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Abstract
In this paper, for the first time, we study the formal verifi-
cation of Bayesian mechanisms through strategic reasoning.
We rely on the framework of Probabilistic Strategy Logic
(PSL), which is well-suited for representing and verifying
multi-agent systems with incomplete information. We take
advantage of the recent results on the decidability of PSL
model checking under memoryless strategies, and reduce the
problem of formally verifying Bayesian mechanisms to PSL
model checking. We show how to encode Bayesian-Nash
equilibrium and economical properties, and illustrate our ap-
proach with different kinds of mechanisms.

Introduction
The design of mechanisms for aggregating preferences
while achieving a socially desirable outcome is a central
problem in Multi-Agent Systems (MAS). For example, an
auction is a mechanism that combines bids into a choice of
allocation and payments (Klemperer 1999). In recent years,
there has been a growing effort at designing novel mecha-
nisms for a wide variety of problems and settings, including
peer selection (Aziz et al. 2019), hedonic coalition forma-
tion games (Bilò et al. 2018; Flammini, Kodric, and Varric-
chio 2022), sponsored search auctions (Gatti et al. 2015),
and diffusion auctions (Li et al. 2022). The advantages of
automating the development and/or analysis of mechanisms
are numerous (Okada, Todo, and Yokoo 2019), as these tasks
require deep knowledge of mathematics and game theory.
Furthermore, the automated approach can yield better mech-
anisms (in terms of the designing criteria) because it capi-
talizes on the particulars of the setting, e.g. the probabilistic
(or other) information that the designer has about the agents’
preferences (Sandholm 2003).

Automated Mechanism Design (AMD) was introduced
by Conitzer and Sandholm (2002). In this field, designing
mechanisms is usually modelled as a computational opti-
mization problem. Different techniques may be used such
as neural networks (Shen, Tang, and Zuo 2019), statistical
machine learning (Narasimhan, Agarwal, and Parkes 2016),
black-box optimization algorithms (Vorobeychik, Reeves,
and Wellman 2007), as well as evolutionary search meth-
ods (Niu et al. 2012). All these techniques treat AMD by
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solving it for a specific setting: no general perspective is
considered and consequently typical properties are always
defined in terms of the specific problem.

In line with the well established logical approach to sys-
tem verification (Clarke et al. 2018), the work presented in
(Wooldridge et al. 2007) advocates the use of Alternating-
time Temporal Logic (ATL) (Alur, Henzinger, and Kupfer-
man 2002) to reason about mechanism design. Due to ATL’s
limitations regarding the expression of solution concepts
(such as Nash equilibria) as well as handling quantitative
aspects, recent works proposed the use of variants of Quan-
titative Strategy Logic (SL[F ]) (Bouyer et al. 2019) for rea-
soning about mechanisms. In (Maubert et al. 2021; Mittel-
mann 2022), the authors demonstrate how to represent and
verify knowledge-based benchmarks and properties such as
efficiency and strategyproofness in Epistemic SL[F ]. Sim-
ilarly, SL[F ] with natural strategies have been considered
for reasoning with bounded recall (Belardinelli et al. 2022).
Finally, the automated design of deterministic mechanisms
was reduced to SL[F ]-synthesis in (Mittelmann et al. 2022).
However, SL[F ] semantics is deterministic and thus the
logic is unable to express probabilistic features, which are
essential when considering Bayesian and randomized mech-
anisms.

This paper shows the potential of using the probabilis-
tic version of Strategy Logic (Probabilistic Strategy Logic,
PSL) (Aminof et al. 2019) for AMD. Model-Checking
PSL-formulas is decidable in 3-EXPSPACE in the context
of memoryless strategy, a common assumption in Mech-
anism Design. As illustrated by recent work on the sub-
ject (Feldman et al. 2022; Varloot and Laraki 2022), ran-
domness and imperfect information are foundational and
must be addressed by any formal verification technique for
Bayesian mechanisms. Generalizing from the deterministic
to the probabilistic setting is challenging due to several as-
pects. First, the wide and heterogeneous range of settings
considered in the literature obscures the path for a general
and formal approach to verification. The setting may con-
sider deterministic or randomized mechanisms, incomplete
information about agents’ types (Bayesian mechanisms),
mixed or pure strategies, and direct or indirect mechanisms
(iterative protocols). Second, considering Bayesian mecha-
nisms brings out different methods for evaluating a mecha-
nism according to the time-line for revealing the incomplete
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information as the mechanism is executed. We consider a
very general Bayesian framework for mechanism design and
show how to capture it with PSL. This allows for automatic
verification of a wide class of Bayesian mechanisms through
PSL model checking, and motivates further research on ap-
plications of logic-based approaches for AMD.

Related Work Logic-based approaches have been widely
and successfully applied for probabilistic verification of
MAS. For instance, probabilistic model-checking tech-
niques have been used for verifying and analysing a drone
swarm system (Lomuscio and Pirovano 2020), negotiation
games (Ballarini, Fisher, and Wooldridge 2009), team for-
mation protocols (Chen et al. 2011), and stochastic be-
haviours in dispersion games (Hao et al. 2012), to name
a few. (Gutierrez et al. 2021) investigates rational verifica-
tion for both non-cooperative games and cooperative games
in the qualitative probabilistic setting. (Kwiatkowska et al.
2022) details how verification techniques can be developed
for concurrent stochastic games and next implemented in
PRISM-games model checker.

Outline The paper is organized as follows; first, we re-
call PSL. Next, we show how to represent a general notion
of Bayesian mechanism as a stochastic transition system.
Then, we show how to represent and verify different con-
cepts of equilibrium. Next, we show how classical properties
of Bayesian mechanism can be encoded in PSL and verified
via model checking.

Preliminaries
Throughout this paper, we fix finite non-empty sets of agents
Ag, atomic propositions AP and strategy variables Var. We
write o for a tuple of objects (oa)a∈Ag, one for each agent,
and such tuples are called profiles. Given a profile o and a ∈
Ag, we let oa be agent a’s component, and o−a is (ob)b̸=a.
Similarly, we let Ag−a = Ag \ {a}.

Distributions Let X be a finite non-empty set. A distri-
bution over X is a function d : X → [0, 1] such that∑

x∈X d(x) = 1, and Dist(X) is the set of distributions
over X . We write x ∈ d for d(x) > 0. If d(x) = 1
for some element x ∈ X , then d is a point distribution.
If, for i ∈ I , di is a distribution over Xi, then, writing
X =

∏
i∈I Xi, the product distribution of the di is the dis-

tribution d : X → [0, 1] defined by d(x) =
∏

i∈I di(xi).

Markov Chains A Markov chain M is a tuple (Q, p) where
Q is a set of states and p ∈ Dist(Q × Q) is a distribution.
The values p(s, t) are called transition probabilities of M .
A path is an infinite sequence of states.

Systems We now introduce the formal models we use to rep-
resent Bayesian mechanisms.
Definition 1. A multi-agent stochastic transition system (or
simply system) G is a tuple (Ac, V, v∅, δ, ℓ,L) where (i) Ac is
a finite non-empty set of actions, (ii) V is a finite non-empty
set of states, (iii) v∅ ∈ V is an initial state, (iv) δ : V ×
AcAg → Dist(V ) is a transition function, (v) ℓ : V → 2AP

is a labelling function, and (vi) L : V → 2Ac is a legality
function defining the available actions in each state.

A joint-action c is an element of AcAg. We say that G is
deterministic (instead of stochastic) if every δ(v, c) is a point
distribution.

Plays A play in a system G is an infinite sequence π =
v0v1 · · · of states such that there exists a sequence c0c1 · · ·
of joint-actions such that ci ∈ L(vi)Ag and vi+1 ∈ δ(vi, ci)
for every i. We write πi for vi.

Strategies A (memoryless) strategy is a function σ : V →
Dist(Ac). Let Str denote the set of all strategies. A strategy
profile is a tuple σ of strategies, one for each agent. We write
σa for the strategy of agent a in the strategy profile σ.

Next we recall Probabilistic Strategy Logic (PSL), intro-
duced by Aminof et al. (2019).

PSL Syntax
The syntax of PSL is defined by the following grammar:

φ ::= p | ¬φ | φ ∨ φ | ∃s.φ | τ ≤ τ

τ ::= c | τ−1 | τ − τ | τ + τ | τ × τ | Ps(ψ)

ψ ::= φ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP, s ∈ Var, c ∈ Q and s ∈ VarAg.
As usual we write φ → φ′ for ¬φ ∨ φ′, and τ = τ ′ for

τ ≥ τ ′ ∧ τ ≤ τ ′.

PSL Semantics
Formulas of PSL are interpreted over multi-agent stochas-
tic transition systems. Temporal operators next (X) and un-
til (U) have their usual meaning, and strategy quantification
∃x.φ means that there exists a strategy such that φ holds, as
usual in Strategy Logic (Mogavero et al. 2014). The charac-
teristic feature of PSL consists in terms of the form Ps(ψ),
whose intuitive meaning is that if each agent a uses the strat-
egy assigned to sa then property ψ holds with probability
Ps(ψ) in the resulting behaviour of the system.

Probability Space on Outcomes An outcome of a strategy
profile σ and a state v is a play π that starts with v and is
extended by σ, i.e., π0 = v, and for every k ≥ 0 there
exists ck ∈ σ(πk) such that πk+1 ∈ δ(πk, ck). The set
of outcomes of a strategy profile σ and state v is denoted
out(σ, v). A given system G, strategy profile σ, and state v
induce an infinite-state Markov chainMσ,v whose states are
the finite prefixes of plays in out(σ, v). Such finite prefixes
of plays are called histories and written h, and we let last(h)
denote the last state in h. Transition probabilities inMσ,v are
defined as p(h, hv′) =

∑
c∈AcAg σ(h)(c)× δ(last(h), c)(v′).

The Markov chain Mσ,v induces a canonical probability
space on its set of infinite paths (Kemeny, Snell, and Knapp
1976), which can be identified with the set of plays in
out(σ, v). The corresponding measure is denoted µσ,v .1

Assignments An assignment is a partial function A : Var →
Str. A binding is a function β : Ag → Var that maps agents
to strategies. If the image of a binding β is contained in the
domain of A, then A ◦ β : Ag → Str is a joint strategy.
For an assignment A, variable s and strategy σ, A[s 7→ σ] is

1This is a classic construction, see (Berthon et al. 2020).
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the assignment that maps s to σ and is otherwise equal to A.
Notation A[s 7→ σ] is defined similarly for a variable profile
s = (sa)a∈Ag and a strategy profile σ = (σa)a∈Ag.

A variable s is free in a formula if it has a subformula of
the form Ps(ψ) where s appears in s but Ps(ψ) is not in the
scope of any ∃s. A state formula with no free variables is
called a sentence.

PSL Semantics PSL state formulas are interpreted in a
transition system G, an assignment A : Var → Str whose
domain contains the free variables of the formula, and a state
v ∈ G. We only give the inductive cases for strategy quan-
tification and comparison of expected outcomes, and refer
to (Aminof et al. 2019) for the other standard cases.

G,A, v |= p if p ∈ ℓ(v)

G,A, v |= ∃s.φ if ∃σ ∈ Str. G,A[s 7→ σ], v |= φ

G,A, v |= τ1 ≤ τ2 if valA,v(τ1) ≤ valA,v(τ2)

where
• valA,v(c) = c and valA,v(τ

−1) = (valA,v(τ))
−1

• valA,v(τ ⊕ τ ′) = valA,v(τ)⊕ valA,v(τ
′) for ⊕ ∈ {−,

+,×}
• valA,v(Ps(ψ)) = µA◦β,v({π : G,A, π, 0 |= ψ}), where
β is the binding such that β(a) = sa for each a ∈ Ag2.

If φ is a sentence, the truth of G,A, v |= φ does not de-
pend on A. Thus, as usual, we write G, v |= φ to mean that
G,A, v |= φ for some (equivalently all) A.

Model Checking Model Checking problem consists of
deciding whether G,A, v |= φ. It is decidable in the mem-
oryless context (Aminof et al. 2019); as usual, perfect re-
call strategy is not decidable. More precisely, computational
complexity is 3-EXPSPACE, w.r.t. the size of the φ and
EXPSPACE w.r.t. the size of G.

Bayesian Mechanism Design with PSL
Next, we recall mechanisms and we show how to model
them as stochastic systems with the purpose of enabling the
verification of properties under incomplete information.

Bayesian Mechanism Design
A mechanism is a game that maps agents’ strategies to a col-
lective choice from a finite set of alternatives Alt (Nisan et al.
2007). In the case of randomized mechanisms, strategies are
mapped to probability distributions over Alt. As monetary
transfers are often a central feature of the decision, we fol-
low (Parkes 2001) and write each alternative as a tuple (x,p)
where x is a choice and pa ∈ Z is the payment for agent a3.
Each agent a has a type θa ∈ Θa that specifies how she
values each possible choice, where Θa is a (finite) set of
possible types for agent a. The value an agent a with type
θa attributes to a choice x is defined by the valuation func-
tion va(x, θa) ∈ Z. We assume agents have quasi-linear util-
ity, so that agent a’s utility for an alternative α = (x,p) is

2G,A, π, 0 |= ψ evaluates path formula ψ in π0.
3Notice that mechanisms without monetary transfers can be

handled by setting all agents’ payments to zero.

ua(θa, α) = va(x, θa)−pa. We let Θ =
∏

a∈Ag Θa, and we
write θ = (θa)a∈Ag ∈ Θ for a type profile, which assigns a
type θa to each agent a.

In Bayesian mechanisms we consider incomplete infor-
mation over the agents’ types (Hartline 2012). The type
θa of agent a is drawn from a publicly known distribution
d ∈ Dist(Θa), d(θa) is the a priori probability that agent a
has type θa.

Agents’ strategies They depend on their type, we let σθ
a ∈

Stra denote a strategy of agent a with type θ, and we also
write σa = (σθ1

a , ..., σ
θn

a ) for a tuple containing one strat-
egy for each possible type of a, where Θa = {θ1, ..., θn}.
A strategy σa for an agent a is thus a tuple (σθ1

a , ..., σ
θn

a ).
Given a strategy profile σ = (σa)a∈Ag, we let σ(θ) =

(σθa
a )a∈Ag denote strategies for all agents when they have

types θ, and d(θ) (resp. d(θ−a|θa) ) denote the probability
that θ is drawn (resp. θ−a is drawn given that a has type θa).

Social Choice Function In the probabilistic setting, a so-
cial choice function maps each possible agents’ type profile
to a probability distribution over the alternatives.

Definition 2. A (randomized) social choice function (SCF)
f : Θ → Dist(Alt) is a function that maps type profiles to
probability distributions over the set of alternatives.

Given a type profile θ, we may write df,θ instead of f(θ)
for the probability distribution assigned by f to θ.

Mechanism They are similar in spirit to SCFs except that
instead of type profiles they map strategy profiles to proba-
bility distributions over the set of alternatives.

Definition 3. A (randomized) mechanism is a function M :∏
a∈Ag Stra → Dist(Alt).

Given a strategy profile σ, we may write dM,σ instead of
M(σ). A direct mechanism is a mechanism where the strat-
egy sets are the agents’ sets of possible types. A direct mech-
anism is thus also an SCF (Narahari 2014). In those mecha-
nisms, a strategy of particular interest is the truth-revelation
strategy, in which the agent reports its real type: given type
θa for each agent a, the truth-revelation strategy θ̂a for agent
a is the strategy such that θ̂a(v) = θa, for any position v.

A deterministic mechanism chooses an alternative for
each strategy profile. This is the case when, for every strat-
egy profile σ, the mechanism assigns a point distribution,
e.g., dM,σ(α) = 1 for some alternative α. Deterministic
SCFs are captured similarly.
Example 1 (BIN-TAC auction). We give an informal de-
scription of the “Buy-It-Now or Take-a-Chance” (BIN-TAC)
auction (Celis et al. 2014), a randomized mechanism. In this
auction, a good is auctioned with a buy-it-now price r, set
relatively high. If a single bidder chooses buy-it now (BIN),
she gets the good for price r. If more than one bidder takes
the BIN option, a new bidding round is held between those
bidders with reserve price4 r. Then, the winner is the highest
bidder and her payment is the second-highest bid. If no one

4The reserve price denotes the minimum price that the seller is
willing to accept.
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chooses to BIN, a take-a-chance (TAC) auction is held be-
tween all bidders, with a TAC-reserve price r′ (0 ≤ r′ ≤ r).
The TAC auction proceeds by choosing the top h bidders
uniformly at random, and if her bid exceeds the reserve r′,
she wins the auction and pay the maximum of the reserve
and the (h+1)-th bid (if it exists). Ties among the h-highest
bidders are broken randomly prior to the random allocation.

In our approach, mechanisms are represented by stochas-
tic transition systems which define the possible actions and
strategies of the agents and their outcomes: such transition
systems should encode agents’ choice and payment.
Definition 4 (Mechanism as a system). Assume that AP
contains {ter, choicex, paypa

a | (x,p) ∈ Alt, a ∈ Ag} where
ter specifies whether a state is terminal, choicex denotes that
the choice x was selected, and paypa

a denotes that pa is the
payment chosen for agent a.

Given a system G = (Ac, V, v∅, δ, ℓ,L) over the atomic
propositions AP, we say that G is the system representation
of the mechanism M :

∏
a∈Ag Stra → Dist(Alt) if it satis-

fies the following:
i every play eventually reaches a terminal position, i.e., a

sink5 where proposition ter has value true and alα holds
for exactly one α ∈ Alt;

ii in all non-terminal positions, ter has value false;
iii for every α ∈ Alt and σ ∈

∏
a∈Ag Stra,

G,A[s 7→ σ], v∅ |= Ps(F(ter ∧ alα)) = dM,σ(α)

where alα := choicex∧
∧

a∈Ag paypa
a is a shortcut denot-

ing that an alternative α = (x,p) was chosen.
Example 2 (BIN-TAC auction (cont.)). We now resume
the BIN-TAC auction example and show how to represent
it as a system. Let w̄ be an upper bound for values used
in the mechanism. For simplicity, we consider the lower
bound to be 0. Assume the type of each bidder is drawn
identically and independently from a distribution over
Θ ⊂ [0, w̄]. We let r ∈ (0, w̄) denote the BIN price,
r′ ∈ [0, r] be the TAC reserve price, and h ∈ [1, n]
be the randomization parameter. The set of alternatives
is AltBIN-TAC = {(xa, (pa)a∈Ag) : a ∈ Ag ∪ {none}
& pa ∈ [0, w̄]}, where pa is the payment for a and
xa denotes the winner of the item (or “none”). Define
the mechanism GBIN-TAC = (Ac, V, v∅, δ, ℓ,L) over AP =
{price, choicex, paypa

a , ter : a ∈ Ag & (x,p) ∈ Alt}, where:
• Ac = {BIN,TAC, bidx : x ∈ Θ};
• v ∈ V for each v = ⟨win, p,mode, (acta)a∈Ag⟩, where

win ∈ Ag ∪ {none} denotes the winner, mode ∈
{init,BIN,TAC, t}, p ∈ [0, w̄], and acta ∈ Ac ∪ {noop}
denotes agent a’s last action;

• The initial position is v∅ = ⟨none, r, init, (noop)a∈Ag⟩.
• For each position v = ⟨win, p,mode, (acta)a∈Ag⟩, the le-

gality function is as follows: c ∈ L(v) if either (i) mode =
init and c ∈ {TAC,BIN}, or (ii) mode ∈ {BIN,TAC} and
c ∈ Ac \ {BIN,TAC}, or (iii) mode = t.

• For each position v = ⟨win, p,mode, (acta)a∈Ag⟩ and
joint action c = (ca)a∈Ag, transition δ(v, c) is as follows:

5A sink is a position that loops for all action profiles.

Initial TAC

BIN

choice = x1st

pay1st = x2nd

pay−1st = 0

choice = xa

paya = r

pay−a = 0

choice = xa1

paya1
= x(h+1)th

pay−a1
= 0

...

choice = xah
payah

= x(h+1)th

pay−ah
= 0

c0
,a
=

BIN
an

d

c0
,−

a
=

TAC

c
0,a =

c
0,b =

BIN,

for a ̸=
b

c0 = TAC

c1,a = bidxa ,
for each a ∈ Ag

c1,a
=

bidxa
,

for each a
∈ Ag

c1,a = bidxa
,

for each a ∈ Ag

Figure 1: System representation of the BIN-TAC Auction.
Red nodes represent terminal positions and specify the alter-
native chosen. Edges are transitions, with the label specify-
ing the joint actions c0 and c1 performed in each stage. Con-
tinuous lines are transitions with probability 1 and dashed
lines are transitions with probability 1

h . For simplicity, we
omit the nodes in which there is no winner (that is, when the
highest bid is below the reserve price).

– Let AgBIN = {a : a ∈ Ag & acta = BIN}. If mode =
BIN, ca is in the form bidxa

for each a ∈ AgBIN, and
xb ≥ r for some b then, δ(v, c) = ⟨win, p′, t, (ca)a∈Ag⟩
with probability 1, where win = a if xa = maxb∈Ag(xb)
(ties are broken according to a predefined order) and
p′ = max(r,maxb∈AgBIN\{a:xa=maxa′∈Ag(xa′ )}(xb));

– Let AgTAC = {a : a ∈ Ag & acta = TAC}. If
mode = TAC, ca is in the form bidxa

for each a ∈
AgTAC and xb ≥ r for some b, let AgTACh

= {a :
xa is one of the h-highest values in {xa : a ∈ AgTAC}.
Then, let δ(v, c) = ⟨a, p′, t, (ca)a∈Ag⟩ with probability
1
h for each a ∈ AgTACh

, where p′ = max(r′, x) and x is
the (h + 1)-highest bid in {xa : a ∈ AgTACh

}.
– If mode = BIN (resp., mode = TAC), ca is in the form

bidxa
with xa < r (resp., xa < r′) for each a ∈ AgBIN,

then, δ(v, c) = ⟨none, 0, t, (ca)a∈Ag⟩ with probability 1;
– The transitions when mode = init are shown in Figure

1. Other cases are sinks, i.e., δ(v, c) = v with prob. 1.
– For each v = ⟨win, p,mode, (acta)a∈Ag⟩ and each a ∈

Ag, the labeling is defined as follows: choicex ∈ ℓ(v)
if x = win, payp

a ∈ ℓ(v) if a = win, pay0
a ∈ ℓ(v) if

a ̸= win, and ter ∈ ℓ(v) if mode = t.

Bayesian Mechanism Time-Line
The concepts of ex ante, interim, and ex post properties pro-
vide a way to consider the nuances between various mech-
anisms. These terms refer to the time-line of the game (see
Figure 2), in relation to the incomplete information about
types (Chawla and Sivan 2014). Initially, agents have in-
complete information about all agents’ type (ex ante). Then,
each agent realizes her own type, while remaining uncertain
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d(θ) · · ·

d(θ−a|θa)

d(θ−b|θb)

θ

interim ex postex ante

Fix θ−a

Fix θ−b

Fix θa

Fix θb

Figure 2: The information disclosure time-line of a mech-
anism. Ex ante properties are evaluated based on the type
profile distribution, interim properties are calculated using
the distributions of type profiles given one agent’s type, and
ex post properties are evaluated given a fixed type profile.

about others’ (interim). Finally, all types are known to all
(ex post). In other words, in ex ante no type is known, and
we thus consider the expectation over all type profiles; in in-
terim each agent knows her own type, and we consider the
expectation over other agents’ types; finally in ex post, all
types are known, and we only consider the actual types6.

We now show how to use PSL for evaluating a mech-
anism in relation to ex ante, interim and ex post properties.
First we define the corresponding notions of expected utility.

Expected utility We recall the definition of expected util-
ities for Bayesian games, adapted from (Leyton-Brown
and Shoham 2008) to our setting. The expected util-
ity for agent a induced by the mechanism M given
the strategies σ and type profile θ in ex post is com-
puted as follows: Ee.p.

a (M,σ,θ) :=
∑

α∈Alt dM,σ(θ)(α) ×
ua(θa, α). Given a type θa for agent a, her interim expected
utility is Ee.i.

a (M,σ, θa) :=
∑

θ−a∈Θ−a
d(θ−a|θa) ×

Ee.p.
a (M,σ, (θ−a, θa)). Finally, the ex ante expected utility

for a is Ee.a.
a (M,σ) :=

∑
θ∈Θ d(θ)× Ee.p.

a (M,σ,θ). The
ex post, interim and ex ante expected utilities induced by a
social choice function are defined analogously and denoted
Ee.p.
a (f,θ), Ee.i.

a (f, θa), and Ee.a.
a (f), resp.

Let s(θ) := (sθa)a∈Ag. We write the following PSL-
arithmetic terms to capture the ex ante, interim and ex post
expected utilities of agent a, respectively, where s is a tuple
of strategy variables for each agent:

Ee.p.
a (s,θ) :=

∑
α∈Alt

ua(θa, α)× Ps(θ)(F(ter ∧ alα))

Ee.i.
a (s, θa) :=

∑
θ−a∈Θ−a

d(θ−a|θa)× Ee.p.
a (s, (θ−a, θa))

Ee.a.
a (s) :=

∑
θ∈Θ

d(θ)× Ee.p.
a (s,θ)

The following result is important as it will lead to define
equilibrium in terms of PSL-formulas.

6Note that in our setting with probabilistic transitions and
strategies, fixing types does not determine a unique outcome, as
it does in deterministic mechanisms with pure strategies.

Theorem 1. Let G be a system representing a mechanism
M, θ a type profile, σ a strategy profile, s a variable profile,
and A an assignment such that for all a, A(sa) = σa. Then
for all agents a it holds that

G,A, v∅ |= Ee.a.
a (s,θ) = Ee.a.

a (M,σ,θ)∧
Ee.i.
a (s, θa) = Ee.i.

a (M,σ, θa)∧Ee.p.
a (s) = Ee.p.

a (M,σ)

Best Response Equilibrium
A strategy profile σ is an ex ante best response equilibrium
(BREe.a.) if for every type profile θ no agent can increase her
expected utility with a unilateral change of strategy given
the distributional information about all agents’ types. That
is, for each agent a, playing her strategy σa is the ex-ante
best response to the others playing σ−a.

Let s = (sa)a∈Ag be a profile of strategy variables. First,
the fact that the strategies represented by s form an ex ante
best response equilibrium (BREe.a.) can be expressed in PSL
with the formula

BREe.a.(s) :=
∧

a∈Ag

∀ta.Ee.a.
a ((s−a, ta)) ≤ Ee.a.

a (s)

A strategy profile σ is a Nash equilibrium (NE) if for ev-
ery θ no agent can increase her expected utility with a uni-
lateral change of strategy (Nisan et al. 2007). We let

NE(s) :=
∧
θ∈Θ

∧
a∈Ag

∀ta.Ee.p.
a ((s−a, ta),θ) ≤ Ee.p.

a (s,θ)

Finally, a strategy profile σ is a Bayesian-Nash equilib-
rium (BNE) if for every player a and every θa, σ is the best
response that a has to σ−a when her type is θa, in expecta-
tion over the other types θ−a (Nisan et al. 2007). The fol-
lowing formula expresses that strategy profile s is a BNE:

BNE(s) :=
∧

a∈Ag,θa∈Θa

∀ta.Ee.i.
a ((s−a, ta), θa) ≤ Ee.i.

a (s, θa)

The key difference between BNE and NE is that in
BNE an agent’s strategy must be a best-response given
distributional information about the preferences of other
agents, while in NE an agent’s strategy must be a best-
response to the actual strategies of the other agents (Parkes
2001). Through the rest of this paper, we let E ∈
{BREe.a.,BNE,NE} denote an equilibrium concept. The
following theorem shows that checking the existence of
such complex equilibria can be rephrased in terms of model
checking of PSL-formulas.
Theorem 2. Let G be a system representing a mechanism
M, σ a strategy profile, s a variable profile, and A an as-
signment such that for all a, A(sa) = σa. Then it holds that

G,A, v∅ |= E(s) iff σ is a E in M
Example 3 (BIN-TAC auction (cont.)). Now we resume Ex-
ample 2 and we focus on characterizing equilibrium strate-
gies under BIN-TAC, based on the results of (Celis et al.
2014). If multiple agents choose to BIN, it is weakly dom-
inant for agents to bid their valuations. Truth-telling is also
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weakly dominant in the TAC auction. Taking these auction
strategies as given, we turn to the decision whether to buy-
it-now or take-a-chance. Following (Celis et al. 2014), in a
symmetric equilibrium, the BIN decision takes a threshold
form: for some threshold θ̄, agent a with type θa > θ̄ elect
to BIN, and the rest do not.

Let the random variableXj be the j-th highest draw in an
independent sample of size n − 1 from a distribution d (the
j-th highest rival valuation) and X∗ be the maximum of Xh

and the TAC reserve price r′.
Proposition 1 ((Celis et al. 2014)). There exists a unique
symmetric pure strategy Bayes-Nash equilibrium7, charac-
terized by a threshold θ̄ ∈ (0, w̄].

Let σa be a strategy for agent a such that σa(v) =
bidθ̂a(v) for each v ̸= v∅ and h > 1 be a constant. Now,
we characterize the action assigned in v∅. If w̄ − p <
1
h×E[w̄−X∗|X1 < w̄] then θ̄ = w̄ and σa(v∅) = TAC. Oth-
erwise, θ̄ is the solution of θ̄ = p+ 1

h ×E[w̄−X∗|X1 < θ̄].
Then, σa(v∅) = BIN if θ ≥ θ̄ and σa(v∅) = TAC otherwise.
We then have: GBIN-TAC,A[s → σ], v∅ |= BNE(σ).

The intuition is that since strategies have a threshold
form, the choice is relevant only when there are no higher-
valuation bidders, since these bidders will BIN and win.

Verifying Mechanism Properties
As we are now able to represent mechanisms as stochastic
systems and complex Bayesian solution concepts as PSL-
formulas, we are in a position for investigating classical
Bayesian Mechanism Design properties: we show how eval-
uating such properties boils down to model checking.

Implementation of an SCF
Given an SCF f, the mechanism design problem consists
in defining game rules (the mechanism) to implement f de-
spite agents’ individual interests. Game-theoretic concepts
are used for analysing the outcome of the mechanism.

In the deterministic setting, a mechanism implements an
SCF f if the alternative chosen when agents follow equilib-
rium strategies is the alternative chosen by f for all possi-
ble agent preferences. Different equilibrium concepts may
be used to define implementation, including Bayesian-Nash
and dominant strategies (Parkes 2001).

We generalize to our setting the definitions of implemen-
tation of SCFs from (Parkes 2001; Conitzer and Sandholm
2002). We center this definition on the equilibrium notions
introduced above, but the implementation may be defined
using some other concept (Parkes 2001).
Definition 5. A mechanism E-implements an SCF f if there
exists a strategy profile σ(θ) that is an E-equilibrium in the
mechanism and dM,σ(θ)(α) = df,θ(α) for each alternative
α ∈ Alt and θ.

In the deterministic setting, Definition 5 corresponds to
the mechanism implementation from (Parkes 2001). We
generalize the definition to take into account randomized

7A symmetric equilibrium is an equilibrium where all players
use the same strategy.

mechanisms inline with (Conitzer and Sandholm 2002). To
do so, we first introduce the following macros:

∃sa := ∃sθ
1

a ...∃sθ
n

a , ∀sa := ∀sθ
1

a ...∀sθ
n

a , ∃s := ∃sa1 ...∃san

where Θa = {θ1, ..., θn}.
Let φf,s be a formula denoting that f assigns the same

probability distribution as the mechanism under strategies
s, for any types:

φf,s :=
∧

θ∈Θ,α∈Alt

Ps(θ)(Fter ∧ alα) = df,θ(α)

Theorem 3. Let G be a system representing a mechanism
M. Given an equilibrium concept E ∈ {BREe.a.,NE,BNE},
assume that M E-implements an SCF f. Then it holds that:

G, v∅ |= ∃s.E(s) ∧ φf,s

Example 4 (Dutch auction). In a Dutch auction, the price of
a good starts at a high value and is gradually lowered until a
bidder accepts the going price. Then she gets the good and
the auction ends. The choices in the α include the option of
selecting either agent as the winner or not selling the item
(in such case the winner is “none”). In each alternative, an
agent’s payment may be either 0 or the reserve price minus
dec times the number of rounds and at most one agent may
pay more than 0. The Dutch auction is represented by the
mechanism Gdut, defined similarly to Example 2.

This auction is a BNE-implementation of the first price
auction (Narahari 2014):
Proposition 2. Let ffirst : Θ → Altdut be a deterministic
SCF defined as follows: ffirst(θ) = (x,p) where x = a
for the agent such that va(a, θa) = maxa′∈Ag va′(a′, θa′)
(ties are broken based on the order ≺), pa = va(a, θa) if
x = a, and pa = 0 otherwise. We have that: Gdut BNE-
implements ffirst, or, equivalently, Gdut, v∅ |= ∃s.BNE(s) ∧∧

θ∈Θ,α∈Alt Ps(θ)(Fter ∧ alα) = dffirst,θ(α).

That is, BNE implementation requires that there exists an
(interim) best response equilibrium from which, with prob-
ability 1, the alternative assigned by the mechanism is the
same as the one chosen by the SCF. Similarly, NE imple-
mentation requires that there exists an (ex post) best re-
sponse equilibrium from which, with probability 1, the al-
ternative assigned by the mechanism is the same as the one
chosen by the SCF.

We are now able to evaluate mechanisms in relation to
classical economic properties in ex ante, interim and ex post
equilibrium.

Mechanism Properties
Mechanisms are designed with the goal of achieving desir-
able properties. We illustrate a number of those properties
and use them for characterizing a classical mechanism. Ac-
cording to the modeled problem and target properties, differ-
ent stages of information disclosure in the mechanism may
be relevant. For instance, individual rationality (IR) captures
the idea that an agent can decide whether or not to partici-
pate, in the sense that her expected utility induced by the
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game is no worse then her utility outside the mechanism.
The most natural definition of IR is interim (Parkes 2001),
as it expresses the case that the agent has incentive for par-
ticipating when she considers her own preferences and has
only distributional information about others.

An SCF f is (interim) individually rational if for every
θ ∈ Θ, Ee.i.

a (f, θa) ≥ 0 for each agent a. The following
formula rephrases individual rationality with respect to some
strategy variable s and type profile θ:

IR(s,θ) :=
∧

a∈Ag

0 ≤ Ee.i.
a (s, θa)

Theorem 4. Let G be a system representing a mecha-
nism M. The SCF f E-implemented by M is (interim) in-
dividual rational iff G, v∅ |= ∃s.E(s) ∧ F(ter ∧ φf,s∧∧

θ∈Θ IR(s,θ)).
In order to collect truthful preferences, the mechanism

can be designed to incentivize the agents to tell the truth.
In Dominant Strategy Incentive Compatible (DSIC), truth
revelation is the best strategy for each agent irrespective of
what is reported by the other agents. As DSIC is a strong re-
quirement, a useful relaxation is when truth revelation is the
agents’ best response in expectation of the types of others
(Bayesian Incentive Compatible, BIC) (Narahari 2014).

Let Ac = ∪a∈AgΘa. A direct mechanism M is Bayesian
Incentive Compatible if the truth-revealing strategy profile
(θ̂a)a∈Ag is a BNE in M for any θ ∈ Θ. In other words, BIC
holds if the corresponding PSL definition of BNE holds:
Proposition 3. Let G be a system representing a mechanism
M. M is Bayesian Incentive Compatible iff for any θ ∈ Θ:
G,A[s → (θ̂a)a∈Ag], v∅ |= BNE(s).

We illustrate these properties with a classical example:
Example 5. In the dAGVA mechanism (d’Aspremont and
Gérard-Varet 1979; Arrow 1979) the allocation rules assigns
the choice that maximizes the cumulative of the agents valu-
ations for the (possibly untruthful) reported types, which de-
fines a discount for agent’s payment (for her bid ϑa) based
on the expected total value of the other agents when she bids
ϑa and other are truthful.

Let AltdAGVA be defined over a finite set of choices C and
a finite set of payments in [w, w̄] analogously to Example 2.

Define the mechanism GdAGVA = (Ac, V, v∅, δ, ℓ,L) over
AP = {price, choicex, paypa

a , ter : a ∈ Ag & (x,p) ∈
AltdAGVA}, where:
• Ac = {θ ∈ Θ}, where Θ = ∪a∈AgΘa;
• v ∈ V for each v = ⟨win, p⟩, where win ∈ C ∪ {none}

denotes the winning allocation, and pa ∈ [w, w̄] ∪ {0} is
the payment for a.

• The initial position is v∅ = ⟨none, (0, ..., 0)⟩ ∈ V .
• L(v) = Ac for any position v ∈ V .
• For each position v = ⟨win, p⟩ and joint action c =
(ca)a∈Ag, let x∗(c) = argmaxx′∈C vb(x

′, cb) denote the
alternative maximizing the reported types 8. Also let
SW−a(ca) = Eθ−a(

∑
b̸=a vb(x

∗(ca,θ−a), θb)) where

8We assume function argmax breaks ties according to a prede-
fined order over the set of choices.

the term Ec−a(.) is the expected total value for agents
b ̸= a when agent a announces θa and others tell the
truth.

• The transition δ(v, c) is defined as follows:

– If win = none, define δ(v, c) = ⟨win′, p′⟩ with proba-
bility 1, where, for each a,

win′ = argmaxx∈C(
∑
b∈Ag

vb(x, cb))

p′
a =

∑
b̸=a SW−b(cb)

n− 1
− SW−a(ca)

– Other cases are sinks, i.e., δ(v, c) = v with prob. 1.

• The labelling function ℓ is as for the other examples.

The dAGVA auction is BIC, however, it is not in-
terim IR. Formally, let θ be a type profile, we have
that GdAGVA,A[s → (θ̂a)a∈Ag], v |= BNE(s) and
GdAGVA,A, v ̸|= ∃s.BNE(s) ∧ F(ter ∧

∧
θ∈Θ IR(s,θ)).

Notice that the dAGVA auction is a direct mechanism and,
as pointed before, it is an SCF. Thus, the simplification in
relation to the complete formula in Theorem 4.

Similarly to IR, we can represent the conditions for other
properties from mechanism design, such as efficiency or
budget-balance. The above dAGVA auction illustrates how
expected social welfare may be encoded, paving the way for
going further in checking such new properties.

Discussion
This works addresses the gap between the economics’ ap-
proach to mechanism design and the well-established tech-
niques for formal reasoning in MAS. We propose the au-
tomated verification of Bayesian mechanisms using Prob-
abilistic Strategy Logic (PSL). Unlike previous proposals,
we introduce a general approach for evaluating mechanisms,
which is able to take into account a wide range of settings
(e.g. randomized, indirect and Bayesian mechanisms). Fur-
thermore, thanks to the great expressiveness of the specifi-
cation language, PSL, the verification ex ante, interim and
ex post of complex solution concepts and properties is fully-
automated through model checking of logical formulas.

The possibilities for future work are many. Although
memoryless strategies are sufficient for most mechanisms,
memory can be considered, e.g. for modeling mecha-
nism design with information acquisition (Bikhchandani and
Obara 2017). Since model checking PSL with perfect re-
call is undecidable (Aminof et al. 2019), one possibility is to
study the case with bounded memory. As quantitative as-
pects (such as payments and utilities) are key features of
mechanisms, we intend to investigate an extension of PSL
with weighted semantics and its application to AMD. A
quantitative approach is particularly appealing for consid-
ering approximation in Mechanism Design and the assess-
ment of expected optimality (e.g. in relation to efficiency and
revenue). Yet another line of research is the automated con-
struction (or synthesis) of Bayesian mechanisms from PSL-
specifications.
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