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Abstract

Sharing scarce resources is a key challenge in multi-agent
interaction, especially when individual agents are uncer-
tain about their future consumption. We present a new auc-
tion mechanism for preallocating multi-unit resources among
agents, while limiting the chance of resource violations. By
planning for a chance constraint, we strike a balance be-
tween worst-case approaches, which under-utilise resources,
and expected-case approaches, which lack formal guarantees.
We also present an algorithm that allows agents to generate
bids via multi-objective reasoning, which are then submitted
to the auction. We then discuss how the auction can be ex-
tended to non-cooperative scenarios. Finally, we demonstrate
empirically that our auction outperforms state-of-the-art tech-
niques for chance-constrained multi-agent resource alloca-
tion in complex settings with up to hundreds of agents.

Introduction
When multiple independent agents are operating in the same
environment, it often becomes necessary for them to share
limited resources. For example, consider a research station
on Mars, which comprises multiple robots operated by re-
searchers. The robots might have to share access to elec-
tricity to power operation, or network bandwidth to send
data back to Earth. In our work, we focus on multi-unit re-
sources like battery power and bandwidth. Our goal is to
design a system that preallocates the resources among the
agents. It is important for a resource distribution system in
this context to consider that agents are working in an uncer-
tain environment. In this paper, we focus on uncertainty that
can be modelled with a Markov Decision Process (MDP).
This can include uncertainty that arises from the environ-
ment that the robot encounters or from the physical execu-
tion of the robot’s actions. Because agents cannot fully con-
trol their environment, taking the same actions may result
in a different outcome which may, in turn, require differ-
ent future resource use. This results in agents that are un-
certain of the quantity of resources they will consume in a
given day in pursuit of their tasks, even if they follow a fixed
plan. Because resources are preallocated before the uncer-
tainty over resource usage is resolved, the system must de-
cide how to deal with probabilistic information. If the system
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plans for the worst-case (i.e., assuming that uncertainty is
resolved with maximum resource usage), resources may be
underutilised in practice. This occurs because agents must
avoid any possibility (however unlikely) of using too many
resources. On the other hand, planning only for expected re-
source usage could result in agents counting on resources
without any assurance that they are actually available.

For example, suppose the robots receive power from a
shared solar panel each day; our aim would be to design
a system that preallocates the available power among the
different robots. It is essential that, in most cases, the total
power use of the robots does not exceed the amount of en-
ergy generated. Say a robot started the day with 100% of
their onboard battery power, and was preallocated enough
solar power to use and recharge 50% of their onboard bat-
tery. While they may plan to only use 50% of their bat-
tery during daily tasks, stochasticity in the environment may
cause them to use 60% of their battery instead. But this need
not result in a system failure – it only means that the robot
would need to draw an extra 10% out of the solar power.
If no extra power is available, they would start their day
with only 90% battery. Never taking this opportunity would
be excessively risk averse, but doing so repeatedly would
risk flat batteries. Because of this single-agent uncertainty
over resource consumption, we consider a global system that
plans for chance constraints: that is, we seek to limit the
probability of resource violations. This problem is known as
a Chance Constrained Multi-Agent MDP, and was originally
introduced in de Nijs et al. (2017) .

In this paper, we present the Auction for Chance-
Constrained Resources (ACCR), an auction mechanism
which handles uncertainty over resource usage. In ACCR,
agents are asked to bid on resources, reporting both how
much they value each resource and how likely they are to
exceed a given resource bound. A Mixed Integer Linear Pro-
gram (MILP) allocates resources to agents while ensuring a
chance constraint over the probability of exceeding the re-
source limit is met over all agents. We then consider how
multi-objective reasoning can be used to generate single-
agent bids. We also present a pricing structure that can be
used to apply the mechanism to non-cooperative settings.
Finally, we empirically evaluate ACCR against state-of-the-
art approaches using Maze (Wu and Durfee 2010), a classic
multi-agent constrained resource domain, and an advertising
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budget allocation domain from Boutilier and Lu (2016). Our
results in both domains outperform the state of the art for up
to hundreds of agents.

Related Work
In this section we briefly summarise the literature on pre-
planning over single and multi-agent MDPs with budget-
constrained resources, or resources that are constrained in
summation over a time horizon (de Nijs et al. 2021). Alt-
man (1999) introduces the concept of a Constrained MDP
(CMDP), which consists of an MDP with a resource limit
L. They also introduce a Linear Program (LP) which makes
sure that the expected cost of the agent’s policy is less than
L. Chance constraints bound the probability that the cost
of the agent’s policy violated the resource limit, instead of
planning for the expected costs. Chance-Constrained MDPs
(CCMDPs) allow for constraint violations in unlikely sce-
narios, but still guarantee that the constraint is met with
a specified likelihood. Haskell and Jain (2015) introduce
an LP solution method for policy generation in CCMDPs
that utilises a convex analytic method. Santana, Thiébaux,
and Williams (2016) design a heuristic search algorithm for
chance-constrained Partially Observable MDPs (POMDPs).
Giuseppi and Pietrabissa (2020) and L. A. and Fu (2022)
propose reinforcement learning approaches for CCMDPs.
Ayton and Williams (2018) introduce a Monte Carlo tree
search based algorithm for large CCMDPs.

Multi-agent MDPs (MMDPs) extend these concepts to
a multi-agent system. Many single-agent methods can be
trivially extended to MMDPs. Solving CMDPs with an ex-
pected resource limit can be trivially extended to the multi-
agent domain, i.e. Constrained MMDPs (CMMDPs), by
considering a joint model as in (Boutilier 1996). This ap-
proach allows a wide range of methods to be applicable to
MMDPs, but does not scale because the policy search space
is exponential in the number of agents. Hence, much re-
search has focused on reasoning over individual agent mod-
els separately and considering only the global constraint
jointly. This is often referred to as a weakly-coupled CM-
MDP (Meuleau et al. 1998). For example, Column Gener-
ation solves the weakly-coupled CMMDP problem in a de-
centralised manner through an iterative LP based algorithm
that solves a series of non-constrained single-agent MDPs
(Walraven and Spaan 2018; Yost and Washburn 2000). Wu
and Durfee (2010) present a MILP for planning in situa-
tions where resources are strictly constrained by ensuring
that the budget is not exceeded even in the worst case.
Agrawal, Varakantham, and Yeoh (2016) present an approx-
imate worst-case solution problem, which uses a decen-
tralised greedy algorithm to allocate resources. de Nijs et al.
(2017) extend the chance-constrained problem to MMDPs,
which we will refer to as Chance-Constrained MMDPs
(CCMMDPs). They present an algorithm which uses Ho-
effding bounds to artificially lower the resource limit to the
point that solving for the new limit with traditional expected-
case methods also ensures that the original chance constraint
is met. This approach works best in settings where the num-
ber of agents is very large, since it allows for the lowered
limit to approach the original limit. Our work also solves

the CCMMDP problem, but does so without making a con-
servative approximation. For an in-depth overview of multi-
agent resource allocation techniques, including techniques
designed for other types of resources and online resource al-
location, see de Nijs et al. (2021).

Auctioning approaches have been widely proposed in
robotics, particularly for coordination of teams of robots.
Early work on this topic uses combinatorial auctions (Huns-
berger and Grosz 2000) and first-price one-round auc-
tions (Gerkey and Mataric 2002) to distribute tasks across
a set of agents. Later, Lagoudakis et al. (2005) propose a
sequential single item (SSI) auction mechanism for multi-
robot routing and task allocation. This approach combines
the advantages of parallel single item auctions and com-
binatorial auctions, achieving high quality task allocations
with low computational effort (Koenig et al. 2006). There
has also been work on using auctions to distribute parts of a
global task across a team of robots, in the context of planning
under uncertainty (Capitan et al. 2013; Schillinger, Bürger,
and Dimarogonas 2018). Unlike these methods, we auc-
tion shared resources. Amir, Sharon, and Stern (2015) and
Gautier et al. (2022) apply combinatorial auctions to multi-
agent path planning, which effectively auctions space as a
resource. Dolgov and Durfee (2006) use a Generalised Vick-
rey Auction to allocate resources in a MMDP with a worst-
case constraint. Our method differs in that it can consider
uncertainty over resource use, through a chance-constraint.

Preliminaries
Chance Constrained Multi-Agent MDPs. We consider
n agents, where each agent i ∈ [n] = {1, . . . ,n} has their
own finite-horizon MDP Mi := 〈Si,Ai,Ti,Ri,Ci,h〉, where
Si is the agent’s state space, Ai is the agent’s action set, and
Ti : Si × Ai × Si → [0,1] is the agent’s transition function.
Agents have a reward function Ri : Si×Ai → R, which de-
scribes how much reward is accrued after an action, and a
cost function Ci : Si×Ai→ N+, which describes how much
resource is consumed after an action. All agents have knowl-
edge of their own MDP. All agents share a global time hori-
zon h. A policy πi : Si× [h]→ Ai with πi(si, t) = a means
that agent i should take action a at state si and timestep t.
We denote the probability of an event D under a policy π as
Pπ [D] and the expectation of a random variable Y under the
policy π as Eπ [Y ]. We define the random variable Ri,πi to
describe the cumulative reward agent i receives when exe-
cuting policy πi over the entire time horizon h. Similarly, we
define the random variable Ci,πi to describe the cumulative
cost agent i incurs when executing policy πi over the entire
time horizon h.

The joint MMDP over all n agents is represented by M :=
〈S,A,T,R,C,h〉 and has joint state space S = S1× ·· · × Sn
and joint action space A = A1×·· ·×An. Let s = (s1, . . . ,sn),
a = (a1, . . . ,an) and s′ = (s′1, . . . ,s

′
n). Then, the joint transi-

tion function T : S×A×S→ [0,1] is defined by T (s,a,s′) =
∏i Ti(si,ai,s′i), the joint reward function R : S× A→ R is
defined by R(s,a) = ∑i Ri(si,ai), and the joint cost function
C : S×A→N+ is defined by C(s,a) = ∑iCi(si,ai). A policy
π for a weakly-coupled MMDP is defined by π = {πi}i∈[n]
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for a set of single-agent polices πi.
A Chance-Constrained Multi-agent MDP (CCMMDP) is

a triple 〈M ,L,δ 〉. M denotes the MMDP. L ∈ N+ denotes
the limit of the globally constrained resource (i.e., total re-
source use of all agents over all timesteps is limited by L)
– a resource constraint violation occurs when this is limit is
exceeded, i.e.,

∑
i∈[n]

∑
t∈[h]

Ci(si,t ,ai,t)> L. (1)

This type of constraint is sometimes referred to as a bud-
get constraint (de Nijs et al. 2021). Finally, δ ∈ [0,1) denotes
the limit on the probability of constraint violation. Then the
goal of the CCMMDP is to find a joint policy π? = {π?

i }i∈[n]
that maximises the cumulative reward, subject to the chance
constraint:

π
? = argmax

π:={πi}i∈[n]
Eπ

∑
i∈[n]

Ri,πi

 , (2)

s.t. Pπ

∑
i∈[n]

Ci,πi > L

< δ . (3)

Multi-Unit Auctions. A multi-unit auction is a set of
rules that determines how to distribute L identical resources
to n agents. Each agent submits a series of bids of the form
Bi,k = (k,bi,k), where k is the number of resources and bi,k
is the amount that agent i would be willing to pay to receive
k resources. The auctioneer’s task is to allocate the resources
as efficiently as possible. This can be expressed as a Mixed-
Integer Linear Program (MILP):

maximise ∑
i∈[n]

∑
k∈[L]

bi,kxi,k (4)

subject to ∑
i∈[n]

∑
k∈[L]

kxi,k ≤ L (5)

∑
k∈[L]

xi,k ≤ 1 ∀i ∈ [n] (6)

xi,k ∈ {0,1} ∀k ∈ [L], i ∈ [n] (7)

Decision variables xi,k correspond to agent i being al-
located k resources and are integral. The auctioneer di-
rectly optimises for the sum of bids (4) while constrain-
ing the total number of resources (5) and ensuring that all
agents are allocated a single bid (6, 7). This is referred to
as the Winner Determination Problem (Lehmann, Müller,
and Sandholm 2006), and results in an allocation F ? =
{(k?1,b

?
1), . . . ,(k

?
n,b

?
n)}. Note that this model does not con-

sider uncertainty. We introduce a new auction structure that
allows for it next.

Auction for Chance-Constrained Resources
We now present the Auction for Chance-Constrained Re-
sources (ACCR), which takes into account individual
agent’s uncertainty in resource consumption to better allo-
cate chance-constrained resources. To do this, we modify

the multi-unit auction described above. In a multi-agent sce-
nario, it is important for agents to understand how many re-
sources they can use before choosing and executing a policy.
With this in mind, the mechanism is executed as follows. At
the beginning of a cycle, agents calculate bids that corre-
spond to policies and submit them to the auctioneer. Next,
the auctioneer carries out the auction protocol described be-
low to allocate the resources. Then, the agents proceed with
policies that correspond to their allocated resource amount.
Single-agent planning and execution are decentralised, but
the auctioneer acts a centralised arbitrator to decide which
agents get what resources.

The ACCR Protocol. In ACCR, each agent submits a list
of tuples of the form Bi,α = (ki,α ,bi,α ,εi,α). As in the tra-
ditional multi-unit auction, ki,α denotes the number of re-
sources and bi,α represents the amount that agent i would
be willing to pay for ki,α resources. Unlike the traditional
multi-unit auction, agents also submit εi,α , which corre-
sponds to the probability that, if agent i is allocated ki,α
resources, they will exceed this resource limit during execu-
tion. Agents can submit multiple bids for the same number
of resources, as long all bids have a different values for b
and ε . Implicit to each bid Bi,α is a policy πi,α which agent
i would execute if they were allocated ki,α resources. Thus,
bi,α represents the expected reward of policy πi,α and εi,α
represents the probability that the total number of resources
consumed while executing πi,α exceeds ki,α . While a policy
πi,α is privately identified with each bid Bi,α , no policies (or
MDPs) are revealed to the auctioneer. Agent bid generation
is described in the next section, and each agent i submits mi
bids.

The auctioneer solves the winner determination prob-
lem with the following Mixed Integer Nonlinear Program
(MINLP).

maximise ∑
i∈[n]

∑
α∈[mi]

bi,α xi,α (8)

subject to ∑
i∈[n]

∑
α∈[mi]

ki,α xi,α ≤ L (9)

∏
i∈[n]

1− ∑
α∈[mi]

εi,α xi,α

≥ 1−δ (10)

∑
α∈[mi]

xi,α ≤ 1 ∀i ∈ [n] (11)

xi,α ∈ {0,1} ∀α ∈ [mi], i ∈ [n] (12)

Decision variables xi,α correspond to agent i being allocated
ki,α resources. As in a traditional multi-unit auction, the auc-
tioneer directly optimises for the sum of bids (8) while con-
straining the total number of resources (9) and ensuring that
all agents are allocated a single bid (11, 12). In ACCR, the
auctioneer also has access to agents’ declared probabilities
of exceeding each bid. To plan for the chance constraint, the
auctioneer assumes all agents’ probabilities of exceeding are
independent. Satisfying (10) is equivalent to ensuring that
the chance constraint in (3) holds. To see this, note that be-
cause the joint declared resource use of all agents is less than
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L, equation (3) is bounded by the probability that none of the
agents exceed their declared resource use. Because agents’
resource usages are independent, the probability that none of
the agents exceed their declared resource use is equivalent
to the product of the probability that each agent does not ex-
ceed their declared resource use, which results in (10). Con-
straint (10) is nonlinear, which makes the problem a MINLP.
However, it can be translated into a linear constraint.
Proposition 1. Substituting Constraint (10) in the above
MINLP with the following Constraint (13) will result in a
MILP with an equivalent solution:

∑
i∈[n]

∑
α∈[mi]

xi,α
(
log
(
1− εi,α

))
≥ log(1−δ ). (13)

Proof. First, note that Constraint (10) is equivalent to the
following constraint, because 0≤ δ < 1:

log

∏
i∈[n]

1− ∑
α∈[mi]

εi,α xi,α

≥ log(1−δ )

Next, we see that,

log

∏
i∈[n]

1− ∑
α∈[mi]

εi,α xi,α

 (14)

= ∑
i∈[n]

log

1− ∑
α∈[mi]

εi,α xi,α

 (15)

= ∑
i∈[n]

∑
α∈[mi]

xi,α log
(
1− εi,α

)
(16)

(15) and (16) are equivalent because by Constraint (12)
and Constraint (11):

• xi,α ∈ {0,1}, for all i, α; and
• at most one element from {xi,α |α ∈ [mi]} can be equal to

1, for all i ∈ n.

This equivalence is discussed in depth in the Appendix.
Thus replacing Constraint (10) in our original MINLP

with Constraint (13) yeilds an equivalent MILP that solves
the chance-constrained allocation problem more efficiently
than the original optimisation problem.

We denote the allocation yielded by solving the MILP as
F ? = {(k?1,b

?
1,ε

?
1 ), . . . ,(k

?
n,b

?
n,ε

?
n )}.

Single-Agent Decision Making
ACCR requires that each agent can generate bids of the form
Bi,α = (ki,α ,bi,α ,εi,α). To do so, they must compute a list
of possible policies πα , and determine those policies’ re-
spective resource uses, values, and probabilities of exceed-
ing ki,α resources. A procedure to do this is detailed below.

Given their respective MDP Mi = 〈Si,Ai,Ti,Ri,Ci,h〉,
agents first need to extend their MDP to a new MDP
M̃i := 〈S̃i,Ai, T̃i, R̃i,C̃i,h〉. The new state space is defined by
S̃i = Si× [h]×N+, which allows M̃i to include the current
timestep and the current cumulative cost in the state space

in order to reason over the probability of exceeding a certain
resource bound k. The initial state of the MDP, described by
si,0, is extended to s̃i,0 = (si,0,0,0), as agents start their ex-
ecution at time 0 having consumed no resources. Any state
s̃ in the extended MDP can be decomposed into s̃ = (s, t,c)
where s is a state in the original MDP, t is a timestep, and
c is the current cumulative cost at that timestep. The set
of actions remains the same. The reward R̃i : S̃i×Ai → R
is defined as R̃i((s, t,c),a) = Ri(s,a) and similarly the cost
C̃i : S̃i×Ai→ N+ is defined as C̃i((s, t,c),a) =Ci(s,a). The
transition function is extended to T̃i : S̃i×Ai× S̃i→ [0,1]:

T̃i(s̃, ã, s̃′) =


Ti(s,a,s′) if Ti(s,a,s′)> 0,

s̃ = (s, t,c), and
s̃′ = (s′, t +1,c+C(s,a))

0 otherwise.
(17)

Agent i reasons over their extended MDP to solve a multi-
objective problem (Roijers et al. 2013). Such problems are
concerned with simultaneously optimising for two or more
distinct objectives. In the case of our agents, for any given
number of resources k ≤ L, they are interested in policies
that increase their cumulative reward and that decrease their
probability of exceeding k, represented by the following two
properties respectively:

max
πi

Eπi

[
R̃i,πi

]
(18)

min
πi

Pπi [ch ≥ k for s̃h = (sh,h,ch)] (19)

These objectives are conflicting, meaning that improving
one objective may come at the expense of the other. As a
result, we care about Pareto optimal policies, which are
policies such that no other policy strictly improves one ob-
jective without worsening the others. The set of such poli-
cies is called the Pareto frontier. We propose that agent’s
generate their bids by choosing policies in the Pareto fron-
tier for each k ≤ L. Bidding using this Pareto frontier is
reasonable because it represents optimal trade-offs between
reward maximisation and the probability of overconsump-
tion of the resource. When optimising for these two objec-
tives, each point along the Pareto frontier corresponds to a
policy πi. The Pareto frontier can be represented by a set
of deterministic policies (Forejt, Kwiatkowska, and Parker
2012). For each such policy, the agent can generate a bid
(k,b,ε) where k corresponds to the resource use correspond-
ing to the current Pareto frontier, b corresponds to the cur-
rent Pareto point’s value for (18), and ε corresponds to the
current Pareto point’s value for (19).

After each agent generates a list of bids, they are sent to
the auctioneer. We require that agents only send bids with
ε < 1. This is required so that the auctioneer can compute
log(1− ε) in the MILP. This requirement is without loss
of generality because bids with ε = 1 would give no use-
ful information to the auction, essentially saying only that
the agent is guaranteed to exceed the stated number of re-
sources. The number of bids generated depends on the max-
imum number of resources, since a Pareto frontier is gener-
ated for each possible k. It also depends on the number of
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deterministic policies along the Pareto frontier. The agents
can also rule out points with ε > δ as they would not be
accepted by an auctioneer. Agents can lower their computa-
tion time by submitting fewer bids to the auctioneer, either
by sending only a subset of the deterministic policies that
represent the Pareto frontier, or by generating fewer Pareto
frontiers (e.g., only generating frontiers for k divisible by 5).

Extending to the Non-Cooperative Case
Since our approach extends the multi-unit auction to cases
with uncertainty, we can also extend the non-cooperative
version of the multi-unit auction to create a non-cooperative
ACCR. We define a non-cooperative resource allocation
problem as one where the auctioneer’s goal is to optimise
Equation (2) constrained by Equation (3), but the goal of
each agent differs. Individual agents are self-interested, so
the goal of agent i is to choose a policy π∗i that maximises
their own reward:

π
∗
i = argmax

πi
Eπi

 ∑
t∈[h]

Ri,πi

 (20)

Agents can maximise their reward by lying about how much
they value resources during bidding. To prevent this strategy,
non-cooperative auctions use prices to incentivise agents
to tell the truth. The non-cooperative multi-unit auction is
called a Vickrey-Clarke-Groves (VCG) auction, which can
be used to allocate resources to self-interested agents with-
out the presence of uncertainty (Dobzinski and Nisan 2010;
Vickrey 1961; Clarke 1971; Groves 1973). The price struc-
ture of VCG is designed so that agents only lose value if they
decide to over or under bid.

We can extend this price structure to ACCR. To calcu-
late prices, the auctioneer first calculates what the prices
pv

1, pv
2, . . . , pv

n would be paid in a traditional multi-unit VCG
auction. The prices are charged after each agent executes
their private policies π?

i associated to (k?i ,b
?
i ,ε

?
i ), as they

depend on the realised use of each agent, which we refer to
as kr

i . If agent i is allocated ki resources by the auctioneer
and does not exceed that limit after executing through time
horizon h, then they do not pay a price. If they do exceed
their allocated number of resources (either because of the
inherent uncertainty in their models, or because they chose
to modify their policy to a more resource-heavy one) they
are charged a higher price based on the usual VCG price
and their reported probability of exceeding:

pi =


0 if kr

i ≤ k?i
1
ε?i
· pv

i otherwise.
(21)

This price is designed so that the price paid is pv
i in expecta-

tion. This pricing structure ensures that agents are best off if
they truthfully report their value b, and are best off if they do
not under-report ε . To ensure that agents do not over-report
ε , the auctioneer can run a statistical test to determine if any
agent is consistently over-reporting ε over a series of runs of
the auction. A formal analysis can be found in the Appendix.

Evaluation
To evaluate the performance of ACCR, we compared its per-
formance to a series of baselines on the benchmark domain
Maze (Wu and Durfee 2010), and an advertising budget al-
location MDP from Boutilier and Lu (2016).

Methods
We compared ACCR to four other methods. The Multi-
agent Markov Decision Process (MMDP) method solves
the chance constraint optimally by planning over the joint
MMDP. To solve the chance-constrained problem, we ex-
tend the MMDP described in the preliminaries to include
cumulative cost, similar to the process used for single-agent
bid generation. Then we generate a Pareto frontier over ex-
pected reward and the probability of exceeding the resource
limit L. We then choose the two points with probability of
exceeding closest to δ and mix the corresponding determin-
istic policies to generate a stochastic policy which exactly
meets the chance constraint. This provides an optimal solu-
tion for the chance-constrained problem, but due to the size
of the joint state space it is often infeasible.

The Constrained Markov Decision Process (CMDP)
method is implemented as described in Altman (1999). This
centralised approach considers individual agents’ MDPs ex-
panded to include the current timestep. The solution method
consists of an LP which, like ACCR, optimises for ex-
pected reward. Unlike ACCR, the constraint corresponding
to the resource limit only ensures that the limit is met in
expectation. This means that the method ignores the chance-
constraint and does not limit the probability of resource vi-
olations. As a result, this method provides an upper bound
for the solution value of a chance-constrained algorithm like
ACCR, but should not be seen as a direct comparison.

The chance-constrained Column Generation (CG)
method combines two techniques. First, it uses column gen-
eration which solves the same problem as the CMDP but
in a decentralised manner, as in (Yost and Washburn 2000).
Like the CMDP it uses an LP that optimises for expected
reward and ensures that the resource limit is met in expec-
tation. This method results in stochastic policies made up of
a mixture of deterministic policies for each agent, with the
same optimal reward, total cost, and probability of exceed-
ing L as the CMDP method. Because it is decentralised, it is
much faster than CMDP. The second technique the chance-
constrained CG uses is a Hoeffding bound, as in (de Nijs
et al. 2017). Lh is an artificially lowered resource limit that
is based on L, δ and the maximum resource usage of each
agent. In the LP, Lh is used instead of L, so the algorithm re-
turns policies limited by Lh in expectation. Lh is designed so
this will also limit the chance constraint, i.e., if the policies
uses less that Lh resources in expectation, then those same
policies will exceed L with probability less than δ . The CG
method solves the CCMDP problem, albeit conservatively.
Because Lh can be too conservative, de Nijs et al. (2017)
suggest a method to dynamically relax Lh. After each run
of CG, the Dynamic Column Generation (CGd) method
runs Monte Carlo trials to estimate the probability distribu-
tion over resources and modify Lh accordingly. This process
is repeated until the chance constraint is met without slack.
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Figure 1: Algorithm performance on Maze with increasing
state space. Trials are performed with 2 agents.

For all methods, LPs and MILPs were implemented with
Gurobi, and all MDP methods (e.g., solving the MMDPs,
computing maximum reward policies for CG, comput-
ing Pareto frontiers) were solved using the PRISM model
checker (Kwiatkowska, Norman, and Parker 2002). All ex-
periments were conducted on an AWS R5a.large EC2 in-
stance, with 2 CPUs and 16GB of memory. Distributional
information on experiments can be found in the Appendix.

The Maze Domain

Domain Description. We first modified the Maze domain
from (Wu and Durfee 2010) to use a multi-unit resource.
Agents operate in a grid world that represents the surface
of Mars, with 40% of grid cells chosen at random to repre-
sent untraversable terrain, and 10% of cells chosen at ran-
dom to represent places at which reward can be obtained
by completing a task. Tasks further away from the start po-
sition result in a higher reward. Agents have two types of
actions: regular actions, which consume no resource, but
only move to their intended location 40% of the time; and
safe actions, which consume one resource and move to their
intended locations 95% of the time. Once an agent is in a
task location, they can choose to perform a task action, at
which point their execution ends. Agents’ only interaction
with each other comes in the form of a global resource con-
straint, which is set to L = hn

4 , where h is the global time
horizon and n is the number of agents in the system. This
means that on average, all agents can use safe actions 25%
of the time. This limit was chosen to strike a balance be-
tween being higher and thus effectively unconstrained and
lower and thus too restrictive for the Column Generation
method described below, which uses a very conservative ap-
proximation. In all experiments, we bound the probability
of resource violations with a chance constraint of δ = 0.05.
Each data point in Figure 1 and 2 represent the average over
50 trials. All methods timeout at 500 seconds.

Figure 2: Algorithm performance on Maze with increasing
agents. Trials were performed with grid width 5.

Results. In Figure 1, we show how the five approaches
compare to each other. Note that the environment height
matches the environment width, so the number of states in
the single-agent model is quadratic in the x-axis. Because
the CMDP is planning for expected resource use and disre-
garding the chance constraint, it is able to achieve the high-
est average total reward. However, the constraint is violated
between 25%-50% of the time. The MMDP approach pro-
vides an optimal solution to the chance-constrained prob-
lem, but the planning over the joint model makes it infeasi-
ble for large state spaces. The CG approach suffers from the
relative value of Lh to L. Because Lh is 0%-10% of L, even
though agents are planning for the expected case instead of
the chance constraint, agents have much less latitude to use
resources and take risky actions. Even when Lh is dynami-
cally increased, it remains far below L in order to guarantee
the chance constraint is not exceeded while actually plan-
ning for the expected value of Lh. In ACCR, the auctioneer
more flexibility to allocate all of the resources. Even as the
empirical probability of exceeding the resource limit fluctu-
ates, the solution value remains high. ACCR resource uti-
lization is on par with the CMDP and MMDP approach. But
like the CG approach, all planning over MDPs in ACCR is
done on the single-agent model, allowing it compute a result
more quickly than the joint approaches.

In Figure 2, we see how the decentralised natures of
ACCR and CG allow for a significant speed up as the num-
ber of agents increases, compared to CMDP. The MMDP
approach exceeded the time limit of 500 seconds in all con-
figurations with more than 2 agents, so it is excluded from
this experiment. Because Lh approaches L as the number of
agents increases, the both CG-based approaches achieve a
much higher average solution value for problems with more
agents. Still ACCR performs better, or the same as, the CG-
based models with a large number of agents.
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Figure 3: Synthetic Advertising Domain MDP from
Boutilier and Lu (2016).

The Advertising Domain
Domain Description. In the Synthetic Advertising Do-
main from Boutilier and Lu (2016), an advertiser must
choose a strategy to allocate a monetary budget among 1000
different agents to convert documented interest into sales.
Each agent is described by a 15 state MDP which can be split
into 3 parts: generic interest in the product category; interest
in the advertiser’s specific product: or, interest in a competi-
tor’s product. The advertiser has five advertising strategies at
each state, which start at a zero-cost/no intervention strategy
and increasingly become more costly, and more effective at
moving the agents toward purchasing the advertiser’s prod-
uct. All actions are stochastic, having some probability of
the agent exiting the process. When an agent purchases ei-
ther the competitor’s or advertiser’s product, they also exit
the process. The advertiser is rewarded when an agent pur-
chases their product. The MDP is illustrated in Figure 3. All
agents’ MDPs are identical but independent, so the adver-
tiser can pursue different strategies for different agents. As
in Boutilier and Lu (2016) the time horizon is 50, though we
modify the objective to undiscounted reward. In all exper-
iments, δ = 0.05. For our ACCR algorithm, agents restrict
their bids by only generating Pareto frontiers for k divisible
by 10. Because the MDP is static, each data point represents
a single run of each algorithm.

Figure 4: Algorithm performance on Synthetic Advertising
Domain with increasing numbers of agents.

Figure 5: Algorithm performance on Synthetic Advertising
Domain with increasing budgets.

Results. Figure 4 and Figure 5 show that on this domain,
CG with dynamic relaxation performs the best, but is much
more time consuming than the other algorithms. In Figure 4,
we vary the number of agents and analyse the best way to
allocate resources with an average budget of five times the
number of agents. We see that ACCR provides a reasonable
trade off between the time required by dynamic CG and the
performance of non-dynamic CG, particularly for smaller
numbers of agents. We also analyse the main limitations
of our ACCR algorithm in Figure 5, when there are large,
variable budgets and large numbers of agents (n=1000). The
CG algorithms uses the law of large numbers to plan for the
expected case, so they perform best with large numbers of
agents and loose constraints. The ACCR algorithm is outper-
formed on this domain instance because the use of determin-
istic policies and the limited bidding prevent the algorithm
from taking advantage of all the resources available.

Conclusions

We have presented ACCR, a new auction-based mechanism
for allocating chance-constrained, multi-unit resources. By
designing an auction to include information about agents’
uncertainty over resource use, our method can effectively al-
locate resources to the full extent available, while at the same
time limiting resource violations. We demonstrated an effi-
cient implementation for ACCR with an MILP. We also pre-
sented an algorithm for individual agents that uses off-the-
shelf tools to generate bids. We discussed how ACCR can be
applied to non-cooperative scenarios with prices. Finally, we
empirically showed that ACCR outperforms other chance-
constrained methods on the Maze benchmark. Future work
includes extending ACCR to include broader types of re-
sources, such as instantaneous-constrained resources, and
designing custom tools to generate bids.
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