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Abstract

Reward shaping (RS) is a powerful method in reinforcement
learning (RL) for overcoming the problem of sparse or uninfor-
mative rewards. However, RS typically relies on manually en-
gineered shaping-reward functions whose construction is time-
consuming and error-prone. It also requires domain knowledge
which runs contrary to the goal of autonomous learning. We
introduce Reinforcement Learning Optimising Shaping Algo-
rithm (ROSA), an automated reward shaping framework in
which the shaping-reward function is constructed in a Markov
game between two agents. A reward-shaping agent (Shaper)
uses switching controls to determine which states to add shap-
ing rewards for more efficient learning while the other agent
(Controller) learns the optimal policy for the task using these
shaped rewards. We prove that ROSA, which adopts existing
RL algorithms, learns to construct a shaping-reward function
that is beneficial to the task thus ensuring efficient conver-
gence to high-performance policies. We demonstrate ROSA’s
properties in three didactic experiments and show its superior
performance against state-of-the-art RS algorithms in chal-
lenging sparse reward environments.

Introduction
Despite the notable success of RL in a variety of domains,
enabling RL algorithms to learn successfully in numerous
real-world tasks remains a challenge (Wang et al. 2021). A
key obstacle to the success of RL algorithms is that sparse
reward signals can hinder agent learning (Charlesworth and
Montana 2020). In many settings of interest such as physical
tasks and video games, rich informative signals of the agent’s
performance are not readily available (Hosu and Rebedea
2016). For example, in the video game Super Mario (Shao
et al. 2019), the agent must perform sequences of hundreds
of actions while receiving no rewards for it to successfully
complete its task. In this setting, the infrequent feedback of
the agent’s performance leads to RL algorithms requiring
large numbers of samples (and high expense) for solving
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problems (Hosu and Rebedea 2016). Therefore, there is a
need for RL techniques to solve such problems efficiently.

Reward shaping (RS) is a tool to introduce additional re-
wards, known as shaping rewards, to supplement the environ-
mental reward. These rewards can encourage exploration and
insert structural knowledge in the absence of informative en-
vironment rewards thereby significantly improving learning
outcomes (Devlin, Kudenko, and Grześ 2011). RS algorithms
often assume hand-crafted and domain-specific shaping
functions, constructed by subject matter experts, which runs
contrary to the aim of autonomous learning. Moreover, poor
choices of shaping rewards can worsen the agent’s perfor-
mance (Devlin and Kudenko 2011). To resolve these issues,
a useful shaping reward must be obtained autonomously.

We develop a framework that autonomously constructs
shaping rewards during learning. ROSA introduces an addi-
tional RL agent, the Shaper, that adaptively learns to con-
struct shaping rewards by observing Controller , while Con-
troller learns to solve its task. This generates tailored shaping
rewards without the need for domain knowledge or manual
engineering. These shaping rewards successfully promote
effective learning, addressing this key challenge.

The resulting framework is a two-player, nonzero-sum
Markov game (MG) (Shoham and Leyton-Brown 2008) —
an extension of Markov decision process (MDP) that in-
volves two independent learners with distinct objectives. In
our framework, the two agents have distinct learning agen-
das but cooperate to achieve the Controller’s objective. An
integral component of ROSA is a novel combination of RL
and switching controls (Mguni et al. 2022; Bayraktar and
Egami 2010; Mguni 2018). This enables Shaper to quickly
determine useful states to learn to add in shaping rewards
(i.e., states where adding shaping rewards improves the Con-
troller’s performance) but disregard other states. In contrast
Controller must learn actions for every state. This leads to
the Shaper quickly finding shaping rewards that guide the
Controller’s learning process toward optimal trajectories (and
away from suboptimal trajectories, as in Experiment 1).

This approach tackles multiple obstacles. First, a new agent
(Shaper) learns while the Controller is training while avoid-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11604



ing convergence issues. Second, unlike standard RL, the
Shaper’s learning process uses switching controls. We show
successful empirical results and prove that ROSA converges.

Related Work
Reward Shaping Reward Shaping (RS) adds a shaping
function F to supplement the agent’s reward to boost learn-
ing. RS however has some critical limitations. First, RS does
not offer a means of finding F . Second, poor choices of F
can worsen the agent’s performance (Devlin and Kudenko
2011). Last, adding shaping rewards can change the under-
lying problem, therefore, generating policies that are com-
pletely irrelevant to the task (Mannion et al. 2017). In Ng
et al. 1999 it was established that potential-based reward
shaping (PBRS) which adds a shaping function of the form
F (st+1, st) = γϕ(st+1)−ϕ(st) preserves the optimal policy
of the problem. Recent variants of PBRS include potential-
based advice which defines F over the state-action space
(Harutyunyan et al. 2015) and approaches that include time-
varying shaping functions (Devlin and Kudenko 2012). Al-
though the last issue can be addressed using potential-based
reward shaping (PBRS) (Ng, Harada, and Russell 1999), the
first two issues remain (Behboudian et al. 2021).

To avoid manual engineering of F , useful shaping rewards
must be obtained autonomously. Towards this Zou et al. 2019
introduce an RS method that adds a shaping-reward function
prior which fits a distribution from data obtained over many
tasks. Recently, Hu et al. 2020 use a bilevel technique to
learn a scalar coefficient for an already-given shaping-reward
function. Nevertheless, constructing F while training can
produce convergence issues since the reward function now
changes during training (Igl et al. 2020). Moreover, while F
is being learned the reward can be corrupted by inappropriate
signals that hinder learning.

Curiosity-Based Reward Shaping Curiosity-Based Re-
ward Shaping aims to encourage the agent to explore states
by rewarding the agent for novel state visitations using ex-
ploration heuristics. One approach is to use state visitation
counts (Ostrovski et al. 2017). More elaborate approaches
such as Burda et al.(Burda et al. 2018) introduce a measure
of state novelty using the prediction error of features of the
visited states from a random network. Pathak et al. 2017 use
the prediction error of the next state from a learned dynamics
model and Houthooft et al. 2016 maximise the information
gain about the agent’s belief of the system dynamics. In gen-
eral, these methods provide no performance guarantees nor
do they ensure the optimal policy of the underlying MDP is
preserved. Moreover, they naively reward exploration with-
out consideration of the environment reward. This can lead
to spurious objectives being maximised (see Experiment 3 in
Sec. ).

Within these two categories, closest to our work are bilevel
approaches for learning the shaping function (Hu et al. 2020;
Stadie, Zhang, and Ba 2020). Unlike Hu et al. 2020 whose
method requires a useful shaping reward to begin with, ROSA
constructs a shaping reward function from scratch leading
to a fully autonomous method. Moreover, in Hu et al. 2020
and Stadie et al.2020, the agent’s policy and shaping rewards

are learned with consecutive updates. In contrast, ROSA
performs these operations concurrently leading to a faster,
more efficient procedure. Also in contrast to Hu et al. 2020
and Stadie et al. 2020, ROSA learns shaping rewards only
at relevant states, this confers high computational efficiency
(see Experiment 2, Sec. )). As we describe, ROSA, which
successfully learns the shaping-reward function F , uses a
similar form as PBRS. However, in ROSA, F is augmented
to include the actions of another RL agent to learn the shap-
ing rewards online. Lastly, unlike curiosity-based methods
e.g., Burda et al. 2018 and Pathak et al. 2017, our method
preserves the agent’s optimal policy for the task (see Exper-
iment 3, Sec. ) and introduces intrinsic rewards that promote
complex learning behaviour (see Experiment 1, Sec. ) .

Preliminaries & Notations
The RL problem is typically formalised as a Markov decision
process ⟨S,A, P,R, γ⟩ where S is the set of states, A is the
discrete set of actions, P : S ×A×S → [0, 1] is a transition
probability function describing the system’s dynamics, R :
S × A → R is the reward function measuring the agent’s
performance, and γ ∈ (0, 1] specifies the degree to which the
agent’s rewards are discounted (Sutton and Barto 2018). At
time t the system is in state st ∈ S and the agent must choose
an action at ∈ A which transitions the system to a new state
st+1 ∼ P (·|st, at) and produces a rewardR(st, at). A policy
π : S × A → [0, 1] is a distribution over state-action pairs
where π(a|s) is the probability of selecting action a ∈ A
in state s ∈ S. The agent’s goal is to find a policy π⋆ ∈
Π that maximises its expected returns given by: vπ(s) =
E[
∑∞

t=0 γ
tR(st, at)|at ∼ π(·|st)] where Π is the agent’s

policy set. We denote this MDP by M.

Two-player Markov games A two-player Markov game
(MG) is an augmented MDP involving two agent that simulta-
neously take actions over many rounds (Shoham and Leyton-
Brown 2008). In the classical MG framework, each agent’s
rewards and the system dynamics are now influenced by the
actions of both agents. Therefore, each agent i ∈ {1, 2} has
its reward function Ri : S×A1×A2 → R and action set Ai

and its goal is to maximise its own expected returns. The sys-
tem dynamics, now influenced by both agents, are described
by a transition probability P : S×A1×A2×S → [0, 1]. As
we discuss in the next section, ROSA induces a specific MG
in which the dynamics are influenced by only Controller.

Reward shaping Reward shaping (RS) seeks to promote
more efficient learning by inserting a (state-dependent) shap-
ing reward function F . Denote by ṽ the objective function
that contains a shaping reward function F and by π̃ ∈ Π̃ the
corresponding policy i.e., vπ̃(s) = E[

∑∞
t=0 γ

t(R(st, at) +
F (·))|at ∼ π̃(·|st)]. Let us also denote by vπk the expected
return after k learning steps, the goal for RS can be stated as
inserting a shaping reward function F for any state s ∈ S:

C.1. vπ̃m(s) ≥ vπm(s) for any m ≥ N ,
C.2. argmax

π∈Π
ṽπ(s) ≡ argmax

π∈Π
vπ(s),

where N is some finite integer.
Condition C.1 ensures that RS produces a performance

improvement (weakly) during the learning process i.e., RS
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induces more efficient learning and does not degrade perfor-
mance (note that both value functions measure the expected
return from the environment only). Lastly, Condition C.2
ensures that RS preserves the optimal policy.1

Poor choices of F hinder learning (Devlin and Kudenko
2011) in violation of (ii), and therefore RS methods gener-
ally rely on hand-crafted shaping-reward functions that are
constructed using domain knowledge (whenever available).
In the absence of a useful shaping-reward function F , the
challenge is to learn a shaping-reward function that leads to
more efficient learning while preserving the optimal policy.
The problem therefore can be stated as finding a function
F such that (i) - (iii) hold. Determining this function is a
significant challenge; poor choices can hinder the learning
process, moreover attempting to learn the shaping-function
while learning the RL agent’s policy presents convergence is-
sues given the two concurrent learning processes (Zinkevich,
Greenwald, and Littman 2006). Another issue is that using
a hyperparameter optimisation procedure to find F directly
does not make use of information generated by intermediate
state-action-reward tuples of the RL problem which can help
to guide the optimisation.

Our Framework
We now describe the problem setting, details of our frame-
work, and how it learns the shaping-reward function. We then
describe Controller’s and Shaper’s objectives. We also de-
scribe the switching control mechanism used by the Shaper
and the learning process for both agents.

The Shaper’s goal is to construct shaping rewards to guide
the Controller towards quickly learning π⋆. To do this, the
Shaper learns how to choose the values of a shaping-reward
at each state. Simultaneously, Controller performs actions to
maximise its rewards using its own policy. Crucially, the two
agents tackle distinct but complementary set problems. The
problem for Controller is to learn to solve the task by finding
its optimal policy, the problem for the Shaper is to learn how
to add shaping rewards to aid the Controller. The objective
for the Controller is given by:

ṽπ,π
2

(s) = E

[ ∞∑
t=0

γt
(
R(st, at) + F̂ (a2t , a

2
t−1)

) ∣∣∣s = s0

]
,

where at ∼ π is the Controller’s action, F̂ is the shaping-
reward function which is given by F̂ (a2t , a

2
t−1) ≡ a2t −

γ−1a2t−1, a2t : is chosen by the Shaper (and a2t ≡ 0, ∀t < 0)
using the policy π2 : S × A2 → [0, 1] where A2 is the
action set for the Shaper. Note that the shaping reward
is state dependent since the Shaper’s policy is contingent
on the state. The set A2 is a subset of Rp and can there-
fore be for example a set of integers {1, . . . ,K} for some

1For sufficiently complex tasks, a key aim of an RS function is
to enable the agent to acquire rewards more quickly provided the
agent must learn an improvement on its initial policy that is to say
vπ̃n(s) > vπn(s) for all n ≥ N ; whenever max

π∈Π
vπ(s) > vπ0(s).

However, such a condition cannot be guaranteed for all RL tasks
since it is easy to construct a trivial example in which RS is not
required and the condition would not hold.

K ≥ 1. With this, the Shaper constructs a shaping-reward
based on the agent’s environment interaction, therefore the
shaping reward is tailored for the specific setting. The tran-
sition probability P : S × A × S → [0, 1] takes the state
and only the Controller’s actions as inputs. Formally, the
MG is defined by a tuple G = ⟨N ,S,A,A2, P, R̂1, R̂2, γ⟩
where the new elements are N = {1, 2} which is the set
of agents, R̂1 := R + F̂ is the new Controller reward func-
tion which now contains a shaping reward F̂ , the function
R̂2 : S ×A×A2 → R is the one-step reward for the Shaper
(we give the details of this function later).

As the Controller’s policy can be learned using any RL
method, ROSA easily adopts any existing RL algorithm for
the Controller. Note that unlike reward-shaping methods e.g.
(Ng, Harada, and Russell 1999), our shaping reward function
F consists of actions a2 which are chosen by the Shaper
which enables a shaping-reward function to be learned online.
We later prove a policy invariance result (Prop. 1) analogous
to that in (Ng, Harada, and Russell 1999) and show ROSA
preserves the optimal policy of the agent’s underlying MDP.

Switching Controls
So far the Shaper’s problem involves learning to construct
shaping rewards at every state including those that are irrele-
vant for guiding Controller. To increase the (computational)
efficiency of the Shaper’s learning process, we now introduce
a form of policies known as switching controls. Switching
controls enable Shaper to decide at which states to learn the
value of shaping rewards it would like to add. Therefore, now
Shaper is tasked with learning how to shape Controller’s re-
wards only at states that are important for guiding Controller
to its optimal policy. This enables Shaper to quickly deter-
mine its optimal policy2 π2 for only the relevant states unlike
Controller whose policy must learned for all states. Now at
each state Shaper first makes a binary decision to decide to
switch on its shaping reward F for the Controller. This leads
to an MG in which, unlike classical MGs, the Shaper now
uses switching controls to perform its actions.

We now describe how at each state both the decision to
activate a shaping reward and their magnitudes are deter-
mined. Recall that a2t ∼ π2 determines the shaping reward
through F . At any st, the decision to turn on the shap-
ing reward function F is decided by a (categorical) policy
g2 : S → {0, 1}. Therefore, g2 determines whether the
Shaper policy π2 should be used to introduce a shaping re-
ward F (a2t , a

2
t−1), a

2
t ∼ π2. We denote by {τk} the times

that a switch takes place, for example, if the switch is first
turned on at state s5 then turned off at s7, then τ1 = 5 and
τ2 = 7. Recalling the role of g2, the switching times obey
the expression τk = inf{t > τk−1|st ∈ S, g2(st) = 1} and
are therefore rules that depend on the state.. The termination
times {τ2k−1} occur according to some external (probabilis-
tic) rule i.e., if at state st the shaping reward is active, then
the shaping reward terminates at state st+1 with probabil-
ity p ∈]0, 1]. Hence, by learning an optimal g2, the Shaper
learns the best states to activate F .

2i.e., a policy that maximises its own objective.
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We now describe the new Controller objective. To describe
the presence of shaping rewards at times {τ2k}k>0 for nota-
tional convenience, we introduce a switch It for the shaping
rewards which takes values 0 or 1 and obeys Iτk+1

= 1− Iτk
(note that the indices are the times {τk} not the time steps
t = 0, 1, . . .) and It ≡ 0, ∀t ≤ 0. With this, the new Con-
troller objective is:

ṽπ,π
2

(s0, I0) = E

[ ∞∑
t=0

γt
{
R(st, at) + F̂ (a2t , a

2
t−1)It

}]
.

Summary of events:

At a time t ∈ 0, 1 . . .

• Both agents make an observation of the state st ∈ S .
• Controller takes an action at sampled from its policy π.
• Shaper decides whether or not to activate the shaping

reward using g2 : S → {0, 1}.
• If g2(st) = 0:

X◦ The switch is not activated (It = 0). Controller receives
a reward r ∼ R(st, at) and the system transitions to
the next state st+1.

• If g2(st) = 1:

X◦ Shaper takes an action a2t sampled from its policy π2.
X◦ The switch is activated (It = 1), Controller receives

a reward R(st, at) + F̂ (a2t , a
2
t−1)× 1 and the system

transitions to the next state st+1.

We set τk ≡ 0∀k ≤ 0 and a2k ≡ 0 ∀k ≤ 0 and lastly
a2τk ≡ 0, ∀k ∈ N (a2τk+1, . . . , a

2
τk+1−1 remain non-zero).

The first two conditions ensure the objective is well-defined
while the last condition which can be easily ensured, is used
in the proof of Prop. 1 which guarantees that the optimal
policy of the MDP M is preserved. Lastly, in what follows
we use the shorthand I(t) ≡ It.

The Shaper’s Objective
The goal of the Shaper is to guide Controller to efficiently
learn to maximize its own objective. The shaping reward F
is activated by switches controlled by the Shaper. To induce
Shaper to selectively choose when to switch on the shaping
reward, each switch activation incurs a fixed cost for the
Shaper. This ensures that the gain for the Shaper for encour-
aging Controller to visit a given set of states is sufficiently
high to merit learning optimal shaping reward magnitudes.
Given these remarks the Shaper’s objective is

vπ,π
2

2 (s0, I0) = Eπ,π2

 ∞∑
t=0

γt(R̂1 −
∞∑
k≥1

δtτ2k−1
+ L(st))


where δtτ2k−1

is the Kronecker-delta function which intro-
duces a cost for each switch, is 1 whenever t = τ2k−1 and 0
otherwise (this restricts the costs to only the points at which
the shaping reward is activated). The term L is a Shaper
bonus reward for when the Controller visits an infrequently
visited state and tends to 0 as the state is revisited.

The objective encodes the Shaper’s agenda, namely to
maximise the expected return.3 Therefore, using its shaping
rewards, the Shaper seeks to guide Controller towards opti-
mal trajectories (potentially away from suboptimal trajecto-
ries, c.f. Experiment 1) and enable Controller to learn faster
(c.f. Cartpole experiment in Sec. ). With this, the Shaper
constructs a shaping-reward function that supports the Con-
troller’s learning which is tailored for the specific setting.
This avoids inserting hand-designed exploration heuristics
into the Controller’s objective as in curiosity-based methods
(Burda et al. 2018; Pathak et al. 2017) and classical reward
shaping (Ng, Harada, and Russell 1999). We later prove that
with this objective, the Shaper’s optimal policy maximises
Controller’s (extrinsic) return (Prop. 1). Additionally, we
show that the framework preserves the optimal policy of M.

Discussion on Shaper Bonus Term L

For this there are various possibilities e.g. model prediction
error (Stadie, Levine, and Abbeel 2015), count-based explo-
ration bonus (Strehl and Littman 2008). We later show our
method performs well regardless of the choice of bonus re-
wards and outperforms RL methods in which these bonuses
are added to the agent’s objective directly (see Sec. ).

Discussion on Computational Aspect
The switching control mechanism results in a framework
in which the problem facing the Shaper has a markedly re-
duced decision space in comparison to the Controller’s prob-
lem (though both share the same experiences). Crucially, the
Shaper must compute optimal shaping rewards at only a sub-
set of states which are chosen by g2. Moreover, the decision
space for the switching policy g2 is S × {0, 1} i.e at each
state it makes a binary decision. Consequently, the learning
process for g2 is much quicker than the Controller’s policy
which must optimise over a decision space which is |S||A|
(choosing an action from its action space at every state). This
results in the Shaper rapidly learning its optimal policies (rel-
ative to the Controller) in turn, enabling the Shaper to guide
the Controller towards its optimal policy during its learning
phase. Additionally, in our experiments, we chose the size of
the action set for the Shaper, A2 to be a singleton resulting
in a decision space of size |S|× {0, 1} for the entire problem
facing the Shaper. We later show that this choice leads to
improved performance while removing the free choice of the
dimensionality of the Shaper’s action set. Lastly, we later
prove that the optimal policy for the Shaper maximises the
Controller’s objective (Prop. 1).

The Overall Learning Procedure
The game G is solved using our multi-agent RL algorithm
(ROSA). In the next section, we show the convergence prop-
erties of ROSA. The full code is in Sec. ?? of the Appendix.
The ROSA algorithm consists of two independent procedures:
Controller learns its own policy while Shaper learns which
states to perform a switch and the shaping reward magnitudes.
In our implementation, we used proximal policy optimization

3Hence R̂2(st, at, a
2
t ) ≡ R(st, at) + F̂ (a2

t , a
2
t−1) · It −∑∞

k≥1 δ
t
τ2k−1

+ L(st).
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(PPO) (Schulman et al. 2017) as the learning algorithm for
all policies: Controller’s policy, switching control policy, and
the reward magnitude policy. We demonstrated ROSA with
various Shaper L terms, the first is RND (Burda et al. 2018)
in which L takes the form L(st) := ∥ĥ(st)− h(st)∥22 where
h is a randomly initialised, fixed target network while ĥ is
the predictor network that seeks to approximate the target
network. Secondly, to demonstrate the flexibility of ROSA
to perform well with even a rudimentary bonus term, we use
a simple count-based term for L, which counts the number
of times a state has been visited (see Sec. ). The action set of
the Shaper is thus A2 := {0, 1, ...,m} where each element
is an element of N, and π2 is a MLP π2 : Rd 7→ Rm. Precise
details are in the Supplementary Material, Section 8.

Convergence and Optimality of ROSA
The ROSA framework enables the Shaper to learn a shaping-
reward function to assist the Controller when learning a (near-
)optimal policy. The interaction between the two RL agents
induces two concurrent learning processes, potentially rais-
ing convergence issues (Zinkevich, Greenwald, and Littman
2006). We now show that ROSA converges and that the per-
formance of the resulting policy is similar to solving M di-
rectly. To achieve this, we first study the stable point solutions
of G. Unlike MDPs, the existence of stable point solutions in
Markov policies is not guaranteed for MGs (Blackwell and
Ferguson 1968) and is rarely computable.4 MGs also often
have multiple stable points that can be inefficient (Mguni
et al. 2019); in G, the outcome of such stable point profiles
may be a poor performing Controller policy. To ensure the
framework is useful, we must verify that the solution of G
corresponds to M. We address the following challenges:

1. ROSA preserves the optimal policy of M.
2. A stable point of the game G in Markov policies exists.
3. ROSA converges to the stable point solution of G.
4. The convergence point of ROSA yields a payoff that is

(weakly) greater than that from solving M directly.
In proving 1–4 we deduce the following:

Theorem 1. ROSA ensures conditions C.1 and C.2.

Proofs are deferred to the Appendix.
We now give our first result that shows the solution to M

is preserved under the influence of the Shaper:

Proposition 1. The following statements hold ∀s ∈ S:

i) argmax
π∈Π

ṽπ,π
2

(s) = argmax
π∈Π

vπ(s), ∀π2 ∈ Π2,

ii) The Shaper’s optimal policy maximises vπ(s).

Recall, vπ denotes the Controller’s expected return without
the influence of the Shaper. Result (i) therefore says that
the Controller’s problem is preserved under the influence of
the Shaper. Moreover the (expected) total return received
by the Controller is that from the environment. Result (ii)
establishes that the Shaper’s optimal policy induces Shaper
to maximise Controller’s extrinsic total return.

4Exceptions are team and zero-sum MGs (Yang and Wang 2020).

The result comes from a careful adaptation of the policy
invariance result (Ng, Harada, and Russell 1999) to our multi-
agent switching control framework, where the shaping reward
is no longer added at all states. Building on Prop. 1, we find:
Corollary 1. ROSA preserves the MDP M. In particular, let
(π̂1, π̂2) be a stable point policy profile5 of the MG induced
by ROSA G. Then, π̂1 is a solution to the MDP, M.

Hence, introducing the Shaper does not alter the solution.
We next show that the solution of G can be computed as a

limit point of a sequence of Bellman operations. We use this
to show the convergence of ROSA. We define a projection P
on a function Λ by: PΛ := argmin

Λ̄∈{Ψr|r∈Rp}

∥∥Λ̄− Λ
∥∥:

Theorem 2. i) Let V : S × N → R then the game G has a
stable point which is a given by lim

k→∞
T kV π = sup

π̂∈Π
V π̂ =

V π⋆

, where π̂ is a stable policy profile for the MG, G and T
is the Bellman operator of G.

ii) ROSA converges to the stable point of G. More-
over, given a set of linearly independent basis functions
Ψ = {ψ1, . . . , ψp} with ψk ∈ L2, ∀k, ROSA converges
to a limit point r⋆ ∈ Rp that is the unique solution to
PF(Ψr⋆) = Ψr⋆, where F is defined by: FΛ := R̂1 +

γP max{MΛ,Λ} where M is defined by Mπ,π2

v(s, ·) :=
R̂1 − 1+ γ

∑
s′∈S P (s

′; aτk , s)v(s
′, ·)|aτk ∼ π2 and r⋆ sat-

isfies: ∥Ψr⋆ −Q⋆∥ ≤ (1− γ2)−1/2 ∥PQ⋆ −Q⋆∥.
Part i) of the theorem proves the system in which the

Shaper and Controller jointly learn has a stable point and is
the limit of a dynamic programming procedure. Crucially (by
Corollary 1), the limit point corresponds to the solution of
the MDP M. This is proven by showing that G has a dual
representation as an MDP whose solution corresponds to
the stable point of the MG. This then enables a distributed
Q-learning method (Bertsekas 2012) to tractably solve G.

Part ii) establishes the solution to G can be computed using
ROSA. This means that the Shaper converges to a shaping-
reward function and (by Prop. 1) the Controller learns the
optimal value function for M. The result also establishes the
convergence of ROSA to the solution using (linear) function
approximators and bounds the approximation error by the
smallest error achievable (given the basis functions).

Introducing poor shaping rewards can potentially worsen
overall performance. We now prove ROSA introduces shap-
ing rewards that yield higher total environment returns for
the Controller, as compared to solving M directly.
Proposition 2. There exists some finite integer N such that
vπ̃m(s) ≥ vπm(s), ∀s ∈ S for any m ≥ N , where π̃m
and πm are the respective Controller policies after the mth

learning iteration with and without the Shaper’s influence.
Note that Prop. 2 implies vπ̃(s) ≥ vπ(s), ∀s ∈ S . Prop. 2

shows that the Shaper improves outcomes for the Controller.
Additionally, unlike reward shaping methods in general, the
shaping rewards generated by the Shaper never lead to a
reduction to the total (environmental) return for Controller
(compared to the total return without F ).

5I.e. a Markov perfect equilibrium (Fudenberg and Tirole 1991).
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Figure 1: Left. Proportion of optimal and suboptimal goal ar-
rivals. ROSA has a marked inflection (arrow) where arrivals at
the sub-optimal goal decrease and arrivals at the optimal goal
increase. Shaper has learned to guide Controller to forgo the
suboptimal goal in favour of the optimal one. Right. Heatmap
showing where ROSA adds rewards.

Note: Prop. 2 compares the environmental (extrinsic) re-
wards accrued by the Controller. Prop. 2 therefore shows
Shaper induces a Controller policy that leads to a (weakly)
higher expected return from the environment.

Experiments
We performed a series of experiments to test if ROSA (1)
learns beneficial shaping-reward functions (2) decomposes
complex tasks, and (3) tailors shaping rewards to encourage
the Controller to capture environment rewards (as opposed
to merely pursuing novelty). We compared ROSA’s perfor-
mance to RND (Burda et al. 2018), ICM (Pathak et al. 2017),
LIRPG (Zheng, Oh, and Singh 2018), BiPaRS-IMGL (Hu
et al. 2020)6 and vanilla PPO (Schulman et al. 2017). We
then compared performances on performance benchmarks in-
cluding Sparse Cartpole, Gravitar, Solaris, and Super Mario.

Didatical Examples
Beneficial shaping reward. ROSA is able to learn a shaping-
reward function that leads to improved Controller perfor-
mance. In particular, it is able to learn to shape rewards that
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Figure 2: Discovering subgoals on Subgoal Maze. Left. Learn-
ing curves. Right. Heatmap of shaping rewards.

encourage the RL agent to avoid suboptimal — but easy to
learn — policies in favour of policies that attain the maximal
return. To demonstrate this, we designed a Maze environment

6BiPaRS-IMGL requires a manually crafted shaping-reward
(only available in Cartpole).
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Figure 3: Red-Herring Maze. Ignoring non-beneficial shap-
ing reward. Left. Learning curves. Right. Heatmap of added
shaping rewards. ROSA ignores the RHS of the maze, while
RND incorrectly adds unuseful shaping rewards there.

with two terminal states: a suboptimal goal state that yields a
reward of 0.5 and an optimal goal state which yields a reward
of 1. In this maze design, the sub-optimal goal is more easily
reached. A good shaping-reward function discourages the
agent from visiting the sub-optimal goal. As shown in Fig.
17 ROSA achieves this by learning to place shaping rewards
(dark green) on the path that leads to the optimal goal.

Subgoal Discovery
We used the Subgoal Maze introduced in (McGovern and
Barto 2001) to test if ROSA can discover subgoals. The envi-
ronment has two rooms separated by a gateway. To solve this,
the agent must discover the subgoal (reaching the gateway
before it can reach the goal. Rewards are −0.01 everywhere
except at the goal state where the reward is 1. As shown in
Fig. 2, ROSA successfully solves this environment whereas
other methods fail. ROSA assigns importance to reaching the
gateway, depicted by the heatmap of added shaped rewards.
Ignoring non-beneficial shaping reward. Switching control
gives ROSA the power to learn when to attend to shaping
rewards and when to ignore them. This allows us to learn
to ignore “red-herrings”, i.e., unexplored parts of the state
space where there is no real environment reward, but where
surprise or novelty metrics would place high shaping rewards.
To verify this claim, we use a modified Maze environment
called Red-Herring Maze in which a large part of the state
space that has no environment reward, but with the goal and
environment reward elsewhere. Ideally, we expect that the
reward shaping method can learn to quickly ignore the large
part of the state space. Fig. 3 shows ROSA outperforms all
other baselines. Moreover, the heatmap shows that while
RND is easily dragged to reward exploring novel but non-
rewarding states, ROSA learns to ignore them.

Learning Performance
We compared ROSA with the baselines in four challenging
sparse rewards environments: Cartpole, Gravitar, Solaris, and

7The sum of curves for each method may be less than 1 if the
agent fails to arrive at either goal.
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Super Mario. These environments vary in state representa-
tion, transition dynamics and reward sparsity. In Cartpole,
a penalty of −1 is received only when the pole collapses;
in Super Mario Brothers the agent can go for 100s of steps
without encountering a reward. Fig. 4 shows learning curves.
ROSA either markedly outperforms the best-competing base-
line (Cartpole and Gravitar) or is on par with them (Solaris
and Super Mario) showing that it is robust to the nature of the
environment and underlying sparse reward. Moreover, ROSA
does not exhibit the failure modes where after good initial
performance it deteriorates. E.g., in Solaris both ICM and
RND have good initial performance but deteriorate sharply
while ROSA’s performance remains satisfactory.

Ablation Studies
To understand how ROSA’s performance is affected by com-
ponents of the algorithm or hyper-parameter settings, we
ran a series of ablation experiments. All experiments in this
section were run on a simple 25x25 Gridworld in Fig. 5(a).

ROSA is an effective plug & play framework. Fig. 5
shows the performance of vanilla PPO and vanilla TRPO
versus their ROSA-enhanced counterparts. Particularly no-
table is ROSA’s enhancement to TRPO. Both vanilla TRPO
and TRPO+ROSA perform equally well in the early stages
of learning, but while vanilla TRPO seems to get stuck with
a suboptimal policy, TRPO+ROSA consistently improves
performance through learning until reaching convergence.

ROSA delivers performance boost despite severe impair-
ments to the method. A core component of ROSA is the
exploration bonus term in the Shaper’s objective. We ran
experiments to check if ROSA can still deliver a performance
boost when this important component of the algorithm is
either weakened or ablated out entirely. Fig. 6 shows the
performance of various versions of ROSA: one with RND
providing the exploration bonus, one with a simple count-
based measure L(s) = 1

Count(s)+1 providing the exploration
bonus, and one where the exploration bonus is ablated out
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Figure 5: ROSA is an effective plug & play framework. En-
hancing both PPO (left) and TRPO (right) with ROSA results
in marked performance gains.
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Figure 6: Ablation study on the exploration bonus.

entirely. Stronger exploration bonuses such as RND enable
ROSA (PPO+ROSA (L=RND)) to provide more effective re-
ward shaping over weaker exploration bonuses (PPO+ROSA
(L=Count-based)), indicating this is an important aspect. Yet,
ROSA can still usefully benefit learners even when the explo-
ration bonus is ablated completely as shown by the fact that
(PPO+ROSA (No. L)) outperforms Vanilla PPO.

Conclusion
We presented a novel solution method to solve the problem
of reward shaping. Our Markov game framework of a pri-
mary Controller and a secondary reward shaping agent is
guaranteed to preserve the underlying learning task for the
Controller whilst guiding Controller to higher performance
policies. Moreover, ROSA is able to decompose complex
learning tasks into subgoals and to adaptively guide Con-
troller by selectively choosing the states to add shaping re-
wards. By presenting a theoretically sound and empirically ro-
bust approach to solving the reward shaping problem, ROSA
opens up the applicability of RL to a range of real-world con-
trol problems. The most significant contribution is a novel
approach that marries RL and multi-agent systems which we
believe can be adapted to solve other open challenges in RL.
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