at each time step,
and the transition function p : S × A1 × ... × AN →
Ω(S) indicates the probability distribution over the next
state Ω(S) when the system transits from state s given
joint actions a = (a1, ..., aN ) for all agents. At time step
t, the agents choose actions according to their policies π,
where π ≜ [π1, ..., πN ] denotes the joint policy of all
agents. The goal of the agent is to learn an optimal strat-
egy to obtain the maximum expected discounted returns.
Given an initial state s, the value function of agent k is
expressed as the expected cumulative discounted rewards:
vkπ(s) =

∑∞
t=0 γ

tEπ,p[r
k
t |s0 = s]. Based on the Bell-

man equation, the Q-function can then be formulated as:
Qk

π(s,a) = rk(s,a) + γEs′∼p[v
k
π(s

′)], where s′ represents
the next state. The value function vkπ can be expressed as
vkπ(s) = Ea∼π[Q

k
π(s,a)]. Since taking all of the global in-

formation as the input of each local Q-function is not scal-
able, a more direct way is to take solely the local informa-
tion as state input, transforming the model to the Partially
Observable Stochastic Games (Yang and Wang 2020).

Mean Field Theory
In large-scale stochastic games, learning the standard Q-
function ahead is infeasible due to the exponential growth
of agent interactions. To solve this problem, a natural way is
to decompose the standard Q-function of each agent into a
set of local Q-functions that capture pairwise interactions:

Qk(s,a) =
1

Nk

∑
j∈N(k)

Qk(s, ak, aj), (1)

where Nk is the number of neighbors of agent k and
N(k) is the index set of neighboring agents. Then, the Q-
function can be approximated as the mean field Q-function
Qk(s,a) ≈ Qk

MF(s, a
k, āk) according to the mean-field

theory (Domb 2000), which approximates the interactions
within the population of agents into a single agent played
with the average effect from the overall (local) popula-
tion. The mean action āk = 1

Nk

∑
j∈N(k) a

j represents the
neighbor action distribution, where aj is the action of each
neighbor j. The mean field Q-function can be updated in a
recurrent manner as follows:

Qk
t+1(s, a

k, āk) = (1− α)Qk
t (s, a

k, āk)+α[rkt + γvkt (s
′)],
(2)

where α is the learning rate. The value function vkt (s
′) for

agent k at time t is given by:

vkt (s
′) =

∑
ak

πk
t (a

k|s′, āk)Ea−k∼π−k
t

[Qk
t (s

′, ak, āk)]. (3)

Then, the policy for each agent k is calculated as follows:

πk
t (a

k|s, āk) = exp(−βQk
t (s, a

k, āk))∑
ak′∈Ak exp(−βQk

t (s, a
k′ , āk))

. (4)

However, this method depends on the global state and cannot
be applied to environments with local observations. To ad-
dress this problem, Zhang et al., (Zhang et al. 2021) decom-
posed the individual joint Q-function into a local Q-function
and a neighbor MF Q-function:

Qk(s,a) ≈ Qk
LOC(o

k, ak) +Qk
NB(µo(o

−k), µa(a
−k)),

(5)
where Qk

LOC(o
k, ak) represents the agent k’s efforts condi-

tioned on local information, and Qk
NB(µo(o

−k), µa(a
−k))

represents its neighbors’ influence conditioned on the aver-
age effect of neighboring agents.

The HMF Learning Framework
The MF Approximation
In our formulation, the individual joint Q-function for each
agent is decomposed as follows:

Qk(s,a) = Qk
LOC (xk) +Qk

IMF(µo(x), xk), (6)

where xk = (ok, ak) and µ(x) is the group’s observation-
action distribution. The local Q-function Qk

LOC(xk) is con-
ditioned on its own information while the Individual MF
(IMF) function Qk

IMF is conditioned on the average infor-
mation in agent k’s neighborhood (including its neighbors
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and itself). To bridge the gap between this neighborhood in-
teraction and the global interaction, the individual joint Q-
functions of all the agents within a group are added to form
the group Q-function QGRP, weighted by the different in-
fluences of agents in the group:

QGRP (x) =
∑
k∈N

λk

(
Qk

LOC(xk) +Qk
IMF (µ(x), xk)

)
,

(7)
where λk ∈ [0, 1] is the weight representing the impor-
tance of agent k in the group and

∑
k∈N λk = 1. Denote

r(µ (x), xk) as a virtual interaction reward between agent
k and its neighbors such that the expected discounted sum
of r(µ (x), xk) amounts to Qk

IMF, Then, assuming this vir-
tual reward can be simply decomposed into two rewards
r(µ(xt)) and r(xk,t)), which represent the effect from the
neighborhood and the agent itself, respectively, the weighted
sum of the IMF Q-function can be transformed as follows:∑
k∈N

λkQ
k
IMF (µ(x), xk) =

∑
k∈N

λkE

[
∞∑
t=1

γt−1r(µ (xt), xk,t)

]

=
∑
k∈N

λkE

[
∞∑
t=1

γt−1 (r (µ (xt)) + r (xk,t))

]

=
∑
k∈N

λk

{
E

[
∞∑
t=1

γt−1r (µ (xt=1))

]
+ E

[
∞∑
t=1

γt−1r (xk,t)

]}
:=

∑
k∈N

λk

[
Q̄ (µ (x)) + Q̄k (xk)

]
= Q̄ (µ (x)) +

∑
k∈N

λkQ̄k (xk) , (8)

where Q̄(µ(x)) = E
[∑∞

t=1 γ
t−1r (µ (xt))

]
and Q̄k =

E
[∑∞

t=1 γ
t−1r (xk,t)

]
. Each agent’s local observation-

action can be expressed as the sum of the group’s
observation-action distribution µ(x) and a small fluctuation
δx̄k:

xk = µ(x) + δx̄k, where µ(x) =
∑
k∈N

λkxk. (9)

Assuming sufficient differentiability of Q̄k, Equation (8)
can be further decomposed based on the Taylor’s theorem:

Q̄ (µ (x)) +
∑
k∈N

λkQ̄k (xk)

= Q̄ (µ(x)) +
∑
k∈N

λk

[
Q̄k(µ(x))+

δx
µ(x)
k ∇µ(x)Q̄k(µ(x)) +R2,k

]
= Q̄(µ(x)) +

∑
k∈N

[
λkQ̄k(µ(x)) + λkR2,k

]
≈ Q̄(µ(x)) +

∑
k∈N

λkQ̄k(µ(x))

= 2Q̄(µ(x)), (10)

where the remainder of Taylor polynomial (i.e., R2,k) can be
seen as a small fluctuation under some mild condition (the

Figure 1: The HMF learning framework. Each group is as-
sociated with a virtual supervisor that governs the learning
processes of multiple agents. At the bottom level, the aver-
age effect for a group is approximated by considering the
different influences of the agents within the group based on
the mean-field theory and attention mechanism, while the
top level realizes system-level coordination through multi-
ple supervisors learning over their group MF information.

proof refers to (Yang et al. 2018)), and in the second equa-
tion in the above derivation, the first-order term is dropped
since

∑
k∈N λkδx

µ(x)
k = 0 by Equation (9). In addition,

µ(x) =
∑

k∈N λkxk = N×λ× x̄ where x̄ = 1
N

∑
k∈N xk

can be seen as the empirical distribution of the population
action-observation, thus Q̄ conditioned on µ(x) can cap-
ture the overall learning characteristics for the agents in the
group. Therefore, to distinguish from the IMF function used
in previous algorithms, we denote Q̄ as QGMF, the Group
MF (GMF) function, and thus Equation (7) can then be re-
formulated as follows:

QGRP(x) =
∑
k∈N

λkQ
k
LOC(xk) + 2QGMF(µ(x)) (11)

The Hierarchical Learning Processes
The HMF learning framework consists of two levels: the
bottom-level for intra-group coordination and the top-level
for inter-group coordination. The overall HMF framework
is illustrated in Figure 1.

The Bottom-Level Learning This level mainly focuses
on the coordinated learning of agents within each group.
As shown in Equation (6), the individual joint Q-function
of each agent is decomposed to a local part that depends
solely on locally observable information, and an IMF part
that considers the interactions between this agent and its
neighbors. Summing up all the individual joint Q-functions
of a group of agents indicates the group Q-function as given
in Equation (7). As shown in Equation (11), this group Q-
function can be divided into two parts: the local Q-function
of each agent and the group mean field function. To make
HMF suitable for scenarios when agents are partially ob-
servable or their communication is restricted, the local Q-
function takes locally observable information (i.e., xk) as in-
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Algorithm 1: The HMF Learning Algorithm

1: Initial Qθk
LOC, Q̂

θ̂k
LOC for all agents, and Qϕ(i)

GMF, Q̂
ϕ̂(i)

GMF
for all groups.

2: while training not finished do
3: for each agent k do
4: Sample action ak from Qθk

LOC with ϵ-greedy policy.
5: end for
6: Take joint observations o = [ok]

N×M
k=1 , joint action

a = [ak]
N×M
k=1 , joint reward r = [rk]

N×M
k=1 and joint

next observation o′ = [o′k]
N×M
k=1 .

7: Store ⟨o, a, r, o′⟩ in the replay buffer D.
8: Sample a mini-batch of K experience ⟨o, a, r, o′⟩

from D.
9: Get next action a′ = [a′]N×M

k from [Q̂θ̂k
LOC]

N×M
k .

10: for each group i do
11: Set Q(i)

GRP based on Equation (11).
12: Update the Q-networks by minimizing the loss:

L
(i)
GRP = E

o
(i)
t ,o

(i)
t+1,a

(i)
t ,a

(i)
t+1

(Q
(i)
GRP − y(i))2.

13: end for
14: Update the Q-network by minimizing the loss:

LTOT = E
o
(i)
t ,o

(i)
t+1,a

(i)
t ,a

(i)
t+1

(QTOT − y)2.
15: Update the parameters of the target network for each

agent and each group with learning rate τ :
16: θ̂k ← τθk + (1− τ)θ̂k

17: ˆϕ(i) ← τϕ(i) + (1− τ)ϕ̂(i)

18: end while

put, while the group mean field function takes the empirical
group observation-action distribution, µ(x), as input. µ(x)
is implemented as the weighted sum of {xk}k∈N , where the
weight parameter (i.e., λk) is computed using the attention
mechanism (Vaswani et al. 2017), thus capturing different
influences of the agents in the group.

The group Q-function Q
(i)
GRP for group i is updated to

minimize the regression loss:

L(i)
GRP = E

x
(i)
t ,x

(i)
t+1

[
Q

(i)
GRP

(
x
(i)
t

)
− y

(i)
t

]2
, (12)

where y
(i)
t = r

(i)
t + γ

∑
k∈N(i) λk,t+1Q̂

k
LOC(x

(i)
k,t+1) +

2Q̂
(i)
GMF(µ(x

(i)
k,t+1)) is the TD target, and r

(i)
t is the sum

of agents’ rewards within the group at time step t, Q̂LOC

and Q̂GMF denote the target Q-functions w.r.t. QLOC and
QGMF, respectively.

The Top-Level Learning The top level realizes coordi-
nated learning among different groups over their GMF func-
tions, in order to achieve system-level coordination in the
whole population. For each group i, we denote the group
observation-action ({o}(i), {a}(i)) as x(i). Based on the
weight value {λ}(i) from the bottom level, x(i) is trans-
formed into µ(x(i)) of each group. The mean-field action-
value network takes group i’s information µ(x(i)) as input
and calculates the GMF Q value QGMF(µ(x

(i))), and all the

GMF Q values are summed up to derive the global Q value
QTOT as follows:

QTOT(x
(1), . . . ,x(m)) =

∑
i∈m

Q
(i)
GMF(µ(x

(i))), (13)

where m is the number of groups, and QTOT is optimized
by minimizing the loss function LTOT:

LTOT = E{x(j)
t ,x

(j)
t+1}m

j=1

(
QTOT

({
x
(j)
t

}m

j=1

)
− yt

)2

,

(14)
where yt = rt+γ

∑
i∈m Q̂

(i)
GMF(µ(x

(i)
t+1)), and rt is the sum

of all the agents’ rewards at time step t. In order to address
the coordination problem in competitive tasks, we expand
the top level learning with a central critic which evaluates
the joint mean observation-action of multiple groups. Then,
QGMF can be trained to minimize:

LTOT = E
µ(x

(i)
t ),µ(x

(i)
t+1)

[QGMF(µ(x
(1)
t ), ..., µ(x

(m)
t ))−yt],

(15)
where yt is given as follows:

yt = rt + γQ̂GMF(µ(x
(1)
t+1), ..., µ(x

(m)
t+1)). (16)

The pseudo code of HMF is given by Algorithm 1.

Error Reduction in the MF Approximation Note that
R2,k, i.e., the remainder of Taylor expansion in Equa-
tion (10), increases w.r.t. δx

µ(x)
k , i.e., the distance be-

tween xk and µ(x), since R2,k can be further ex-
panded assuming sufficient differentiability: R2,k =(
δx

µ(x)
k

)2

∇2
µ(x)Q̄k(µ(x)) + o

(
δx

µ(x)
k

)2

. This implies
that the error of the mean field approximation incurred
by ignoring

∑
k∈N λkR2,k can be enormous especially

in large-scale scenarios. To this end, we propose an er-
ror reduction technique to constrain the learning of each
agent. This technique is expressed as a regularization term:
α
∑

k∈N (xk − µ(x))
2, keeping the distance of agents to

the center point within an acceptable range, in order to limit
the overall error of mean field approximation.

The Dynamic Grouping Mechanism
The existing MF-based methods are all based on an assump-
tion that the mean field approximation can accurately cap-
ture the average interactions between an agent and its neigh-
bors. However, in some cases, particularly in large-scale dy-
namic systems when agents’ behaviors are less likely simi-
lar even if they are close to each other, ignoring the higher-
order remainder of the Taylor polynomial of the Q-function
in these scenarios will lead to poor performance due to the
errors in the mean field approximation process. To mitigate
this issue, we propose the Information and Policy Consis-
tency (IPC) mechanism in the HMF method in order to real-
ize dynamic grouping in the learning process.

In specific, in the bottom-level learning, agents are
grouped using the K − Means method. At the beginning
of each episode, a randomly chosen agent is treated as the
central node µ of the first group. We then calculate the
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(a) Spread (b) Pursuit Evasion (c) Battle (d) Bar Game

Figure 2: Spread: N agents, N landmarks. Agents are rewarded based on how far any agent is from each landmark. So, agents
have to learn to cover all the landmarks. Pursuit Evasion: N pursuers(agents), 1 evader. Agents are rewarded based on the
distance from evader to the closest pursuer. Battle: N agents, M enemies. The goal of each army is to get more rewards by
collaborating with teammates to destroy all the opponents.

shortest distance to the central node µ for each agent k by
Dk = argmin||xk − µr||22, where r is the index of the cen-
tral node. After each iteration, the node with the maximum
distance in Dk is chosen as the new central node. Then, the
mean information of each group i can be calculated accord-
ing to the observation ok and action ak of agent k:

x̄(i) =

 1

N (i)

∑
k∈N(i)

(ok),
1

N (i)

∑
k∈N(i)

(ak)

 . (17)

Then, we can get the Euclidean distance between agent k
and each of these groups: d(k, i) = |xk − x̄(i)|22, and the
agent will be assigned to the group with smallest d(k, i).
The central node of the group will be updated according to
the new added agents. In this way, the similar agents can be
clustered in a group after several iterations.

However, the above dynamic grouping method will lead
to diverse policies of agents in the group, making it hard
for the group MF policy to adapt to new added agents. To
resolve this issue, each group i will produce a mean policy
π̄
(i)
GMF , which reflects the average historical policy in this

group, and the policy update of each agent is adjusted by the
difference between the mean policy and each agent’s indi-
vidual policy, in order to lower the the new agents’ influence
on the group policy.

Specifically, we minimize the KL divergence between the
policy distribution πk(ok; θ) of each agent k and the mean
policy π̄

(i)
GMF as follows:

DKL(πk||π̄(i)
GMF ) = E

[
log πk − log π̄

(i)
GMF

]
. (18)

The overall IPC framework and the pseudo code are
provided in the Appendix.

Experiments
In this section, we first assess HMF on the Multi-Agent Par-
ticle Environments (MPE) (Mordatch and Abbeel 2018), i.e.,

the Spread and the Pursuit Evasion, in order to evaluate the
performance in relatively small-scale agent systems. Then,
we evaluate the performance of HMF on the Battle task in
the larger-scale MAgent (Zheng et al. 2018) environment in-
volving hundreds of agents. We also conduct an experiment
in the social dilemma Bar game (Arthur 1994) to show that
HMF can also solve more complex coordination problems
involving a large number of agents with mixed cooperative-
competitive interests. Tables 1 and 2 in the Appendix respec-
tively show the hyper-parameter setting of our methods and
the other baselines.

MPE In the Spread task in Figure 2a, 6 agents have to
cover a set of 6 landmarks while avoiding colliding with
each other. The agents can observe the relative positions of
other agents and the landmarks, and are rewarded based on
the proximity of any agent to each landmark. In the Pursuit
Evasion task in Figure 2b, 20 pursuers chase an evader using
a strategy based on the Voronoi regions (Zhou et al. 2016).
In order to encourage a higher level of coordination among
the agents, the evader’s maximum velocity is set twice as
fast as the pursuers’ maximum velocity. An episode ends
once the evader is caught, i.e., the distance between the clos-
est pursuer and the evader is below a certain threshold. We
compare HFM and its IPC version to two classic methods
in PE, i.e., MADDPG (Lowe et al. 2017) and VDN (Sune-
hag et al. 2017), and a latest method MFVFD (Zhang et al.
2021). Figure 3a and Figure 3b show the learning perfor-
mance averaged over 4 random seeds. We can see that HMF
and IPC converge to higher rewards more stably than the
other methods. Specifically, MADDPG cannot converge to a
reasonable level due to learning over joint state-action space.
It is clear that such joint learning scheme would encounter
severe dimension issues even in these relatively small do-
mains. MFVFD and VDN perform better than MADDPG
but a bit worse than HFM, which proves the benefits of
our proposed hierarchical learning and the dynamic group-
ing mechanism in facilitating higher level of coordination
among the agents.
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(a) Spread (b) Pursuit Evasion (c) Battle (d) Bar Game

Figure 3: Comparison of different methods in the four different tasks, in terms of the average reward for each learning episode.

MAgent The Battle scenario in the MAgent environment
shown in Figure 2c involves 200 agents learning to fight
against 100 enemies who have superior abilities. The ob-
servation range, movement range and attack range of the
enemy are twice those of the agents. We choose the pre-
trained DQN model in MAgent as the enemy. We choose
DQN, MFQ (Yang et al. 2018) and MFVFD as our baselines.
MADDPG and VDN are excluded as MADDPG cannot deal
with such high-dimensional scenarios and VDN requires a
team reward. The learning curves in Figure 3c show that
HMF and IPC outperform the other baselines, converging to
a much higher level of average rewards. Although MFQ and
DQN can converge faster during the early period due to their
independent learning nature, the final performance flattens
at sub-optimal levels. Surprisingly, MFVFD performs rather
poorly in this domain. We hypothesize that this is because
the high complexity of computing the MF value function for
each agent, making it less scalable in large-scale domains.
Figure 2 in the Appendix visualizes the dynamic grouping
process using the IPC method in the Battle scenario. As can
be seen, after random initialization, the agents can be clus-
tered quickly within a fixed range of neighborhood.

The Bar Game The Bar game in Figure 2d stands for a
type of problems to study the emergence of cooperative be-
haviors in mixed cooperative-competitive environments in-
volving a group of selfish agents. In this game, 100 agents
decide whether to attend the bar on a certain night. The only
observation available to the agents is the number of agents
participating in the bar the night before. The payoff of at-
tending the bar is high (+1) only if the number of attendees
on the night is less than or equal to 60. Otherwise, the agents
attending the bar would receive the worst payoff (-1) if the
number of attendees is greater than 60. Thus, an agent is
better off staying home if it believes that the bar would be
crowded on that night. The results in Figure 3d show that all
the baseline methods fail in this kind of mixed cooperative-
competitive environments, except our HMF method that can
achieve the near optimal performance of 0.6.

Scalability
We also investigate the scalability of HMF and IPC by com-
paring them to different algorithms in the MAgent envi-
ronment with different scales of agent populations. Figure

4 shows that HMF and IPC can scale up to a thousand of
agents and outperform existing baselines by a large margin
in different population sizes.

Ablation Studies
We examine three aspects of HMF in influencing the final
performance: the group size, the regularization constraint,
and the availability of top-level learning. To investigate the
influence of group sizes, we examine HMF with different
numbers of groups in MPE, MAgent and the Bar game en-
vironments. As shown in Figure 5a and Figure 5b, in the
smaller Spread domain, learning with only two groups per-
forms better than with three groups, while in the larger pur-
suit evasion domain, an intermediate number of groups can
achieve the best performance. These results indicate that a
small number of supervisors are sufficient to efficiently co-
ordinate the whole population if the population size is not
too large, but too many supervisors would cause extra co-
ordination burden among them such that the whole learn-
ing efficiency would be impaired. As the population size
grows further in Figure 5c, more supervisors are required to
achieve efficient coordination among the agents, since it is
difficult for a supervisor to govern a large number of agents
in each group. The distinction, however, is less apparent in
the Bar game as shown in Figure 5d, which might be due to
the more complex characteristics in this game where agents
should behave cooperatively and competitively at the same
time in order to achieve a satisfactory outcome. Figures 3 in
the Appendix shows that HMF with regularization constraint
performs better than the original HMF, and the top level in
HMF enables coordinated learning among different groups
over their GMF functions, such that the overall learning ef-
ficiency can be improved through system-level coordination
in the whole population.

Related Work
Although from various perspectives and with distinct prob-
lem settings and assumptions, learning in large-scale multia-
gent systems has long been an interest in the AI community.
The norm emergence paradigm (Airiau, Sen, and Villatoro
2014; Sen and Airiau 2007; Yu, Zhang, and Ren 2014; Yu
et al. 2015) investigates how a consistent norm can be estab-
lished in an agent population through learning from local in-
teractions. Works in this area simply focus on toy problems
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(a) n=200 (b) n=600 (c) n=1000 (d) n=1400

Figure 4: Learning curves in the MAgent environment with different scales of agent populations.

(a) Spread (b) Pursuit Evasion (c) Battle (d) Bar Game

Figure 5: Impact of group size on HMF’s performance. Curves of different colors correspond to different size of groups.

where agents’ interactions can be modeled as certain ma-
trix games, and thus cannot address more complex problems
with high dimensions. Some studies (Qu et al. 2019; Zhang
et al. 2018) resorted to fully decentralized learning schemes
by transmitting local parameters among the agents, in or-
der to scale the problems to large agent populations. How-
ever, a fixed network structure should be provided to enable
such local transmissions, thus restricting the applications to
limited settings. There are also several works (Ngiuem and
Kumar 2018; Khan et al. 2018) that used count-based state
representations to address large-scale agent learning prob-
lems. However, these methods are purely heuristic and do
not enable agent-level control as we did in our work.

MF-based methods have emerged as a promising
paradigm for efficient learning in large-scale agent pop-
ulations. Mguni et al., (2018) utilized fictitious play to
achieve Nash Equilibrium (NE) in MF games and theoret-
ically proved its convergence. The authors in (Yang et al.
2018; Subramanian and Mahajan 2019) proposed various
MF methods such as the MF-Q, MF-AC to approximate
the NE in MF games. Carmona et al., (2019) extended the
MF theory to continuous settings. Huttenrauch et al., (2019;
2017) combined MF theory with deep reinforcement learn-
ing algorithms such as TRPO and DDPG in large-scale robot
swarm systems. Unlike all these studies that the MF function
approximates the interactions with the neighbors for each
agent, HMF features a hierarchical learning scheme that
a group MF function bridges the local interactions within
each group and inter-group interactions for wider scope of
system-level coordination.

Our work also shares some similarity with the hierarchi-
cal methods in RL research (Vezhnevets et al. 2017; Pateria
et al. 2021). However, unlike these existing works that pay
more attention to autonomous decomposition of challenging
long-horizon decision-making tasks into simpler subtasks,
our focus here is to employ hierarchical control to achieve
more efficient learning in large-scale MASs.

Conclusion & Future Work

In this paper, we propose a hierarchical learning frame-
work to equip the MF learning methods with a capability
of system-level coordination in large-scale MASs. Through
the bottom-level learning for intra-group coordination and
the top-level learning for inter-group coordination, HMF is
able to model multi-scale coordination in an agent system,
ranging from individuals (through modelling different in-
fluences of the neighbors), to groups (through modelling a
group MF function for each group to capture the overall
learning characteristics in this group) and the whole popu-
lation (through coordinated learning among different groups
over their group MF functions), thus ensuring more efficient
learning performance as well as better scalability. Empiri-
cal studies show that HMF significantly outperforms exist-
ing baselines on both cooperative and mixed cooperative-
competitive tasks in different scales of agent populations. In
the future, we will conduct more evaluation in other large-
scale domains such as city-level light or traffic control.
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