
Intersection Coordination with Priority-Based Search for Autonomous Vehicles

Jiaoyang Li1, The Anh Hoang2, Eugene Lin3, Hai L. Vu2, Sven Koenig3

1 Robotics Institute, Carnegie Mellon University, USA
2 Department of Civil Engineering, Monash University, Australia

3 Computer Science Department, University of Southern California, USA
jiaoyangli@cmu.edu, the.hoang@monash.edu, eugenezlin@gmail.com, hai.vu@monash.edu, skoenig@usc.edu

Abstract

The development of connected and autonomous vehicles
opens an opportunity to manage intersections without signals.
One promising approach is to use a central autonomous inter-
section manager to optimize the movement of the vehicles
in the intersection. Existing work uses Mixed Integer Lin-
ear Programming (MILP) to find optimal solutions for this
problem but is time-consuming and cannot be applied in real-
time. On the other hand, the coordination of the vehicles is
essentially a Multi-Agent Path Finding (MAPF) problem, for
which dozens of efficient algorithms have been proposed in
recent years. Inspired by these MAPF algorithms, we pro-
pose a three-level algorithm called PSL to solve the inter-
section coordination problem. Theoretically, PSL is complete
and polynomial-time in the number of vehicles. Empirically,
PSL runs significantly faster with only a slight compromise
in the solution quality than the optimal MILP method. It also
generates significantly better solutions with a slightly larger
runtime than the traditional First-Come-First-Served strategy.

Introduction
The development of Connected and Autonomous Vehicles
(CAVs) technology opens a new opportunity to manage ve-
hicles on roads, particularly vehicles crossing intersections.
With the assumption that a full fleet of CAVs will be on the
road in the future, the concept of signal-free intersections
has attracted researchers in the transportation field (Dresner
and Stone 2004; Zhong, Nejad, and Lee 2021). The early
proposal of signal-free intersections was based on reserva-
tion strategies. All approaching vehicles communicate with
a central autonomous Intersection Manager (IM). The IM
receives reservation requests from vehicles and accepts a re-
quest if it has no collisions with the previous reservations.
An early implementation of the reservation-based strategies
was First Come First Served (FCFS) (Dresner and Stone
2004, 2008; Au and Stone 2010; Au, Shahidi, and Stone
2011; Li et al. 2013), where the IM assets the priority of the
vehicles using the temporal order of the received requests.

However, such FCFS strategies can lead to poor solu-
tion quality, particularly in the scenario with high traffic de-
mands. For instance, FCFS was shown to increase delays
beyond conventional signals in specific scenarios (Levin,

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Boyles, and Patel 2016). For that reason, several studies pro-
posed optimization-based strategies (Lee and Park 2012; Zo-
hdy and Rakha 2016). Noticeably, Levin and Rey (2017)
developed a Mixed Integer Linear Programming (MILP)
model to determine the optimal coordination strategies for a
single intersection. It produced significantly better solutions
than the FCFS strategy but was computationally inefficient
and thus cannot be used in real-time. Refer to (Zhong, Nejad,
and Lee 2021) for a thorough survey on different coordina-
tion strategies for autonomous intersection management.

The core challenge here is to efficiently and effectively
resolve collisions among many vehicles, which is close
to Multi-Agent Path Finding (MAPF) (Stern et al. 2019),
a problem widely studied in AI and robotics. Dozens of
MAPF algorithms have been proposed in recent years,
which, for example, can find optimal solutions for hundreds
of agents (Li et al. 2021a) and near-optimal solutions for a
thousand agents (Li, Ruml, and Koenig 2021) within just
a minute. Inspired by the MAPF algorithms, we propose
a three-level algorithm PBS-SIPP-LP (PSL): Level 1 uses
Priority-Based Search (PBS) (Ma et al. 2019) to resolve col-
lisions between vehicles; Level 2 uses a modified version of
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) to plan optimal paths for individual vehicles; and
Level 3 uses a Linear Programming (LP) model to optimize
the entry time and speed of each vehicle.

Our main contribution is as follows: (1) We apply MAPF
algorithms to the intersection coordination problem and
show promise compared to the existing intersection coordi-
nation algorithms. Specifically, PSL runs significantly faster
than MILP and is suitable in real-time. It finds near-optimal
solutions, which are substantially better than the solutions
of FCFS. (2) We combine search- and optimization-based
methods to optimize the trajectories and speeds of the ve-
hicles simultaneously (while existing MAPF algorithms do
not optimize speeds). (3) We prove that PSL is complete and
polynomial-time in the number of vehicles (while PBS for
MAPF is neither complete nor polynomial-time).

Background
Intersection Setup
Levin and Rey (2017) introduced a conflict-point representa-
tion for single intersections and modeled the intersection co-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11578

Figure 1: Illustration of a 4-approach, 2-lane intersection,
borrowed from (Levin and Rey 2017). Four vehicle trajec-
tories WSR, WER, WEL, and WNL are available for the
West approach, denoted by the four green lines. We mark
all conflict points on each green line with a black square.
Vehicles are not allowed to have sharp turns. For example,
vehicles coming from Lanes WL and WR are not allowed to
switch to any grey lines via the conflict points.

ordination problem as a Conflict Point Intersection Control
(CPIC) problem. Figure 1 shows an example. Each straight
or curved line represents a potential trajectory for a vehicle
to move from an entry lane to an exit lane. The intersection
of any two trajectories is marked as a conflict point, which
can be occupied by at most one vehicle at any time. Our task
is to coordinate the vehicles on this conflict-point graph so
that no two vehicles collide at any conflict points.

The communication flow between the IM and a vehicle
is as follows: When a vehicle approaches the intersection,
it sends a RESERVATION request to the IM, which con-
tains the information of the vehicle type, the entry and exit
lanes, and the current position and speed. The IM then cal-
culates the earliest time when it can enter the intersection.
After periodically running an intersection coordination algo-
rithm, such as our algorithm PSL, the IM sends the RESER-
VATION message to the vehicle, which contains necessary
information such as entry time and speed to instruct the vehi-
cle to go through the intersection safely. The communication
ends with an ACCEPT message from the vehicle to the IM
and an ACK message from the IM after that. More details
can be found in (Levin and Rey 2017).

Multi-Agent Path Finding (MAPF)
MAPF (Stern et al. 2019) is the problem of planning
collision-free paths for a team of agents. The standard
MAPF problem takes as input an unweighted graph and a
team of agents, each with a start vertex and a goal vertex.
An agent can either move to an adjacent vertex or wait at
its current vertex at each discretized timestep. A collision
happens when two agents try to move to the same vertex
or traverse the same edge in opposite directions at the same
time. The task is to find a set of collision-free paths with the
minimum sum of the travel times that move all agents from
their start vertices to their goal vertices.

MAPF and CPIC problems are similar. But, to use MAPF
algorithms to solve the CPIC problem, we have two chal-
lenges: (1) In MAPF, agents are point agents, while in CPIC,
vehicles have shapes and need to keep safety distances from
each other. Thus, vehicles can collide with each other even
when they are not at the same vertex. (2) In MAPF, time is
discretized, and agents move with binary speeds (i.e., either
wait or move one vertex per timestep), while, in CPIC, time
is continuous, and we need to optimize the speeds of the
vehicles. In particular, vehicles are not allowed to wait in
the intersection, and a minimum speed is usually required to
prevent vehicles from spending arbitrarily long time in the
intersection. To our knowledge, the only work that applies
MAPF algorithms to the CPIC problem is (Skopkova, Bar-
tak, and Svancara 2020), but it does not consider the above
challenges and is thus not suitable for practical deployments.

Problem Formulation
We use the CPIC problem formulation from (Levin and Rey
2017). Consider a set of vehicles V and a single intersection
using the conflict-point graph representation with sets of en-
try and exit lanes (= points) Γ− and Γ+. Each vehicle i ∈ V
has a traveling request from an entry lane γ−i ∈ Γ− to an exit
lane γ+i ∈ Γ+ with an earliest entry time ei ∈ R≥0 (i.e., the
earliest time when vehicle i can reach γ−i). We assume that
each vehicle i travels at a uniform speed through the inter-
section, but its speed ui ∈ [U i, U i] is a decision variable,
where U i ∈ R>0 and U i ∈ R>0 (U i ≥ U i) are the given
minimum and maximum speed for vehicle i, respectively.

We refer to the intersection as the area after the vehicles
pass stop lines. That is to say, vehicles are allowed to wait
before they reach the entry lanes but must cruise with the
given speed once enter the intersection. The graph in Fig-
ure 1 is a typical traditional intersection graph where the tra-
jectory (i.e., sequence of conflict points) for every pair of en-
try and exit lanes is already specified. We will use this graph
in the experiments because our baseline algorithms from
(Levin and Rey 2017) work for only such graphs. Neverthe-
less, our algorithm PSL can work for more general graphs
where there are multiple different trajectories for every pair
of entry and exit lanes.

We use ti(c) ∈ R≥0 to denote the time when vehi-
cle i reaches (conflict) point c. By definition, we have
ti(γ

−
i) ≥ ei. We use di(cj , ck) ∈ R>0 to denote the

distance for which vehicle i travels from points cj to ck.
That is, ti(cj) − ti(ck) = di(cj , ck)/ui. The time duration
τi(c) ∈ R>0 for which vehicle i occupies point c is calcu-
lated as τi(c) = li(c)/ui+li(c)/w, where li(c) ∈ R≥0 is the
total length that vehicle i goes around point c and w ∈ R≥0

is the congested wave speed.1 (More details of this equation
can be found in (Levin and Rey 2017).) Thus, vehicle i com-
pletely passes through point c at time ti(c) + τi(c). We call
ti(γ

−
i) and ti(γ+i)+τi(γ

+
i) the entry and exit time of vehicle

1Congested wave, also known as shockwave, is a term used in
the transportation field that originates from a sudden, substantial
change in the traffic flow state. It can be observed, for example,
when a vehicle stops at a stop line forming a queue where its rear
grows in the opposite direction of the traveling traffic.

11579

i, respectively. When vehicles i and j move through point c,
a collision occurs iff time intervals [ti(c), ti(c) + τi(c)) and
[tj(c), tj(c) + τj(c)) overlap. Vehicles are not allowed to
overtake each other in the intersection: If vehicles i and j
are in the same entry lane with ei < ej , then ti(c) < tj(c)
holds for all points c that both vehicles visit.

Our task is to plan for each vehicle i a path, namely a se-
quence of conflict points, starting at γ−i and ending at γ+i ,
associated with a reserved interval [ti(c), ti(c) + τi(c)) for
each point c in the sequence, so that the vehicles neither
overtake nor collide with each other and the sum of their
exit times is minimized.

PBS-SIPP-LP (PSL)
Our algorithm PSL consists of three levels: Level 1 uses
PBS (Ma et al. 2019) to address the collisions between the
paths of the vehicles by generating spatio-temporal con-
straints, where the paths of the vehicles are generated by
Level 2; Level 2 uses a modified version of SIPP (Phillips
and Likhachev 2011) to plan an optimal path for a vehicle
with respect to the spatio-temporal constraints generated by
Level 1, where the entry time and the speed of the path are
determined by Level 3; and Level 3 uses an LP model to
optimize the entry time and the speed of a vehicle.

Level 1: PBS
Prioritized planning is a widely-used MAPF algorithm. It
first sorts the agents by a predefined total priority ordering
and then plans a path with the minimum travel time for each
agent, from the highest priority to the lowest priority, that
avoids collisions with the paths of all higher priority agents.
The FCFS strategy can be viewed as a prioritized planning
algorithm that sorts the vehicles by their earliest entry times.

Prioritized planning is simple and runs fast. But its solu-
tion quality is sensitive to the predefined total priority or-
dering. Priority-Based Search (PBS) (Ma et al. 2019) over-
comes this drawback by searching the space of all possible
priority orderings. We choose to use PBS instead of other
MAPF algorithms for three reasons: (1) PBS is efficient. For
example, it can plan paths for 200 agents within a second in
an offline setting (Ma et al. 2019) and for 800 agents within
five seconds in an online setting (Li et al. 2021b). So it fits
our requirement of real-time planning. (2) PBS finds near-
optimal solutions empirically. For example, the sum of the
travel times of its solution is always less than 5% worse than
the optimal on the MAPF benchmark suite (Ma et al. 2019),
which significantly outperforms other prioritized planning
methods. So it can coordinate the vehicles in the intersec-
tion with high throughput. (3) PBS or, in general, priori-
tized planning is flexible and can be easily adapted to differ-
ent agent models without sacrificing its efficiency too much.
For example, it can be used for differential drive robots and
general agents with nonlinear (Yakovlev, Andreychuk, and
Vorobyev 2019) or nonholonomic (Chen et al. 2021) dynam-
ics. So it can be adapted to our vehicle models efficiently.

We adapt PBS to solving our problem as follows. Algo-
rithm 1 shows the pseudo-code. We search a binary Priority
Tree (PT) in a depth-first manner. Each PT node contains a

Algorithm 1: Level 1 of PSL.
1 Root ← GENERATEROOT();
2 STACK ← {Root};
3 while STACK 6= ∅ do
4 N ← STACK.pop();
5 if N.collisions = ∅ then return N.plan;
6 (i, j)← a collision in N.collisions ;
7 Ni, Nj ← N ; // Two copies of N
8 for (x, y) ∈ {(i, j), (j, i)} do
9 ≺≺≺Nx←≺≺≺Nx ∪{y ≺ x};

10 UPDATEPLAN(Nx);

11 Insert Ni and Nj into STACK in descending order of
the sum of the exit times of their paths;

12 return “No Solution”;

set of (partial) priority orderings and a set of paths, one for
each vehicle, that is consistent with its priority orderings.
That is, if two vehicles i and j have a priority ordering i ≺ j
(indicating that vehicle i has higher priority than vehicle j),
then the path of vehicle j has to avoid collisions with the
path of vehicle i. If two vehicles do not have a priority or-
dering, then their paths are allowed to collide with other, and
the collisions will be resolved in descendant PT nodes.

The root PT node [Line 1] contains an initial set of pri-
ority orderings with respect to the earliest entry times of the
vehicles, namely i ≺ j iff γ−i = γ−j ∧ ei < ej . When ex-
panding a PT node, we first check whether its paths contain
any collisions. We terminate and return its paths if there are
no collisions [Line 5]. Otherwise, we choose one collision,
say between vehicles i and j [Line 6], and resolve it by gen-
erating two child PT nodes: one with an added priority order-
ing i ≺ j and the other one with an added priority ordering
j ≺ i [Lines 7 to 9]. We call the UPDATEPLAN function to
make the paths of each child PT node consistent with its set
of priority orderings [Line 10]. That is, if the paths of any
two vehicles x and y with x ≺ y have collisions, we call
Level 2 to replan the path for vehicle y. In order to avoid
replanning the path for the same vehicle twice, we topolog-
ically sort the vehicles based on the priority orderings of the
child PT node and check the inconsistency in the resulting
order. Please refer to the original PBS paper (Ma et al. 2019)
for more details. Finally, we finish this iteration and will ex-
pand the child PT node whose paths have a smaller sum of
the exit times first in the next iteration [Line 11].

Level 2: SIPP
The task of Level 2 is to plan a path with the minimum exit
time for a given vehicle i ∈ V that does not collide with a
given set of paths (which are the paths of the vehicles with
higher priority than vehicle i). Different from traditional
pathfinding problems in the MAPF literature, our problem
needs to determine not only the sequence of conflict points
that vehicle i needs to visit but also its entry time and speed
(the reserved intervals [ti(c), ti(c) + τi(c)) for each point c
in the sequence can be then computed accordingly). Since
vehicles move in continuous time, traditional single-agent
pathfinding algorithm space-time A* (Silver 2005) (which

11580

Figure 2: Illustration of our modified SIPP. The x-
axis represents the distance traveled by vehicle i, with
γ−i , c1, · · · , c4, γ

+
i being the sequence of conflict points.

The y-axis represents the time. The shadowed strips are the
time intervals reserved by the given paths at every point. The
green line segments are the generated safe intervals.

searches in discrete timesteps) cannot be applied. We there-
fore achieve this goal by first using a modified version of
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) to find a sequence of conflict points, each with a safe
(time) interval during which vehicle i does not collide with
any given path, and then calling Level 3 to specify the en-
try time and the speed so that vehicle i passes through each
point c with its reserved interval [ti(c), ti(c) + τi(c)) within
the corresponding safe interval.

SIPP performs an A* search on a time-interval graph
where each state in the graph is defined by two elements:
a location (= conflict point) and a safe (time) interval, repre-
senting that a particular location is not reserved by any given
paths during the safe interval. We use Figure 2 to illustrate
how our modified SIPP works. We assume that vehicle i oc-
cupies each point c for only an instant of time (instead of
a duration of time τi(c)) and can vary its speed arbitrarily
as long as the speed is always within [U i, U i] (instead of
stick to a constant speed). This assumption will be corrected
in Level 3. Vehicle i can be at entry lane γ−i at or after its
earliest entry time ei. To avoid colliding with the reserved
interval [t1, t2) at γ−i , we generate two safe intervals [ei, t1)
and [t2,+∞). Let us consider the first safe interval [ei, t1).
When vehicle i moves from γ−i to c1 with a speed within
[U i, U i], it reaches c1 within interval [ei + tmin , t1 + tmax),
where tmin and tmax are the travel times of vehicle i from
γ−i to c with speeds U i and U i, respectively. As a result,
we generate two safe intervals at c1, indicated by the two
green line segments at c1 in the figure. If we consider the
earlier safe interval at c1 and repeat this procedure for the
remaining points, we will eventually generate a safe interval
at exit lane γ+i , indicated by the green line segment at γ+i
in the figure. We then backtrack from this interval to get a
sequence of conflict points from γ−i to γ+i , each with a safe
interval, and pass them to Level 3. Level 3 then determines
whether there exists a pair of an entry time and a speed such
that vehicle i visits each point within its safe interval. If it
exists, then Level 3 returns the pair that minimizes the exit
time, and we successfully find a path. We continue searching
other SIPP nodes until we provably find an optimal path.

Algorithm 2 shows the pseudo-code. We build a safe in-
terval table T [Line 1], which is a hash table that maps
each conflict point to a set of safe intervals. Specifically, to
avoid overtaking, we reserve interval [0, tj(c) + τj(c)) for

Algorithm 2: Level 2 of PSL for vehicle i.
1 T ← buildSafeIntervalTable();
2 OPEN ← ∅;
3 for [lb, ub) ∈ T [γ−

i] : ub > ei do
4 insert Node(γ−

i , [max{lb, ei}, ub)) into OPEN;

5 p∗ ← NULL; // The best path seen so far
6 while OPEN 6= ∅ do
7 remove node n with the smallest f -value from OPEN;
8 if f(n) ≥ exit time(p∗) then break;
9 if loc(n) = γ+

i then // Reach the exit lane
10 N ← extractAncesterNodes(n);
11 p← Level 3(N);
12 if exit time(p) < exit time(p∗) then p∗ ← p;
13 continue;

14 for y ∈ getNextConflictPoints(n) do
15 t1 ← lower bound(n) + di(loc(n), y)/U i;
16 t2 ← upper bound(n) + di(loc(n), y)/U i;
17 for [lb, ub) ∈ T [y] : t1 < ub ∧ lb < t2 do
18 insert Node(y, [max{lb, t1},min{ub, t2}))

into OPEN;

19 return p∗;

every point c in the path of every vehicle j ∈ V subject to
γ−j = γ−i ∧ ej < ei. To avoid colliding with any higher pri-
ority vehicle j, we reserve interval [tj(c), tj(c) + τj(c)) for
every point c in its path. After we make all reservations, we
store the compliments of the reserved intervals in T .

OPEN [Line 2] is a regular open list of A* that sorts its
SIPP nodes in ascending order of their f -values. The f -value
of a SIPP node n is the sum of its g-value and h-value, where
the g-value is the lower bound of its safe interval (which is
the earliest time that vehicle i can reach its location loc(n)),
and the h-value is the minimum travel time from loc(n) to
γ+i (i.e., moving from loc(n) to γ+i with speed U i). In other
words, the f -value of n is a lower bound on the exit times of
all corresponding paths of n, i.e., all possible paths from en-
try lane Γ−

i to exit lane Γ+
i that pass through loc(n) and the

locations of the ancestor SIPP nodes of n within the corre-
sponding safe intervals. Since vehicle i can be at entry lane
γ−i at any time no earlier than ei, we generate a SIPP node
for each of the safe intervals at γ−i that overlaps with interval
[ei,+∞) and insert it into OPEN [Lines 3 to 4].

At each iteration, we select the SIPP node n with the
smallest f -value from OPEN [Line 7]. The f -value of n is
a lower bound on all corresponding paths of all SIPP nodes
in OPEN, so when it is no smaller than the exit time of the
best path seen so far p∗, p∗ is provably an optimal path. We
thus terminate [Line 8] and return path p∗ [Line 19]. Func-
tion exit time(p) returns +∞ if path p does not exist. If n
is at the exit lane [Line 9], then we backtrack all its ances-
tor SIPP nodes [Line 10] and call Level 3 to find the cor-
responding path with the minimum exit time [Line 11]. We
then update p∗ if necessary [Line 12]. If SIPP node n is not
at the exit lane, we consider each of the next conflict point y
that can be reached from n (given the orientation of vehicle
i) and compute the earliest and latest arrival times t1 and t2

11581

Figure 3: Running example of PSL on a two-vehicle instance shown at the top-left corner. A path entry at point x with reserved
interval [t1, t2) is marked as x@t1− t2. A SIPP node at point x with safe interval [t1, t2) is marked as x ∈ [t1, t2). The distance
from every entry and exit lane to point c is 20m. The minimum and maximum speeds for both vehicles are 5m/s and 10m/s,
respectively. The time that each vehicle i ∈ {1, 2} spent at point x ∈ {γ−i , γ

+
i , c} is computed by τi(x) = 5

ui
+ 0.5.

at y [Lines 14 to 16]. Then, for each safe interval at y that
overlaps with interval [t1, t2) [Line 17], we generate a SIPP
node with its safe interval being the intersection of the two
intervals and insert it to OPEN [Line 18].

Level 3: LP
We use a Linear Programming (LP) model to determine if
we can find a path with a constant speed such that the du-
ration for which vehicle i occupies each point is within the
corresponding safe interval. We denote the sequence of con-
flict points by c0 = γ−i , c1, · · · , cm−1, cm = γ+i and the
safe interval for cj (j = 0, · · · ,m) by [lbj , ubj). We build
the following LP model to optimize two variables, namely
the entry time t = ti(γ

−
i) and the inverse speed v−1 = 1/ui.

mint,v−1t+
∑m

j=1
djiv

−1 + lmi v
−1 (1)

s.t. 1/U i ≤ v−1 ≤ 1/U i (2)

lb0 ≤ t < ub0 − l0i v−1 − l0i /w (3)

lbj ≤ t+
∑j

j′=1
dj
′

i v
−1 < ubj − lji v

−1 − lji /w,

∀ 1 ≤ j ≤ m, (4)

where dji = di(cj−1, cj) and lji = li(cj). We have ti(cj) =

t+
∑j

j′=1 d
j′

i v
−1 and τi(cj) = lji v

−1 + lji /w. Thus, Equa-
tion (1) minimizes the exit time of vehicle i since it equals
to ti(γ+i)+τi(γ

+
i)− li(γ+i)/w, where the last term is a con-

stant in this situation. Inequality (2) ensures that the speed
of vehicle i is within the speed limit. Inequalities (3) and (4)
are the safe interval constraints at the first and the remain-
ing conflict points, respectively, that ensure that vehicle i
reaches each point cj at or after lbj and leaves it before ubj .

Running Example
We show a running example in Figure 3 to illustrate how
PSL works as a whole. We generate a root PT node N0 at
Level 1. Since no two vehicles share the same entry lanes,
PT nodeN0 contains an empty set of partial priority ordering
≺≺≺N0

= ∅ and a path N0.pi that enters the intersection at the
earliest entry time and moves with the maximum speed for
each vehicle i. We omit the steps in Level 2 and Level 3 to
generate these paths. Since vehicles 1 and 2 collide at point

c, we have N0.collisions = {(1, 2)}. Then, we expand PT
node N0 and generate two child PT nodes N1 and N2 with
an additional partial priority 1 ≺ 2 and 2 ≺ 1, respectively.

Let us focus on PT node N2 first. Since vehicle 1 collides
with vehicle 2 and has a lower priority than vehicle 2, we
call Level 2 to replan its path. At Level 2, we first build a
safe interval table that excludes all the time intervals used
by vehicle 2. We then start the SIPP search by generating
root SIPP node n0 at point γ−1 with interval [0,+∞). There
are two safe intervals at point c in the safe interval table. We
thus generate two child SIPP nodes n1 and n2 with intervals
[2.0, 2.5) and [3.5,+∞), respectively. We next expand n1
as it has a smaller f -value than n2. We generate n3 at point
γ+1 with interval [4.0, 6.5). Since it is at the exit lane, we call
Level 3 to generate a path. However, the corresponding LP
model shown in the upper box in Level 3 does not have any
solutions. We thus continue searching and expand n2. We
generate n4 at exit lane γ+1 with safe interval [5.5,+∞) and
call Level 3 again. This time, the corresponding LP model
is solvable, and we find an optimal solution with t = 1.5s
and v−1 = 0.1s/m. Now, we terminate the SIPP search and
return the optimal path N2.p1. We last set N2.collisions to
be an empty set as the paths in N2 are collision-free. We
omit the details of generating PT nodeN1 as it is analogical.

Next, we expand PT node N1. Since the paths in N1 are
collision-free, we terminate and return its paths.

Theoretical Analysis
Lemma 1 (Completeness and Optimality of Level 3). Level
3 guarantees to find an optimal pair of an entry time and a
speed (i.e., an entry time and a speed such that the vehicle
visits each conflict point within the given safe interval and
exits the intersection the earliest) if one exists and returns
failure otherwise.

We omit the proof for this lemma since it is trivial.
Lemma 2 (Completeness and Optimality of Level 2). Level
2 guarantees to find an optimal path (i.e., a path for vehicle i
that does not collide with any vehicles that have higher pri-
orities than vehicle i and exits the intersection the earliest)
if one exists and returns failure otherwise.

Proof. We first prove the completeness. T contains a finite
number of safe intervals, so the search space of our modified

11582

SIPP is finite, which indicates that Level 2 can terminate in
finite time if no solution exists. If a solution exists, it is guar-
anteed to be found because we explore all reachable points
during all reachable safe intervals. We then prove the opti-
mality. Since the f -value of a SIPP node is provably a lower
bound on the exit times of its corresponding paths, the small-
est f -value of the SIPP nodes in OPEN, denoted as f(n), is
provably a lower bound on the exit times of the correspond-
ing paths of the SIPP nodes in OPEN. Since p∗ is the best
path seen so far, when f(n) ≥ exit time(p∗), no correspond-
ing paths of the SIPP nodes in OPEN can have smaller exit
times than p∗. That is, p∗ is optimal.

Level 2 is complete and optimal, so it can report failure in
finite time for unsolvable instances. Nevertheless, the CPIC
problem has special properties that ensure that the problem
solved by Level 2 is always solvable (i.e., Level 2 never re-
ports failure), as shown in Lemma 3.
Lemma 3 (Solvability of Level 2). The problem solved by
Level 2 is always solvable. That is, there always exists a path
for vehicle i that does not collide with the paths of the vehi-
cles that have higher priorities than vehicle i.

Proof. Let T be the largest exit time of the vehicles that have
higher priority than vehicle i. The path for vehicle i that en-
ters its entry lane at time T + 1 and moves to its exit lane
with its largest speed does not collide with any vehicle that
has higher priority than it. So the lemma holds.

Theorem 1 (Completeness and Suboptimality of PSL). PSL
is complete and suboptimal. That is, PSL can always find a
solution within finite time, but the solution may not have the
minimum sum of the exit times.

Proof. We know from Lemmas 2 and 3 that Level 2 always
returns a solution. So Level 1 can always successfully gen-
erate a root PT node and, when expanding a PT node, two
child PT nodes. When it resolves a collision between two ve-
hicles at PT nodeN , these two vehicles are guaranteed to be
collision-free in all descendant PT nodes of N (otherwise,
the paths in the descendant PT nodes are not consistent with
their priority orderings). That is, along one branch, we need
to resolve the collisions between any two vehicles at most
once. Since the maximum number of pairs of vehicles that
can collide is |V|(|V| − 1)/2 and Level 1 performs a depth-
first search, it finds a PT node that contains collision-free
paths within |V|(|V|− 1)/2 PT node expansions. Thus, PSL
is complete. It is suboptimal because Level 1 uses a depth-
first search and stops when finding the first solution.

We have tested a version of PSL that uses best-first search,
instead of depth-first search, in Level 1. But, it is still sub-
optimal because each vehicle optimizes its speed by mini-
mizing the exit time, which might result in a non-minimum
arrival time at some conflict point x along its path. This can
delay the exit time of other vehicles that pass through x after
this vehicle and thus lead to a suboptimal solution. More-
over, empirically, this best-first-search version runs substan-
tially slower than the depth-first-search version with negli-
gible improvements in solution quality in practice. We thus
choose to use the depth-first-search version of PSL.

Lemma 4 (Search-Tree Size of Level 1). Level 1 generates
at most |V|(|V| − 1) PT nodes.

This lemma can be derived from the proof of Thoerem 1.

Lemma 5 (Search-Tree Size of Level 2). Level 2 generates
at most 2(D|V|)d SIPP nodes in each call, where D is the
maximum number of adjacent conflict points a vehicle can
reach from a given conflict point, and d is the maximum num-
ber of conflict points in a path from an entry to an exit lane.

Proof. Since vehicles cannot move backward in an intersec-
tion and the conflict-point graph contains no circles, a ve-
hicle can never visit the same point twice. Hence, in Level
2, each point can be reserved by at most |V| − 1 times, one
time per vehicle. That is, the number of safe intervals at each
point in T is at most |V|. Thus, when we expand a SIPP node
during the SIPP search, we generate at mostD|V| child SIPP
nodes. Since the depth of the SIPP tree is bounded by d, the
size of the SIPP tree is bounded by 2(D|V|)d.

Lemma 6 (Problem Size of Level 3). The LP model of Level
3 consists of 2 variables and at most 2(d + 1) constraints,
where d is the number of conflict points in the path.

We omit the proof for this lemma since it is trivial.

Theorem 2 (Time Complexity of PSL). The time complexity
of PSL isO(|V|d+3DdF(d)),2 where d is the largest number
of conflict points in one path, and F(d) is the time complex-
ity of the LP solver with d conflict points as input. Notably,
this time complexity is polynomial in the number of vehicles.

Proof. Since (1) PSL generates at most O(|V|2) PT nodes,
(2) each PT node replans paths for at most |V| vehicles, (3)
each replan generates at most 2(D|V|)d SIPP nodes, and (4)
each SIPP node calls the LP model at most once, the time
complexity of PSL is O(|V|2) · |V| · 2(D|V|)d · F(d) ≤
O(|V|d+3DdF(d)).

Empirical Evaluation
We implement both PSL and baseline algorithms (intro-
duced below) in C++3 and use C++ CPLEX to solve the
programming models. We run experiments on a VMWare
virtual machine with Intel I7-9850H 2.60Hz and 8GB RAM.
CPLEX uses 12 cores, while the other codes use only 1 core.

Baseline Algorithms The survey paper (Zhong, Nejad,
and Lee 2021) divides methods for solving the intersection
coordination problems into three categories, namely system
optimal, FCFS, and heuristics. We pick MILP proposed in
(Levin and Rey 2017) as a representative system optimal
method and FCFS introduced in Section 4.8 in (Levin and
Rey 2017) as a representative FCFS method. We do not
pick any heuristic methods because we are not aware of any
heuristic methods that work for our problem setup.

2This time complexity is in terms of the LP operations and ig-
nores the other operations in the search such as collision checking,
node insertion, etc. because they are usually cheaper than the LP
operations and can be done in (near-)linear time.

3The code is available at https://github.com/theanhhoang/AIM.

11583

(a) 500vphpl (b) 800vphpl

Figure 4: Optimality with respect to total travel times.

Simulation Setup Figure 1 shows the intersection. The
lane width λ is 3.66m (12ft), right-turn-radius µR is 1.83m
(6ft), and left-turn-radius µL is 9.14m (30ft). The length
of a vehicle is 5m. Its minimum and maximum speeds are
U i = 3m/s and U i = 15m/s, respectively. We consider
two demands, namely 500vphpl (i.e., 500 vehicles per hour
per lane) and 800vphpl, which represent demands at normal
and rush hours, respectively, and increasing numbers of ve-
hicles (until MILP takes too long to find any solution). For
instance, if the demand is 500vphpl and the number of vehi-
cles is 40, then the distribution of the earliest entry times of
the vehicles spread in 40/(8 · 500/3600) = 36s on average
(since 500vphpl is equal to 8 · 500/3600 vehicles per sec-
ond). We run 100 simulations for each setup. In each simula-
tion, the entry lanes of the vehicles are generated uniformly
at random. The possibility of a vehicle going straight is 80%
and it turning left or right (according to the left or right lane)
is 20%. We call each algorithm once to generate the paths
for all vehicles in the beginning of each simulation.

Comparison in Optimality Our objective is the sum of
the exit times, but its value relies on the earliest entry times
of the vehicles. Therefore, we instead compare the total
travel times, where the travel time of a vehicle i is the differ-
ence between its exit time ti(γ+i) + τi(γ

+
i) and its earliest

entry time ei. We report the resulting optimality averaged
over 100 simulations in Figure 4. As expected, the optimal-
ity of MILP is always 1. Although PSL is not optimal, its so-
lution quality is no more than 10% worse than the optimal.
In contrast, the solution of FCFS is poor; its solution quality
is more than 100% worse than the optimal in the worst case.

Comparison in Delay We also evaluate the solution qual-
ity by looking at a popular metric used in transportation,
namely the average delay per vehicle, where the delay of
a vehicle is the difference between its exit time ti(γ+i) and
its earliest exit time ei + di(γ

−
i , γ

+
i)/U i, i.e., the exit time

when it reaches its entry lane at the earliest entry time and
travels through the intersection along the shortest path with
its maximum speed. As Figure 5 shows, MILP always has
the lowest average delay (because it is optimal), but the dif-
ference between the delay produced by MILP and the delay
produced by PSL is minor. In the scenario of 500vphpl with
40 vehicles, PSL produces an average delay of 0.9s, which
is only 0.2s larger than MILP. Similarly, in the scenario of
800vphpl with 30 vehicles, PSL produces an average delay
of 2.0s, which is only 0.4s larger than MILP. Such small dif-
ferences in delays are usually acceptable (or even can be ne-
glected) in real traffic systems. However, the delay produced

(a) 500vphpl (b) 800vphpl

Figure 5: Average delay per vehicle.

(a) 500vphpl (b) 800vphpl

Figure 6: Runtime in log scales. The curves and error bars
show the averages and the standard deviations, respectively.

Figure 7: Scalibility of PSL.

by FCFS is dramatically larger than that by MILP and PSL.

Comparison in Runtime Figure 6 compares the runtimes.
MILP is more than 10 times slower than PSL and FCFS in
many cases. The variation of the runtimes of MILP in both
demand scenarios is also significant, indicating that MILP
sometimes needs a dramatically larger runtime to find solu-
tions. On the other hand, PSL and FCFS, even in the worst
case, need only less than 1s to find solutions. These runtimes
are well suited for real-time applications. To further demon-
strate the scalability of PSL, we run PSL with more vehicles
and report the results in Figure 7. Within 1s, PSL can solve
problems with up to 62 vehicles in the 500vphpl scenario
and 40 vehicles in the 800vphpl scenario. Within 1.6s, those
numbers grow to 76 and 47 vehicles, respectively.

Conclusion
We proposed a MAPF-based algorithm PSL to coordinate
autonomous vehicles at single no-signal intersections. PSL
is complete, polynomial-time in the number of vehicles, and
can coordinate dozens of vehicles in real-time. It runs sub-
stantially faster (more than 10 times faster in many cases)
than the optimal method MILP without compromising the
solution quality too much (no more than 10% worse than
the optimal). It also finds significantly better solutions than
the traditional FCFS strategy (e.g., FCFS can sometimes find
solutions with quality more than 100% worse than optimal)
while running similarly or slightly slower than FCFS.

11584

Acknowledgments
The research at Monash University is part of a research
project (Project No IH18.04.3) sponsored by the SPARC
Hub (https://sparchub.org.au) at Department of Civil Eng,
Monash University funded by the Australian Research
Council (ARC) Industrial Transformation Research Hub
(ITRH) Scheme (Project ID: IH180100010). The financial
and in-kind support of Austroads and Monash University is
gratefully acknowledged. Also, the financial support of ARC
is highly acknowledged. Mr Ross Guppy from Austroads
is profoundly thanked for his in-kind contributions to this
project. The research at the University of Southern Califor-
nia is supported by the National Science Foundation (NSF)
under grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533 as well as a gift from Amazon. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organizations, agencies, or the U.S. government.

References
Au, T.; Shahidi, N.; and Stone, P. 2011. Enforcing Liveness
in Autonomous Traffic Management. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 1317–
1322.
Au, T.; and Stone, P. 2010. Motion Planning Algorithms for
Autonomous Intersection Management. In AAAI Workshop
on Bridging the Gap Between Task and Motion Planning.
Chen, J.; Li, J.; Fan, C.; and Williams, B. 2021. Scalable and
Safe Multi-Agent Motion Planning with Nonlinear Dynam-
ics and Bounded Disturbances. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 11237–11245.
Dresner, K.; and Stone, P. 2008. A Multiagent Approach to
Autonomous Intersection Management. Journal of Artificial
Intelligence Research, 31: 591–656.
Dresner, K. M.; and Stone, P. 2004. Multiagent Traffic Man-
agement: A Reservation-Based Intersection Control Mecha-
nism. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
530–537.
Lee, J.; and Park, B. 2012. Development and Evaluation of
A Cooperative Vehicle Intersection Control Algorithm under
the Connected Vehicles Environment. IEEE Transactions on
Intelligent Transportation Systems, 13(1): 81–90.
Levin, M. W.; Boyles, S. D.; and Patel, R. 2016. Paradoxes
of Reservation-Based Intersection Controls in Traffic Net-
works. Transportation Research Part A: Policy and Prac-
tice, 90: 14–25.
Levin, M. W.; and Rey, D. 2017. Conflict-Point Formu-
lation of Intersection Control for Autonomous Vehicles.
Transportation Research Part C: Emerging Technologies,
85: 528–547.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and
Koenig, S. 2021a. Pairwise Symmetry Reasoning for Multi-
Agent Path Finding Search. Artificial Intelligence, 301:
103574.

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: Bounded-
Suboptimal Search for Multi-Agent Path Finding. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 12353–12362.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021b. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 11272–11281.
Li, Z.; Chitturi, M. V.; Zheng, D.; Bill, A. R.; and Noyce,
D. A. 2013. Modeling Reservation-Based Autonomous In-
tersection Control in VISSIM. Transportation Research
Record, 2381(1): 81–90.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 7643–7650.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval
Path Planning for Dynamic Environments. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 5628–5635.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment Conference (AIIDE), 117–122.
Skopkova, V.; Bartak, R.; and Svancara, J. 2020. What Does
Multi-Agent Path-finding Tell Us About Intelligent Intersec-
tions. In Proceedings of the International Conference on
Agents and Artificial Intelligence (ICAART), 250–257.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Proceedings
of the International Symposium on Combinatorial Search
(SoCS), 151–159.
Yakovlev, K. S.; Andreychuk, A.; and Vorobyev, V. 2019.
Prioritized Multi-agent Path Finding for Differential Drive
Robots. In Proceedings of the European Conference on Mo-
bile Robots (ECMR), 1–6.
Zhong, Z.; Nejad, M. M.; and Lee, E. E. 2021. Autonomous
and Semiautonomous Intersection Management: A Survey.
IEEE Intelligent Transportation Systems Magazine, 13(2):
53–70.
Zohdy, I. H.; and Rakha, H. A. 2016. Intersection Manage-
ment via Vehicle Connectivity: The Intersection Cooperative
Adaptive Cruise Control System Concept. Journal of Intel-
ligent Transportation Systems, 20(1): 17–32.

11585

