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Abstract

Social reasoning necessitates the capacity of theory of mind
(ToM), the ability to contextualise and attribute mental states
to others without having access to their internal cognitive
structure. Recent machine learning approaches to ToM have
demonstrated that we can train the observer to read the past
and present behaviours of other agents and infer their beliefs
(including false beliefs about things that no longer exist), goals,
intentions and future actions. The challenges arise when the
behavioural space is complex, demanding skilful space nav-
igation for rapidly changing contexts for an extended period.
We tackle the challenges by equipping the observer with novel
neural memory mechanisms to encode, and hierarchical at-
tention to selectively retrieve information about others. The
memories allow rapid, selective querying of distal related past
behaviours of others to deliberatively reason about their cur-
rent mental state, beliefs and future behaviours. This results in
ToMMY, a theory of mind model that learns to reason while mak-
ing little assumptions about the underlying mental processes.
We also construct a new suite of experiments to demonstrate
that memories facilitate the learning process and achieve bet-
ter theory of mind performance, especially for high-demand
false-belief tasks that require inferring through multiple steps
of changes.

Introduction
Human social interactions necessitate a skill known as theory
of mind (ToM) to infer the mental states of others without
having access to their latent characteristics, internal states and
computation processes. Instead, we can rely on social cues
and past behaviours to construct models of others, thereby
attributing mental states to them, for example, inferring their
beliefs and intentions. The models need not perfectly match
with the true hidden internal mental states but facilitate accur-
ate social prediction and planning (Premack and Woodruff
1978; Gallese and Goldman 1998; Rusch et al. 2020; Langley
et al. 2022).

Since often we can only have access to others’ past be-
haviours and current observable context, it is plausible that
we need memory to store and represent the past of others,
to contextualise the present, to draw analogies between the
present and the related past, and to reason about possibilities
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(Grant, Nematzadeh, and Griffiths 2017). Cognitive scient-
ists have employed memory of structured representation of
tasks to enable analogical reasoning in ToM, for example, to
recognise false beliefs (Rabkina et al. 2017). Likewise, the
work of (Nguyen and Gonzalez 2021) uses instance match-
ing to model the human’s ToM ability. This cognitive model
assumes that the observer, who is constructing a model of
the actor, also has access to rewards for each experience of
the actor. These works rely on either domain knowledge to
construct the task structure or information that can be inac-
cessible to the observer.

In this paper, we take an alternative road to learn the
memory mechanisms to build the computational ToM cap-
ability into artificial social agents. Here mentalising and
predicting behaviours of an actor in a partially observable
environment are treated as a task to be learnt (Rabinowitz
et al. 2018). In the learning phase, the ToM observer first
acquires a general prior mental model from the observed
behavioural episodes of training actors. In the execution
phase, upon seeing an actor and its partial episode, the ob-
server rapidly updates the specific posterior about the actor.
Realising this strategy, we equip the observer with a new
memory-augmented ToM network dubbed ToMMY (Theory
of Mind with MemorY). Central to this architecture is the
memory module, arranged as key-value pairs storing the past
behaviours of the actor. The analogy-making capability is
learned from training data, and once trained, it works by se-
lectively querying relevant memory keys for a given context
to retrieve corresponding predictive values. The retrieved
values, combined with the selective few states of the current
episode, constitute the posterior of the actor’s mental state,
which serves as an input for predicting its future behaviours.
Learning memory-augmented neural networks is a powerful
technique for multi-step reasoning (Sukhbaatar et al. 2015;
Graves et al. 2016), handling rare events (Kaiser et al. 2017),
meta-learning (Santoro et al. 2016) and rapid reinforcement
learning (Le et al. 2021). However, little work has been done
in the area of mentalising other agents in social settings.

To assess the performance of ToMMY we introduce a new
false-belief test to evaluate the ToM ability under high reason-
ing demand. False-belief tasks determine if the actor is main-
taining an outdated belief about something that no longer
holds. A classic example is the Sally-Anne Test (Wimmer
and Perner 1983; Baron-Cohen, Leslie, and Frith 1985), in
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Figure 1: Architecture of memory-based theory of mind agent (ToMMY). Past trajectories of the actor are encoded into memory of
(key, value) pairs. A selective set of events in current trajectory are embedded into mental states, which used to query the memory.
The prediction heads then generate future prediction using the retrieved information, the current mental state and the world state.

which Anne secretly moves a toy out of the original box,
causing Sally to falsely believe that the toy is still there. A
version of the Sally-Anne Test for testing artificial theory of
mind agents introduced in (Rabinowitz et al. 2018; Nguyen
and Gonzalez 2021) take the form of grid-worlds. When the
actor tries to achieve the sub-task before reaching a goal,
the position of the goal will be changed, a so-called swap
event. This event induces a false belief in the actor, and the
observer needs to take the actor’s perspective to understand
the actor’s false belief. This test is simple to some extent,
requiring a low-demand mental capacity of social reasoning
to pass. In our proposal, there are multiple steps in the tra-
jectory of the agent with hidden information; hence the ToM
observer needs to keep track of these steps in order to infer
the actor’s belief. More concretely, consider a robot helper:
It knows more than the human in a particular area; however,
it cannot observe all events in other areas where both (the
robot and human) are not currently present. To pass our test,
the ToM agents must refer to the states in the last visits to
areas to understand whether the actor has a false belief and
combine it with past behaviours to predict future behaviours.
Therefore, in this high-demand false-belief task, the memory
mechanism is the key to achievement. This matches with the
prediction of developmental psychology that theory of mind
in later development requires memory when humans need
to flexibly execute belief reasoning and deal with a complex
situation (Apperly and Butterfill 2009).

Related Work
The ToMMY agent makes little assumption about the under-
lying mental structure of others. This differs from cognitive
science works such as those in (Baker, Saxe, and Tenenbaum
2011; Baker et al. 2017), hypothesising that human will max-
imise their own utility when mentalising about others. In AI,
ToM is traditionally studied in plan recognition (Geib and
Goldman 2009; Sohrabi, Riabov, and Udrea 2016), assum-
ing structural knowledge of the domain. Recent works have
been studied in the NLP domain (Nematzadeh et al. 2018;
Le, Boureau, and Nickel 2019; Arodi and Cheung 2021),

focusing on second-order false-belief tasks. Instead, we take
a meta-learning stand, similar to that in (Rabinowitz et al.
2018), updating the posterior of latent characters for unseen
actors, starting from the prior learnt from seen actors. This
work compresses the entire history of an actor into a vector
representing its character, which is then combined with the
current episode and state to predict goal, intention, action, and
successor representations. Such compression rapidly forgets
information from the far past, making it difficult to reason
about rare and distantly separated situations. Our memory
mechanisms effectively tackle this forgetting problem.

There are various methods to measure the ToM ability of
humans in developmental psychology (Beaudoin et al. 2020),
e.g. either direct assessment as Sally-Anne Test or indirect
assessment via the violation of expectation (VoE) (Onishi and
Baillargeon 2005), anticipatory looking (Clements and Perner
1994) and active helping (Knudsen and Liszkowski 2012). In
(Gandhi et al. 2021) and (Shu et al. 2021), the authors used
the VoE to evaluate the ToM ability. (Rabinowitz et al. 2018;
Nguyen and Gonzalez 2021) constructed a test to mimic the
Sally-Anne Test in artificial intelligence.

Our false-belief testbed is designed for more complex situ-
ations that demand long-term memory. Measuring the cog-
nitive load of a task is an active field in cognitive science
(Zheng 2017). Here, we intuitively add distractors to increase
the cognitive load of the false-belief task. Measuring the dif-
ficulty of the task is a direction that requires investigation as
it is necessary for assessing the ability of artificial agents.

Problem Formulation
We study the general setting under the partially observable
Markov decision processes (POMDPs) framework. The ob-
server or theory of mind (ToM) agent first observes a set of
Npast past trajectories {τj} of an actor in multiple envir-
onments for j = 1, . . . , Npast. Each past trajectory τj is a
sequence of state-action pairs

(
stj , a

t
j

)
for t = 1, 2, ..., Tj .

Upon seeing the current trajectory τq which is a sequence
of
(
stq, a

t
q

)
from t = 1 up to time Tq − 1, and the current
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state sTq
q at time Tq, the ToM agent will predict the goal (or

preference) and the future behaviours of the actor, including
the intention, the next action, and the future visit states of the
actor (via successor representations (Dayan 1993)).

Memory-Augmented Theory of Mind Network
We now describe ToMMY (Theory of Mind with MemorY),
our theory of mind (ToM) agent, who observes an actor acting
in a partially observable environment. ToMMY is implemen-
ted as a memory-augmented neural network as illustrated
in Fig. 1. ToMMY maintains an episodic memory of the past
trajectories of the actor, which consist of information re-
flecting the general latent character of the actor. From the
current incomplete trajectory, ToMMY selectively chooses sev-
eral events to serve as queries to retrieve relevant past events
from memory. The retrieved events are then re-focused and
combined with the queries, the character embedding, and the
world state to form a mental posterior attributed to the actor.

Character Embedding
To utilise all information presented in the history of the actor,
we encode τj to forward hidden states (

−→
h tj) and backward

hidden states (
←−
h tj) using the bidirectional long-short term

memory (Bi-LSTM)

−→
h tj = LSTM→

([
stj , a

t
j

]
,
−→
h t−1j

)
, (1)

←−
h tj = LSTM←

([
stj , a

t
j

]
,
←−
h t+1
j

)
. (2)

By this structure, at time step t, the observer can retain and
reason about both the past and the future. Two sequences
of forward and backward states are employed as augmented
information for the value of the memory, as will be described
in the next section.

Since the character of the actor is constructed by the his-
tory, we summarised the last hidden state of the forward
LSTM over all past trajectories into the character embedding
of the actor as

echar =
1

Npast

Npast∑
j=1

ReLU
(

MLP
(−→
h
Tj

j

))
. (3)

This character echar is supposed to govern the current be-
haviour of the actor. To realise this, we treat the character
embedding as an additional input for another LSTM that
processes the current unfinished trajectory as follows:

htq = LSTM
(
concat

(
echar,

[
stq, a

t
q

])
, ht−1q

)
. (4)

These LSTM states will later serve as raw materials for at-
tributing the mental states to the actor at each time step.

Selective Attention
The information extracted from Npast past trajectories
are first stored in the key-value memory module M ={(
ktj , v

t
j

)}
for j = 1, . . . , Npast, and t = 1, . . . , Tj . The

memory key is a function of the forward state ktj = g
(−→
h tj

)
.

The associated value vtj can be either (a) the forward state
(which contains actual future information), or (b) the con-
catenation of the forward state and the backward state or
other information computed from the rest of the trajectory
from time t + 1 (which contains predictive information of
the future). Let’s denote M.key =

{
ktj
}t=1...Tj

j=1...Npast,
and

M.value =
{
vtj
}t=1...Tj

j=1...Npast
is the set of all keys and the set

of all values in the memory, respectively.
We then construct M queries to read out from the memory

based on selective events in the current unfinished trajectory.
Let zTq

q = MLP
(
s
Tq
q

)
be the embedding of the current

world state. Given the set of hidden statesH =
{
htq
}t=1...Tq

of all observable events in the current trajectory com-
puted in Eq. (4), we collect from this set M selective
events that are most similar to z

Tq
q as queries {qm} for

m = 1...M by using cosine similarity, i.e. {qm}m=1...M ={
ht

′

q | ht
′

q ∈ H, dzTqht′
q
∈ top-Mht

q∈H

(
dzTqht

q

)}
with

dzTqht
q

= cosine
(
z
Tq
q , htq

)
. Here, top-Mht

q∈H

(
dzTqht

q

)
is

a function that returns the set of M highest values dzTqht
q

given the setH. The read head uses the queries in parallel to
retrieve memory content as:

v̄m =
∑

vtj∈M.value

attn
(
qm, k

t
j

)
vtj , (5)

where attn
(
qm, k

t
j

)
is the soft attention score which is com-

puted as

attn
(
qm, k

t
j

)
=

edmjt/β∑
kt

′
j′∈M.key e

dmj′t′/β
, (6)

with the temperature β > 0 and the distance dmjt =
cosine

(
qm, k

t
j

)
.

Mental Attribution

Re-focusing on selective events The ToMMY does not treat
all the selective events equally, instead, it will re-weight these
selective events based on the embedding of the current world
state zTq

q and {qm} via a set of attention weights

αm =
eδm/β∑

m′=1...M eδm′/β
, for m = 1 . . .M

where δm is a metric measuring the relationship between a
recent event zTq

q and the selective event qm. The distance δm
is generated by a neural network MLP

([
z
Tq
q , qm

])
which

attempts to learn a metric to measure the importance of a
selective event qm to the behaviour predictions made at the
recent event. This mechanism captures the re-focusing pro-
cess on a smaller and more selective set of events in the
trajectory.
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Mental Posterior Based on the attention weights, the re-
trieved memory contents, combined with the queries, consti-
tute the current mental state of the actor:

emental =
1

M

M∑
m=1

αmconcat (v̄m, qm) .

This mental state, together with the last hidden state hTq−1
q ,

the character embedding echar in Eq. (3) and the repres-
entation of the current state zTq

q , form the mental posterior

ep = concat
(
emental, h

Tq−1
q , echar, z

Tq
q

)
that serves as in-

put for the prediction heads.
We use four prediction heads for predicting preference (or

goal), one-step ahead intention, one-step ahead action, and
the successor representations.

Training
Our neural network is trained by minimising a combined
loss for preference (or goal) prediction (Lpref), intention pre-
diction (Lintent), action prediction (Laction), and the successor
representations prediction (LSR) as

L = Lpref + Lintent + Laction + LSR.

The first three component losses are negative log-likelihoods
of the corresponding targets and are computed as follows:

Lpref =
∑
pref

− logP (pref |ep ) ,

Lintent =
∑
intent

− logP (intent |ep ) ,

Laction = − logP (at |ep )

where the ep is the mental posterior. To compute the
successor representation loss LSR, we first compute the
empirical successor representation (SRs) by SR

(t)
γ (s) =

1
Zt

∑T−t
t′=0 γ

t′

SRI (st+t′ = s) where T is the episode length,
t is the time at which the successor representation is
computed, γSR ∈ (0, 1) is the discount factor, Zt =∑
s∈S

∑T−t
t′=0 γ

t′

SRI (st+t′ = s) is a normalisation constant
(S is the state space), and I (st+t′ = s) is an indicator func-
tion, which returns 1 if st+t′ = s and 0 otherwise. We then
use the cross-entropy loss to obtain the SR loss

LSR =
∑
γSR

∑
s

−SR(t)
γSR

(s) log S̃R
(t)

γSR
(s) .

By training, ToMMY learns a prior model of others from ob-
serving and predicting actors’ behaviours, which is captured
in network weights and the analogy-making capability. When
mentalising about an actor, ToMMY updates the posterior upon
seeing some of its behaviours.

Experiment Results
We evaluate ToMMY on multiple tasks, including predicting
preference, intention, action, and successor representations
as well as assessing false belief understanding. For simpli-
city, we set the memory keys to the forward LSTM states

Ball
Actor

Goal
Reality Observer Actor

Door

Figure 2: A multi-light-room environment with three adjoin-
ing rooms. The observer has a different perspective from the
actor, and both can only partially observe reality.

(ktj =
−→
h tj of Eq. (1)). Similarly, the memory values are set to

either the forward LSTM states (vtj =
−→
h tj of Eq. (1)), or the

concatenation of both forward and backward LSTM states
(vtj =

[−→
h tj ,
←−
h tj

]
of Eq. (1) and Eq. (2)). The latter is called

Bi-ToMMY. The number of queries is set as M = 10.
In practice, some actions (such as pick-up) happen far

less frequently than others in the whole sequence. Thus we
use a replay buffer to balance the class of actions in training.
As the relay buffer plays the role of episodic memory in the
learning process, we call this balancing strategy action-based
episodic memory (AEM). For comparison, we implemented
a recent representative neural ToM network called ToMnet
(Rabinowitz et al. 2018).

Light-Room Environment
To study ToM models, we created a multi-light-room environ-
ment using the gym-minigrid framework (Chevalier Boisvert,
Willems, and Pal 2018) (see Fig. 2). The observer (ToM
agent) can only see the lit room where the actor is in. After
the actor leaves a room, the light will be turned off, and the
observer will not see what happens in this room afterwards,
e.g. swapping keys. As a result, the observer needs to mem-
orise what happened in all rooms to read the current mind of
the actor and to predict the actor’s behaviours correctly.

We procedurally generated the actor’s behaviours as
follows. At each step, the actor chooses one amongst
three intentions find(), goto(), pickup() and executes
the intention by choosing between four primitive actions
{turn-left, turn-right, move-forward, pickup}. To
find an object, the actor first hypothesises an arbitrary posi-
tion in the room and then walks to this position to verify. If
the actor could not find the object, it will make another hypo-
thesis. We call this type of actor a hypo-actor. After seeing
any object, the actor will hold a belief about the position of
this object. This belief can be changed if the actor recognises
that the object no longer exists in the original position. Each
actor can have a small field of view as 3× 3, e.g. it can ob-
serve a square of 3 × 3 in front of it or has a larger field of
view as 5× 5 (the left-most figure of Fig. 2).

Preference, Action and Intention Prediction
We carry out experiments where the observer uses its know-
ledge about the past and current trajectories of the actor to
predict the actor’s preference, actions and intentions. In these
settings, the actor has its own preference for the ball and tries
to navigate to collect the ball in its preferred colour in the
first light-room. It will try to navigate to the goal located in

11633



Room 1 Room 2 Room 3
0

20

40

60

80

Pr
ef

er
en

ce
 A

cc
. [

%
]

Number of rooms in (past, current) = (3,3)

ToMnet
ToMMY
ToMMY + AEM
Bi-ToMMY
Bi-ToMMY + AEM

Room 1 Room 2 Room 3 Room 4 Room 5
0

20

40

60

80

Pr
ef

er
en

ce
 A

cc
. [

%
]

Number of rooms in (past, current) = (3,5)

ToMnet
ToMMY
ToMMY + AEM
Bi-ToMMY
Bi-ToMMY + AEM

Figure 3: Preference prediction (mean and std.) of ToMnet
and ToMMYs across rooms in two scenarios: (top) both current
and past trajectories have three rooms; and (bottom) there
are three and five rooms in the past and current trajectories,
respectively. The performance is measured when the agent
presents in each room during the current trajectory.

the final room. In other light-rooms between the first and the
final room, balls of different colours exist. Since the actor has
already picked up the preferred ball, it will no longer pick up
other balls; therefore, these other balls can be considered as
distractors to the observer. We trained ToM models in epis-
odes with three light-rooms and test models under different
conditions: (1) past trajectories are in three light-rooms, and
the current trajectory is in three light-rooms; (2) past traject-
ories are in three light-rooms, and the current trajectory is in
five light-rooms.

Preference Prediction Fig. 3 shows the performance of
ToMnet (Rabinowitz et al. 2018) and ToMMYs on preference
prediction tasks. The mean and standard deviation (std.) are
computed over 4 runs for each model. Since ToMnet uses
LSTM to compress the entire history of the actor into a single
character embedding vector, it will struggle to remember
details of the long past, which are critical to giving the correct
answer in this situation. In our experiment, ToMMYs give better
answers than the ToMnet during the episode. This is because
ToMMYs effectively querying past trajectories by the memory
mechanisms.

Action and Intention Prediction Fig. 4 shows the per-
formance of ToM models on action and prediction tasks.
Since ToMMYs can efficiently use past information, it can pre-
dict better over ToMnet when the actor changes its direction
to look for an object. The models that used bidirectional long-
short term memory to process the past trajectory (Bi-ToMMY)
can improve the performance in action prediction when the
actor changes its direction. In all settings, when the actor
picks up an object–a rare event–only the methods augmented
with the action-based episodic memory can learn to predict
correctly.
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Figure 4: Performance of ToMnet and ToMMYs on the action
and intention prediction (mean and std.). The x-axis shows
three groups of actions: (1) change direction or (turn-left
or turn-right), (2) move-forward, and (3) pickup.
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Figure 5: Visualisation of the reading weights from the
beginning of the current trajectory up to the moment the
actor picks up the ball (here is at step 45). The heatmap
colour indicates the time in the current trajectory at which
the query is conducted. The red dots are the peak weights
of trajectories. The background colours indicate the rooms
that the actor was in. Rooms 1, 2 and 3 are coded as green,
blue, and red. The vertical black dash line indicates when
the actor picked up the ball in the past trajectory. Our query
mechanism generates the weights with high values when the
actor is in room 1, especially when it picks up the ball, e.g.
high peak at the vertical black dash line.
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Figure 6: Performance of theory of mind agents (ToM-
net, ToMMY and Bi-ToMMY) in high demand false-belief task
measured by the Jensen-Shannon divergence (mean and
std.) between the successor representations (γSR = 0.5,
γSR = 0.9, γSR = 0.99) predicted by the models and the
ground truth (the lower the better).

Visualisation Fig. 5 shows the attention weights (in
Eq. (6)) over experiences in past trajectories. The attention
weights generated by the network are relatively higher during
the period when the actor was in the first room, especially
when it picked up the ball. This means the ToM agent learnt
to correctly attends to moments that express the actor’s pref-
erence.

High Demand False-belief Assessment
We constructed a three-light-room environment that demands
a high mental load for theory of mind. This setting is inspired
by the emerging human-machine teaming scenarios in which
a ToM-equipped robot companion follows a human actor.
This robot has the privilege of seeing more than what the
human can see in the current room, but may not know what
happens in the other room, e.g. the keys are swapped unseen
by the observer. Hence, the robot needs to remember the past
well to recognise human’s false beliefs and then uses this
information to provide proper help. A scenario is illustrated
in Fig. 7.

In this setting, there are three rooms: (1) The key room,
(2) the ball room as distractors, and (3) the box room where
the goal is revealed. The actor has an initiated belief about the
position of keys located in the key room (stage 1). The actor
starts from the key room, passes by the ball room (stage 2),
and arrives in the box room. Here the actor finds the box
whose colour matches with that of the key which the actor
should collect (stage 3). The actor then comes back to the key
room with the goal is to collect the right key. When the actor
passes by the box room the second time, the position of the
keys can be changed without the actor knows. This induces
false beliefs in the actor (stage 4). When the actor comes
back to the key room the second time, we ask the observer to
predict the successor representations of the actor (stage 5). At
this stage, the observer does not have false beliefs since it can
observe the current position of the keys. However, to know
that the actor has false beliefs, the observer needs to refer to
the position of the keys in the key room at the beginning of

the episode. Also, to infer the actor’s goal, the observer needs
to recall the event in the box room.

In this test, the past trajectories do not provide any informa-
tion about the goal or preference like in previous experiments
but reveal the behaviour of the actors. For example, it would
help the observer predict the distance the actor can see the
object. The current trajectory contains information about the
actor’s goal in the middle of the trajectory. This setting chal-
lenges the ToM models without the ability to recall the key’s
position to predict the actor’s behaviours.

Results ToMMYs predict more accurately the successor rep-
resentations at the time the actor comes back to the key room,
as shown in Fig. 6. At this moment, to answer correctly, the
theory of mind agents must recall the position of keys at
the beginning of the episode when the actor was at the key
room the first time and the colour of the box in the box room.
These important events are divided twice times by periods
when the actor is in the distractor rooms. Failing to recall this
information will lead to incorrect predictions.

Visualisation Fig. 8 shows that ToMMY attends to the period
in the current trajectory that the actor is in the box room when
the goal is revealed. It also refers to the beginning of the
episode to recall the keys’ original position to know whether
keys were swapped. In case the weights according to top-M
selective events are not highlighted on events where the actor
was in the key room and the box room, the model is able
to re-generate weights based on this small set of events. As
shown in Figure 8.a, although the two highest weights which
are generated by the cosine similarity metric are on important
events when agents are in the box room and the key room,
the re-focusing mechanism still gently corrects the attention
of ToMMY by decreasing the weights of other events in the
distractor room. Especially, when the attention over top-M
selective events highly rises up in the distractor events, as
in Figure 8.b, this mechanism is crucial to correct and help
the theory of mind agent re-focuses on the important events.
Hence, ToMMY understands whether the actor may have false
beliefs.

Conclusion

Aiming at equipping artificial agents with new social capa-
cities we introduced ToMMY, a new neural theory of mind
model that utilises the power of external memory and hier-
archical attention for mentalising over complex behaviours
of other agents in POMDPs settings. The memory facilitates
meta-learning from prior experiences the analogy-making
capability in social situations without the need of explicit
domain knowledge or task structures. This capability is then
refined when ToMMY sees an actor and its past and current
behaviours. We also introduced a new high-demand false-
belief task to assess the theory of mind ability to understand
if others wrongly believe in things that no longer hold. Our
experiments showed that memory facilitates the learning pro-
cess and achieves better social understanding, especially in
theory of mind tasks that demand a high cognitive load.
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Figure 7: High demand false-belief task in light-room environment. (A) The sequence of observations given to the theory of
mind agent (from stage 1 to 5) and the subsequence events in the key room when the keys are swapped (stage 6 to stage 8); (B)
The full observation of the environment and the reality at the initial state; (C) The moment when keys are swapped. At stage 5,
to predict the successor representations, the observer must remember the actor’s goal that is revealed at stage 3 and recall the
positions of the keys seen at the beginning of the episode/stage 1 (two orange arrows).
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Figure 8: Each figure shows the attention weights over the current trajectory right after the actor returns to the key room. The
key room, ball room, box room are coded as green, blue, and red, respectively. The purple circles indicate the top ten attention
weights. The red circles indicate the top-M attention weights after re-focusing. The number over the circles shows the rank of
the weights magnitude, i.e., the higher number, the more critical. When asked to predict future behaviour, the observer recalls
when the actor was in the key room (to the original position of the keys) and box room (the actor reveals its goal). Figures in
the left-most column are the attention weights generated by the cosine similarity. The middle column is a closer look at the
top-M selective events {qm}m=1...M . The right-most column presented the weights over top-M selective events reshaped by the
re-focusing mechanism {αm}m=1...M . In the first case (a), the re-focusing mechanism only needs to provide weak correction
since events that have the highest attention weights after the cosine similarity are events when the actor is in the box room and
the key room. However, in the second case (b), the strong correction from the re-focusing mechanism is important.
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in young childrenś understanding of deception. Cognition,
13(1): 103–128.
Zheng, R. Z. 2017. Cognitive load measurement and applic-
ation. Routledge.

11637


