
Zero-Shot Assistance in Sequential Decision Problems

Sebastiaan De Peuter1, Samuel Kaski1,2

1 Department of Computer Science, Aalto University, Espoo, Finland
2 Department of Computer Science, University of Manchester, Manchester, UK

sebastiaan.depeuter@aalto.fi, samuel.kaski@aalto.fi

Abstract

We consider the problem of creating assistants that can help
agents solve new sequential decision problems, assuming the
agent is not able to specify the reward function explicitly to
the assistant. Instead of acting in place of the agent as in cur-
rent automation-based approaches, we give the assistant an
advisory role and keep the agent in the loop as the main deci-
sion maker. The difficulty is that we must account for poten-
tial biases of the agent which may cause it to seemingly irra-
tionally reject advice. To do this we introduce a novel formal-
ization of assistance that models these biases, allowing the
assistant to infer and adapt to them. We then introduce a new
method for planning the assistant’s actions which can scale
to large decision making problems. We show experimentally
that our approach adapts to these agent biases, and results
in higher cumulative reward for the agent than automation-
based alternatives. Lastly, we show that an approach combin-
ing advice and automation outperforms advice alone at the
cost of losing some safety guarantees.

Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers are rou-
tinely faced with this problem. Take for example engineer-
ing design (Rao 2019), where one looks to find or construct
the best possible design within a space of designs that are
feasible. Every design problem is new: each time an archi-
tect builds a house it is for different clients. Although the
problem is novel to the agent, we can assume that it already
knows how to solve it in principle, though not optimally. An
architect does not need to re-learn architecture when design-
ing a new house, but can apply their general knowledge and
experience to this new design problem.

These design problems can be thought of as single-
episode decision problems: they consist of a sequence of de-
cisions, each changing or elaborating a design in some way.
Once a satisfactory design has been found, the episode ter-
minates. The decisions are driven by a goal, which can be
encoded as a reward function, known only to the agent. This
goal is usually tacit and complex, meaning that the agent is
unable to provide an accurate explicit description of it.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a'
a

s

ENV
agentassistant

Figure 1: In zero-shot assistance an assistant helps an agent
solve a problem without initially knowing the agent’s reward
function. We propose an assistant which helps the agent pri-
marily by advising it, leaving the agent in direct control of
its environment. In every time step the assistant gives new
advice a′, appropriate for the current state, based on its in-
ference of the agent’s reward function and potential biases.
When acting the agent incorporates the advice into its own
decision making. The assistant observes both the action a
taken by the agent and the new state of the environment s,
and uses this to infer the agent’s reward function and biases.

We seek to create assistants which can assist agents in
solving these types of decision problems. Although the as-
sistant is technically an agent, to avoid confusion we will
always refer to it as the assistant and will only use the term
agent to refer to the agent being assisted. We think of the
agent as an online decision maker who can be assisted in
their decision making. The goal for the assistant is to in-
crease the quality of the agent’s decisions, measured by cu-
mulative reward, relative to the agent’s effort. There are two
things the assistant does not know a-priori about the agent:
the agent’s reward function, and any biases that may cause
the agent to deviate from optimal behaviour. Although the
agent knows its reward function, it has never solved its prob-
lem before – ruling out inferring the reward function from
prior observations – and is not able to provide an explicit
description of the reward function. Similarly, biases are not
something an agent is aware of, and thus are not something
it can communicate to the assistant. To assist, the assistant
must infer both during the episode. Therefore, we call this
zero-shot assistance. Zero-shot assistance is closely related
to zero-shot coordination (Hu et al. 2020), though in the lat-
ter the reward function is known to all participants.

We introduce AI-Advised Decision-making (AIAD). In
AIAD an assistant helps an agent primarily by giving ad-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11551

vice, while the agent remains responsible for taking actions
in the environment. Figure 1 shows the interaction between
the agent and the assistant. The advice is based on a reward
function that is inferred from the agent’s behaviour. For sim-
plicity we will focus on advice of the type ”have you con-
sidered doing a”, where a is an action, though AIAD read-
ily generalizes to other forms of advice. We see two funda-
mental advantages in having an assistant that advises. First,
taking advice into account takes little effort while it can be
really helpful. Bad advice can be swiftly rejected. Second,
it keeps the agent firmly in control and able to reject advice
that would have a negative impact. This is a minimum re-
quirement in applications where safety is a concern.

Choosing advice to give to a biased agent requires the
assistant to account for those biases. Biases can cause ap-
parently irrational behaviour, including the rejection of use-
ful advice. We consider these biases to include innate lim-
itations or constraints within the agent’s decision making
process, incorrect problem understanding, or limited knowl-
edge. Incorrect problem understanding, for example, has
been shown to cause humans to reject advice which ratio-
nally is in their interest (Elmalech et al. 2015). More gener-
ally, research in psychology starting in the 1970s has shown
that humans exhibit a number of cognitive biases, caused
by various heuristics they employ in their decision making,
which cause a deviation from optimal behaviour (Kahneman
et al. 1982; Ho and Griffiths 2022). Accounting for specific
manifestations of these biases will be especially important
when assisting human agents. Prior work on assistance has
been able to incorporate agent biases that were known a pri-
ori (Fern et al. 2014; Hadfield-Menell et al. 2016; Shah et al.
2020). However, if they are not – as is the case in zero-shot
assistance – they must be inferred online. To address this
we model the uncertainty over biases explicitly, allowing the
agent to maintain beliefs over which biases an agent has, and
to incorporate present and future beliefs into its planning.

Contributions
In this paper we formalize the assistant’s problem of advis-
ing agents with unknown reward function and biases as a
decision problem. We propose a planning algorithm, a vari-
ant of Monte Carlo Tree search (MCTS), for finding the as-
sistant’s policy. To evaluate the practicality of AI-advised
decision-making we introduce two decision problems: plan-
ning a day trip and managing an inventory of products with
stochastic demand. A popular baseline approach for reduc-
ing agent effort and improving decision making is to auto-
mate, by leaving the decision making entirely to an assis-
tant. When no reward function is available, prior work has
proposed to first elicit the reward function (Ng and Russell
2000; Wirth et al. 2017), and then automate. In simulation
experiments we show that (1) AIAD significantly outper-
forms these automation-based baselines. We implement two
versions of AIAD: a standard version which only makes rec-
ommendations and a hybrid form which has direct access to
the decision problem and can therefore automate as well at
the cost of agent control. We also show that (2) an assistant
which infers and accounts for agent biases outperforms one
that does not.

Related Work
Learning reward functions from others The main alter-
native to our proposed approach of advising agents is to take
decisions in their place, i.e. automation. For this, the reward
function must be known. Thus, before automating one needs
to elicit or learn the reward function from the agent. Inverse
Reinforcement Learning (IRL) proposes to learn a reward
function directly from observing the agent act (Ng and Rus-
sell 2000; Abbeel and Ng 2004; Ramachandran and Amir
2007; Arora and Doshi 2021). In preference-based elicita-
tion (Wirth et al. 2017; Christiano et al. 2017; Brown et al.
2019), the agent is asked which of two trajectories or indi-
vidual decisions it prefers. The agent is assumed to prefer the
trajectory with the highest reward. An alternative is to ask
the agent for direct feedback on a single trajectory of deci-
sions (Knox and Stone 2009; Warnell et al. 2018). A subset
of this literature has looked specifically into the feasibility
and utility of learning both agents’ reward functions and bi-
ases (Evans and Goodman 2015; Evans, Stuhlmueller, and
Goodman 2016). Chan, Critch, and Dragan (2021) found
that biases can make agents’ behaviour more informative of
their reward function, and that incorrectly modeling biases
can result in poor reward inference. Armstrong and Minder-
mann (2018), however, show that jointly identifying biases
and reward from observations is not always possible. Shah
et al. (2019) investigate under what assumptions biases can
be learnt purely from data.

Where applicable, inference and automation happen in
two distinct phases in these works; the elicitation process
is not informed by the immediate needs of automation. In an
assistance method like ours, both happen at the same time,
allowing the assistant to reduce its uncertainty with regards
to the agent’s biases and reward where it matters for the de-
cisions it needs to make (Shah et al. 2020). We note also that
under reward uncertainty, an automating policy must neces-
sarily be more risk-averse than an assistant that gives advice,
as the automating policy cannot rely on the agent to prevent
it from making bad decisions.

Human-AI collaboration Our work fits within a larger
body of approaches which consider collaboration between
an assistant and an agent to solve a common problem. Dimi-
trakakis et al. (2017) consider a setting in which an assistant
acts autonomously but can be overridden by an agent at a
cost. Çelikok, Oliehoek, and Kaski (2022) consider a similar
problem in partially observable environments. Both, how-
ever, assume the assistant already knows the reward func-
tion. Others have considered collaboration when the assis-
tant does not know the agent’s reward function. Shared au-
tonomy (Javdani, Srinivasa, and Bagnell 2015; Reddy, Dra-
gan, and Levine 2018) considers a setting in which the agent
gives commands to the assistant, which then acts in the en-
vironment. As the assistant does not necessarily follow the
commands directly, but uses them to infer the agent’s re-
ward function which it then maximizes, we consider this
an automating approach. In Cooperative Inverse Reinforce-
ment Learning (Hadfield-Menell et al. 2016) an assistant and
agent jointly solve a problem. The assistant uses IRL to learn
the agent’s reward function. Fern et al. (2014) has proposed

11552

assistants which assist agents (not necessarily through ad-
vice) in decision problems; Shah et al. (2020) proposed sim-
ilar assistants for partially observable settings. These last
three works are similar to ours but assume that, except for
the reward function, everything that determines the agent’s
policy – including any potential biases – is known a priori.
Unlike our method, these methods not support the online in-
ference of biases needed for zero-shot assistance.

Problem Setup
We consider an agent solving a decision problem which
can be modeled as an infinite-horizon MDP E =
⟨S,A, T,Rω, γ, p0,s⟩. Here S is a set of states and A is the
set of actions available to the agent. At time step t the transi-
tion function T (st+1 | st, at) defines a distribution of poten-
tial next states st+1 given that the agent has taken action at
in current state st. Rω(st, at, st+1) is the reward function.
It defines the instantaneous reward for taking action at in
state st and ending up in st+1. γ ∈ (0, 1] is the discounting
rate. The agent’s objective is to maximize its expected dis-
counted cumulative reward E [

∑∞
t=0 rtγ

t | T, p0,s] where rt
is the reward it achieved at time step t. Finally, p0,s is the
start state distribution: s0 ∼ p0,s.

When assisting an agent we will assume that we know cer-
tain things about that agent’s problem E. In line with prior
work (Abbeel and Ng 2004) we assume that we know S , A,
T , γ and p0,s. Though we do not know Rω , we do have ac-
cess to its parametric function class R = {Rω′}ω′∈Ω. Note
that this assumption is not particularly restrictive; R could
be the space of all reward functions.

AI-Advised Decision-Making (AIAD)
We now formalize AI-Advised Decision-making. As shown
in Figure 1, the agent acts in E based on advice from the
assistant. The goal of the assistant is to maximize the cumu-
lative discounted reward obtained by the agent through this
advice. We define this from the assistant’s point of view as a
decision problem with reward function Rω(st, at, st+1) and
as actions the advice it can give.

For the assistant to be able to plan, we will assume we
have an agent model π̂(a | s, a′; θ, ω) available, a model of
the agent’s fixed policy upon receiving advice a′. This could
be an expert-created model based on appropriate assump-
tions, or could have been learned based on observed agent
behaviour on similar problems. It depends on two sets of
unobserved parameters: ω ∈ Ω and θ ∈ Θ. We defined Ω
earlier as the parameter space of the reward function. Θ is
the parameter space for the possible biases the agent has.
We call θ the bias parameters.

Advice as a Decision Problem
We define the assistant’s decision problem as a generalized
hidden parameter MDP (GHP-MDP) M (Perez, Such, and
Karaletsos 2020). A GHP-MDP is an MDP in which both the
transition and reward function are parameterized but where
the true values of those parameters are not observed. In our
definition these parameters are ω and θ, the two unobserved
parameters which determine an agent’s reward function and

biases. We define M such that the instance Mω,θ defines
the problem of assisting an agent with reward parameters ω
and bias parameters θ.

Let M = ⟨S,Ω,Θ,A′,A, T , π̂,R, γ, p0,s, p0,ω, p0,θ⟩.
Here S,A, γ, and p0,s are the same as in the agent’s prob-
lem E. R and π̂(a | s, a′; θ, ω) are as defined earlier. The
assistant’s actions A′ constitute advice that can be given to
the agent. Ω and Θ are the parameter spaces for the reward
function and biases, and p0,ω and p0,θ are prior distributions
over them. Lastly, T is a collection of transition functions
Tω,θ for all possible values of ω ∈ Ω and θ ∈ Θ. It encodes
the interaction between the assistant and the agent and be-
tween the agent and the environment from Figure 1.

When the assistant gives advice a′t ∈ A′ to the agent,
the agent is free to choose which action at ∈ A to take in
E. It is this action taken by the agent that leads to a new
state, according to the transition function of E. Thus, the
assistant only indirectly influences the change of state, by
using advice to induce a different policy from the agent. The
agent model π̂ predicts which policy will be induced by ad-
vice. Thus, for given reward and bias parameters ω and θ,
the transition function is

Tω,θ(st+1 | st, a′t) =
∑
at∈A

π̂(at | st, a′t; θ, ω)T (st+1 | st, at)

Because the true values of θ and ω are not known, we
can think of M as defining a space of MDPs. The challenge
in planning over M is that planning must happen without
knowing which MDP in this space the assistant is truly op-
erating in, i.e. what kind of agent the assistant is advising.
We can, however, maintain beliefs over θ and ω based on
the transitions we observe. For every transition (st, a

′
t, st+1)

we observe we can calculate the likelihood of that transition
under the various possible parameter values in Ω×Θ to up-
date our posterior belief distributions over the parameters. In
other words, by observing the agent’s decisions in response
to advice we can maintain beliefs about the agent’s biases
and reward function.

Root Sampling for GHP-MDPs
Finding an optimal policy over M involves not only plan-
ning on a belief distribution over MDPs, but also accounting
for how that distribution will change as we act. With ev-
ery action we take, we observe a new transition which will
change our beliefs over Ω and Θ. However, not every action
is equally informative: advice which gets wildly different re-
actions from different types of agents will be more useful for
determining what type of agent we are assisting than advice
to which all agents react in the same way. Planning must
consider both the expected long-term reward of actions, and
their informativeness towards the unknown parameters.

We propose a modification of Bayes-adaptive Monte
Carlo Planning (BAMCP) (Guez, Silver, and Dayan 2012).
BAMCP is based on MCTS (Browne et al. 2012) and en-
ables planning over MDPs where the transition function is
not known, and needs to be inferred from transition observa-
tions. The advantage of BAMCP is that it efficiently main-
tains all current and potential future beliefs over transition
functions by using the tree as a particle filter (Guez, Silver,

11553

and Dayan 2012). This allows it to incorporate the future
information value of actions into its value estimates. We ex-
tend this algorithm from operating on beliefs over transition
functions to joint beliefs over transition and reward func-
tions, i.e. beliefs over Θ and Ω. We call this new variant
Generalized Hidden Parameter Monte Carlo Planning (GH-
PMCP).

We give a short overview of the algorithm here, and refer
the reader to the appendices for a detailed explanation. Like
any MCTS algorithm, in every planning iteration GHPMCP
simulates an MDP down the tree following a UCT policy.
The main difference is that the simulated MDP is resampled
for every iteration. Before an iteration starts, parameters θ, ω
are sampled from pθ, pω . Mω,θ is then simulated down the
tree. The Q-function estimates along the path are updated us-
ing Mω,θ’s specific reward function Rω . Here lies the dif-
ference to BAMCP, which – because it only considers un-
certainty over the transition function – uses the same fixed
reward function R in every iteration.

An Agent Model for Assistance
We now introduce a general-purpose agent model, applica-
ble to any decision problem E as defined above. We have de-
veloped this agent model to be a good starting point for most
use cases. It is based on established and grounded theories
of human decision making. It is also consistent with how RL
agent policies are often implemented. We use instances of it
in our experiments here, but stress that our proposed method
does not require this agent model specifically.

The proposed agent model is built on the following choice
rule:

p(a|u) = p(a) exp (βu(a))∑
â∈A p(â) exp (βu(â))

(1)

where a ∈ A is an action, u is a function that assigns a
utility to every action, p(a) is a prior distribution over ac-
tions, and β is a temperature parameter. β allows us to in-
terpolate between fully rational choices (β = ∞) and fully
random choices (β = 0). This choice rule has repeatedly
proven to be a useful and practical model of human cogni-
tion (Lucas et al. 2008; Baker, Saxe, and Tenenbaum 2009;
Viappiani and Boutilier 2010; Christiano et al. 2017; Brown
et al. 2019). Theoretical work has proposed it as a result
of a bounded rational view of human cognition with infor-
mation processing costs (Ortega and Braun 2013; Genewein
et al. 2015). Surprisingly, this rule is also a popular choice
of model in RL – where it is known as a softmax policy –
for representing agent policies (Sutton and Barto 2018).

The agent model π̂(a | s, a′; θ, ω) consists of a sequence
of choices made according to this choice rule. It is based on
the idea that an agent will only settle for the assistant’s action
if it cannot find a better one itself. As utility function we
use the Q-function of the current state u(a) = Q̂(s, a; θ, ω).
This Q-function could be derived directly from the agent’s
problem E, or from some derivative of it Ê in case we want
to model an agent with an incorrect or limited view of the
world. Some biases can therefore be modeled as part of Ê.
Q̂ then depends on ω to allow us to model different reward

functions, and on θ so that we can use the bias parameters as
parameters of the problem model Ê.

Under our model the agent starts by choosing the best ac-
tion it can think of. This is a stochastic choice which we rep-
resent as a random variable A1 defined over the actions. The
distribution of A1 results from a straightforward application
of equation (1):

pA1
(a) =

p(a) exp
(
β1Q̂(a)

)
∑

â∈A p(â) exp
(
β1Q̂(â)

) (2)

As the state and parameters are constant within this con-
text, we have used the shorthand Q̂(a) := Q̂(s, a; θ, ω) and
p(A1 = a) := p(A1 = a|s; θ, ω). We will drop the condi-
tioning variables s, θ and ω for the rest of this section.

Next the agent chooses whether to switch to the assis-
tant’s recommended action a′ or to stick to the action a it
has chosen. The probability of switching from a to a′ (de-
noted a → a′) is

p (a → a′) =
exp

(
β2

(
Q̂(a′)− Q̂(a)

))
1 + exp

(
β2

(
Q̂(a′)− Q̂(a)

)) (3)

This probability is the result of applying equation (1) to
the binary choice of switching or not with a uniform prior.
The utility for both choices is the gain in Q-value realised:
Q̂(a′) − Q̂(a) in the case of switching and 0 otherwise. As
this choice is easier than the choice in equation (2) we use
a different temperature parameter β2 here. We represent the
agent’s choice of action after considering a′ by A2, a random
variable with distribution

pA2
(a|a′) =

[1− p(a → a′)]pA1

(a) if a ̸= a′

[1− p(a′ → a′)]pA1(a
′)

+
∑

a′′∈A p(a′′ → a′)pA1
(a′′) if a = a′

This distribution is then the agent model’s policy π̂.
In some problems, such as design problems, there is a

special NOOP action which allows the agent to choose to
do nothing. We model this as the agent recommending the
NOOP action to itself, after arriving at A2, analogously to
the switch to the assistant’s recommendation a′.

Experiments
We present here results from a number of simulation ex-
periments on two single-episode decision problems: a day
trip design problem and an inventory management problem1

Both exhibit a very different structure. The day trip design
problem has vast state and action spaces that represent a de-
sign that evolves over time. Actions do not have an inher-
ent cost, but rather the value of the design produced at the
end of the episode is important. Returning to the start state
(the starting design) without restarting the episode is trivial.
The inventory management problem on the other hand has a

1Our code is available from https://github.com/AaltoPML/
Zero-Shot-Assistance-in-Sequential-Decision-Problems. The ap-
pendices can be found at https://arxiv.org/abs/2202.07364.

11554

smaller state space but all actions contribute to the cumula-
tive reward of the episode, and it is generally impossible to
reset the problem back to its starting point within an episode.

We will compare agents assisted by AIAD to agents
assisted by a number of baselines on these two decision
problems. We consider two versions of AIAD: AIAD and
AIAD + automation. The latter is an extension which gives
the assistant actions that directly change the environment.
These actions have transition function Tω,θ(st+1 | st, a′t) =
T (st+1 | st, a′t). We consider four baselines: (1) unassisted
agent To create an unassisted agent we modify our agent
model by removing the switch to a recommended action en-
coded in eq. (3) (p(a → a′) = 0 ∀a ∈ A). (2) IRL +
automation. This is an IRL-based approach following prior
work in learning rewards from biased agents. It observes N
time steps of the unassisted agent acting without assistance.
It then infers both θ and ω from the observations, using the
same agent model but without knowledge of the parameters,
and completes the rest of the episode in place of the agent.
For day trip design we first return back to the starting de-
sign before automating. The automation policy is an optimal
policy for the agent’s problem E with as reward function the
expected reward under the inferred posterior over reward pa-
rameters. (3) PL + automation. This approach is based on
preference learning (PL). At the start of the episode the agent
is presented with N comparison queries. These queries are
selected based on their expected information gain. We cre-
ate an agent model that chooses between the two options
according to the choice rule from eq. (1) with u(s) = fω(s).
This model is both used to simulate the agent and to infer
the reward function from the agent’s responses. We then au-
tomate all decisions within the episode based on the inferred
reward function. (4) partial automation This method is a
more flexible version of IRL + automation. It automates by
default, but in any time step can temporarily hand control
back to the agent. The agent then acts – without advice –
in that time step. This allows partial automation to rely on
the agent when it is too uncertain about how to act. The
agent’s observed action is used to update the beliefs about
θ and ω. This baseline is representative for approaches such
as (Shah et al. 2020; Hadfield-Menell et al. 2016), albeit re-
implemented here within our framework so that biases can
be inferred.

Every run of our experiments lasts for one episode. Pos-
terior beliefs in all implementations are maintained using a
weighted particle filter. Within a run every method is applied
once to assist a simulated agent in an instance of the prob-
lem considered. The cumulative reward obtained through
different assistance methods is then compared using a paired
Wilcoxon signed rank test at significance level p < 0.05.

Day Trip Design
The day trip design problem is an idealized but otherwise
realistic instance of a design problem. Like most other de-
sign problems this has a large action space and a vast state
space. The agent is given 100 points of interest (POI) and
must choose a subset of them which it wants to visit within
a day. Its goal is to choose a subset that it would maximally
enjoy visiting. Every POI has a location, visit duration, ad-

mission cost, and belongs to a number of topics. There are 20
topics in total. The enjoyment of visiting a POI is a function
of the overlap between the topics to which it belongs and
the topics the agent is interested in. The total enjoyment of
visiting the POIs must be traded off against the sum of their
admission costs. The value of a trip s, fω(s), is therefore a
combination of these two scores, parameterized by parame-
ters ω which capture the agent’s topic interests and tolerance
for high admission prices. Choosing POIs involves account-
ing for the time needed to travel between the chosen points.
Any time spend walking cannot be spend enjoying a visit
to a POI. To help with this, the agent is automatically given
an optimal itinerary which minimizes the travel time for its
current selection of POIs (this involves solving a traveling
salesperson problem (TSP)).

To formalize this as an MDP E we define the state space
as the space of all subsets of the POIs. We introduce an ac-
tion for every POI which allows the agent to add that POI
to the current trip or to remove it, depending on whether it
is already part of it or not. To enforce the constraint that all
selected POIs must be visited within a day, in states corre-
sponding to a trip that would take more than 12 hours we
only allow actions that remove POIs. The agent seeks to
maximize fω(s). Therefore, we define its reward function
as the improvement in objective value from one time step to
the next: Rω(st, at, st+1) = fω(st+1)− fω(st). Additional
details about this experiment can be found in the appendices.

We use the agent model we introduced in the previous
section. The problem Ê on which the agent plans differs in
two key aspect from E. The first is that the agent uses a
visual heuristic to determine how the itinerary for its cur-
rent choice of POIs will change as it considers additions
and deletions. We model this using a visual heuristic for
TSPs commonly used by humans (MacGregor, Ormerod,
and Chronicle 2000). The second difference is that we in-
troduce an anchoring bias. This bias, which is typical in hu-
man designers, causes the agent to resist large changes to
its design. In our implementation, agents with this bias will
refuse to consider adding any POI that is more than 500 me-
ters away from their current itinerary. Concretely, this means
that in a state s in Ê, the available actions will only be those
that add POIs which are within 500 meters of the itinerary,
or that remove POIs. The Q-values used in the agent model
are determined using depth-limited best-first search on Ê.

Because this is a design problem, the cost of taking ac-
tions – i.e. changing the design – is non-existent. We are
therefore mainly interested in minimizing the effort required
from the agent; how many actions the assistant takes is not
a significant factor. Thus, our quantity of interest is the ob-
jective value fω(s) achieved as a function of the number of
agent interactions N . Due to our definition of the reward
function, this is equal here to the undiscounted cumulative
reward after N interactions. As interactions we count both
actions taken and queries answered by the agent. For PL,
queries consist of of a comparisons between two day trips
(i.e. states). We have created a separate agent model that
chooses between the two day trips according to the choice
rule from eq. (1) with u(s) = fω(s). The PL and IRL base-

11555

lines are evaluated at 0, 5, 10 15, 20, 25 and 30 interactions,
while the other methods are evaluated on a continuous range
of N from 1 to 30. We ran this experiment 75 times. For
every run we sampled new agent model parameters θ, ω and
a new set of POIs. Roughly half of the agents simulated in
these runs had an anchoring bias.

Results We observe that agents assisted by AIAD
achieved significantly higher objective value than those as-
sisted by any of the baselines from 18 interactions onward
(figure 2a). Because every episode starts from an empty trip,
and AIAD needs to interact with the agent to change the
design, there is a minimum number of agent interactions re-
quired to produce a complete design. This puts it at a disad-
vantage to the automation-based baselines which can change
the design directly. AIAD + automation addresses this by al-
lowing the assistant to change the design directly. This also
allows the assistant to bypass the agent when the anchoring
bias would prevent the agent from accepting certain recom-
mendations. We see that AIAD + automation significantly
outperforms all baseline-assisted agents from 8 interactions.
Although these results are a clear improvement over AIAD,
AIAD + automation lacks the safety guarantees and agent
control of AIAD, as the agent cannot interrupt the assistant
if it automates poorly.

Though AIAD achieves lower uncertainty with regards to
the agent parameters and lower mean loss in its inference of
the reward (see additional results in the appendices), com-
pared to the automation-based baselines, we consider these
differences too small to explain its performance edge. We
see a larger part of the explanation in a specific advantage
of assistance through advice. Bad advice – as a result of un-
certain inferences of the parameters or mis-specification of
the agent model – does not usually affect the design, as the
agent should simply ignore it, whereas bad direct changes
to the design will. This is true for AIAD + automation too,
which can use its uncertainty estimates to decide whether to
use advice or make a direct change. In our experiments the
reward function was technically mis-specified, as the parti-
cles in the particle filter could not cover the whole reward
parameter space. We see evidence of this for all methods in
the low uncertainty and high inference error in the latter part
of the episode.

We analyze in the appendices the relation between the loss
in the inferred reward function and the rejection rate of ad-
vice, and show that the rejection rate decreases as the infer-
ence of the reward function in AIAD improves. Of course,
this inherent safety of advice works only if the agent is likely
to reject bad advice. This was the case in the experiments
considered here, but in other instances specific biases may
cause an agent to follow such bad advice. Luckily, the assis-
tant can account for this if these biases are modeled in the
agent model.

To verify that an assistant that infers and accounts for the
anchoring biases is more helpful than one that does not we
ablate our AIAD implementation by considering two alter-
natives which make assumptions about this bias, rather than
inferring it. One assumes that no agents have an anchoring
bias and does not model it, and the other assumes that all

have it. Both were significantly outperformed by standard
AIAD after 11 interactions. More details can be found in the
appendices.

Inventory Management
In the inventory management problem the agent is tasked
with managing an inventory of three different products. In
every time step t every product i has some amount of de-
mand di,t sampled from a known demand distribution Di,t.
At the start of every time step, before observing di,t, the
agent must decide how much of each product to produce,
so that the the current inventory of product i, Ii,t, and the
chosen production quantity Pi,t are sufficient to meet the de-
mand. There is however a limit on how much product can be
produced in total within any given time step. Every piece of
product that is sold yields a profit vi, and any unsold product
goes into the inventory. Storing a piece of product has a cost
c per time step. Any demand that cannot be met from in-
ventory and production on a given day is lost, and the agent
incurs a future loss of business cost l. Imagine if the agent is
running a bakery and sells out of croissants before the end
of the day. Any customer who had wanted to buy croissants
will have to go to a competitor, and thus may not come back.
The future loss of business cost represents these lost sales.

This problem can be defined as an MDP E with as state
the current inventory for all products {Ii,t}i=1:3 and all fu-
ture demand distributions {Di,t}i=1:3,t. The actions repre-
sent choices of how much of each product to produce. In our
implementation case the agent is able to produce any mul-
tiple of 2 of any product, up to a sum of 12. The reward
function is parameterized by c, l and {vi}i=1:3.

We use the agent model we introduced in the previous sec-
tion. The problem Ê on which the agent plans differs from
E in that we assume the agent has insufficient computational
resources to work with the full demand distributions Di,t,
and instead plans using point estimates of the demand d̂i,t.
We define d̂i,t = µ(Di,t) + θσ(Di,t) where µ and σ are re-
spectively the mean and standard deviation of Di,t. θ ∈ Θ
is a single continuous bias parameter. When θ ̸= 0 it intro-
duces a bias into the agent model, specifically an optimism
bias (θ > 0) under which the agent overestimates the ex-
pected demand, or a pessimism bias (θ < 0) under which
the agent underestimates the demand. These biases are typ-
ical for humans. Optimism could lead to excessive produc-
tion, and therefore excessive cost of storing unsold inven-
tory, while pessimism could cause the agent to incur a high
future loss of business cost due to insufficient production.
The Q-values used in this agent model are determined using
depth-limited best-first search on Ê.

Our main quantity of interest for this problem is the dis-
counted cumulative reward, both calculate over the whole
episode, and as a function of the number of agent actions.
We ran this experiment 20 times, with episodes of 50 time
steps. For the IRL baseline we change from agent to automa-
tion after 0, 10 20, 30, and 40 actions taken by the agent. For
every run we sample new parameters θ, ω and new demand
distributions. The optimism/pessimism bias parameter θ is
sampled from a zero-centered Gaussian distribution. Addi-

11556

(a) (b)

Figure 2: (a) Mean objective value achieved by agents supported by the methods considered as a function of different numbers
of interactions for the day trip design problem. This plot only shows agent interactions. Changes in objective value achieved by
the assistant are added to the last agent action that preceded them. The Shading shows the standard error around the mean. (b)
Cumulative discounted reward achieved by agents supported by the methods considered as a function of the number of agent
interactions for the inventory management problem.

tional details and results can be found in the appendices.

Results Table 1 shows the mean cumulative discounted re-
ward for episodes of the inventory management problem.
We can see that if we are not trying to minimize agent effort
and only aim to maximize cumulative discounted reward,
AIAD significantly outperforms all other methods. In fact,
AIAD comes very close to automation based on the true re-
ward function (oracle + automation). Looking at cumula-
tive discounted reward as a function of the number of agent
interactions (figure 2b) the picture is different. For low levels
of agent effort it is best to automate based on the prior, i.e.
without interacting with the agent at all (this is represented
by IRL + automation at 0 interactions). From 19 interac-
tions onward AIAD + automation significantly outperforms
all the other methods, until 50 interactions where standard
AIAD significantly outperforms it.

To verify that an assistant that infers and accounts for an
optimism/pessimism bias is more helpful than one that does
not we compare AIAD to three ablations which assume a
certain bias. The first assumes that all agents are optimistic,
the second that all agents are pessimistic and the last that
no agents are biased. We find that agents assisted by AIAD

method cumulative reward

AIAD 185.5 ± 8.5
AIAD + automation 175.0± 8.3

unassisted agent 123.7± 11.7
IRL + automation 165.6± 9.0
partial automation 163.1± 8.7

oracle + automation 187.6± 7.6

Table 1: Mean cumulative discounted reward (± standard
error) achieved by agents supported by the methods consid-
ered on the inventory management problem over a complete
episode. Bold indicates that the method is significantly bet-
ter than the baselines. For IRL we show the best achieved
result, which switched to automation after 10 interactions.

achieve significantly higher cumulative reward if AIAD in-
fers this bias. More detail can be found in the appendices.

Conclusion

In this paper we have considered zero-shot assistance: the
problem of assisting an agent in a decision problem when
no prior knowledge of the agent’s reward function or bi-
ases is available. To this end we have introduced AI-Advised
Decision-making (AIAD), in which an assistant helps an
agent primarily by giving advice. We also introduced a ver-
sion of AIAD which allowed the agent to automate, at the
cost of losing some of the safety guarantees of AIAD. We
have introduced a decision-theoretic formalization of the as-
sistant’s problem of advising such an agent, and have pro-
posed a planning algorithm for determining the assistant’s
policy. An important novelty in this formalization is that
it accounts for individual agent biases, something which
we showed experimentally improves the quality of the as-
sistant’s advice. Through our experiments we have also
shown that assistance through advice, potentially combined
with some automation, yields better results than assistance
through automation alone.

Limitations Although our work does not require the ex-
plicit definition of a reward function, we do require the defi-
nition of a space of reward functions, which may still be dif-
ficult to provide. This difficulty is, however, inherent to any
reward learning approach. Though our framework supports
advice of any type, our experiments only covered action rec-
ommendations. Other types of advice could be designed to
push an agent’s reasoning in a general direction rather than
toward a single action, or could include additional informa-
tion (such as visualizations) designed to convince the agent
of the quality of an action recommendation. We leave this
to future work. Our experiments did not cover the effects of
misspecification in the agent model itself, only in the reward
function. For complex agent like humans, it is unlikely that
we would be able to create a perfect agent model.

11557

Ethical Statement
Assistance through advice is a promising solution for the
value alignment problem (Everitt and Hutter 2018). As we
have discussed in this paper, advice can reduce the negative
effects of value misalignment in an assistant while ensuring
agent (human) control. Further, advice forces the assistant
to be understandable, as it must convince the agent to follow
its advice. Equipping an assistants with a highly accurate
agent model – whether in AIAD or other methods – does
pose some safety risks. There is the potential for an assistant
to use this model to find ways to weaken the agent’s control,
for example by exploiting its biases.

Acknowledgements
We would like to thank Pierre-Alexandre Murena and
Mustafa Mert Çelikok for their valuable feedback and sug-
gestions. This works was supported by the Technology In-
dustries of Finland Centennial Foundation and the Jane and
Aatos Erkko Foundation under project Interactive Artifi-
cial Intelligence for Driving R&D, the Academy of Fin-
land (flagship programme: Finnish Center for Artificial In-
telligence, FCAI; grants 328400, 345604 and 341763), and
the UKRI Turing AI World-Leading Researcher Fellowship,
EP/W002973/1. We further acknowledge the computational
resources provided by the Aalto Science-IT project.

References
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship Learning
via Inverse Reinforcement Learning. In Proceedings of the
Twenty-First International Conference on Machine Learn-
ing.
Armstrong, S.; and Mindermann, S. 2018. Occam’s razor
is insufficient to infer the preferences of irrational agents.
Advances in Neural Information Processing Systems, 31.
Arora, S.; and Doshi, P. 2021. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. Artificial
Intelligence, 297.
Baker, C. L.; Saxe, R.; and Tenenbaum, J. B. 2009. Action
understanding as inverse planning. Cognition, 113(3): 329–
349.
Brown, D.; Goo, W.; Nagarajan, P.; and Niekum, S. 2019.
Extrapolating Beyond Suboptimal Demonstrations via In-
verse Reinforcement Learning from Observations. In Pro-
ceedings of the 36th International Conference on Machine
Learning, 783–792. PMLR.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE Transactions on Compu-
tational Intelligence and AI in games, 4(1): 1–43.
Çelikok, M. M.; Oliehoek, F. A.; and Kaski, S. 2022. Best-
Response Bayesian Reinforcement Learning with Bayes-
adaptive POMDPs for Centaurs. In Proceedings of the 21st
International Conference on Autonomous Agents and Multi-
agent Systems, 235–243.

Chan, L.; Critch, A.; and Dragan, A. 2021. Human irra-
tionality: both bad and good for reward inference. arXiv
preprint arXiv:2111.06956.
Christiano, P. F.; Leike, J.; Brown, T. B.; Martic, M.; Legg,
S.; and Amodei, D. 2017. Deep Reinforcement Learning
from Human Preferences. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing Sys-
tems, 4302–4310.
Dimitrakakis, C.; Parkes, D. C.; Radanovic, G.; and Tylkin,
P. 2017. Multi-View Decision Processes: The Helper-AI
Problem. In Advances in Neural Information Processing
Systems, volume 30.
Elmalech, A.; Sarne, D.; Rosenfeld, A.; and Erez, E. S.
2015. When Suboptimal Rules. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
1313–1319. AAAI.
Evans, O.; and Goodman, N. 2015. Learning the preferences
of bounded agents. NIPS Workshop on Bounded Optimality.
Evans, O.; Stuhlmueller, A.; and Goodman, N. 2016. Learn-
ing the Preferences of Ignorant, Inconsistent Agents. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, 323–329.
Everitt, T.; and Hutter, M. 2018. The Alignment Problem for
Bayesian History-Based Reinforcement Learners. Technical
report. https://www.tomeveritt.se/papers/alignment.pdf.
Fern, A.; Natarajan, S.; Judah, K.; and Tadepalli, P. 2014. A
Decision-Theoretic Model of Assistance. Journal of Artifi-
cial Intelligence Research, 50: 71–104.
Genewein, T.; Leibfried, F.; Grau-Moya, J.; and Braun, D. A.
2015. Bounded Rationality, Abstraction, and Hierarchi-
cal Decision-Making: An Information-Theoretic Optimality
Principle. Frontiers in Robotics and AI, 2.
Guez, A.; Silver, D.; and Dayan, P. 2012. Efficient
Bayes-Adaptive Reinforcement Learning using Sample-
Based Search. In Advances in Neural Information Process-
ing Systems, volume 25.
Hadfield-Menell, D.; Russell, S. J.; Abbeel, P.; and Dragan,
A. 2016. Cooperative Inverse Reinforcement Learning. In
Advances in Neural Information Processing Systems, vol-
ume 29.
Ho, M. K.; and Griffiths, T. L. 2022. Cognitive Science as
a Source of Forward and Inverse Models of Human Deci-
sions for Robotics and Control. Annual Review of Control,
Robotics, and Autonomous Systems, 5: 33–53.
Hu, H.; Lerer, A.; Peysakhovich, A.; and Foerster, J. 2020.
“Other-Play” for Zero-Shot Coordination. In International
Conference on Machine Learning, 4399–4410. PMLR.
Javdani, S.; Srinivasa, S. S.; and Bagnell, J. A. 2015. Shared
Autonomy via Hindsight Optimization. In Proceedings of
Robotics: Science and Systems.
Kahneman, D.; Slovic, S. P.; Slovic, P.; and Tversky, A.
1982. Judgment under uncertainty: Heuristics and biases.
Cambridge university press.
Knox, W. B.; and Stone, P. 2009. Interactively Shaping
Agents via Human rRinforcement: The TAMER Frame-
work. In Proceedings of the Fifth International Conference
on Knowledge Capture, 9–16.

11558

Lucas, C.; Griffiths, T.; Xu, F.; and Fawcett, C. 2008. A ra-
tional model of preference learning and choice prediction by
children. In 22nd Annual Conference on Neural Information
Processing System.
MacGregor, J. N.; Ormerod, T. C.; and Chronicle, E. 2000.
A model of human performance on the traveling salesperson
problem. Memory & Cognition, 28(7): 1183–1190.
Ng, A. Y.; and Russell, S. J. 2000. Algorithms for Inverse
Reinforcement Learning. In Proceedings of the Seventeenth
International Conference on Machine Learning, 663–670.
Ortega, P. A.; and Braun, D. A. 2013. Thermodynamics
as a theory of decision-making with information-processing
costs. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 469(2153): 20120683.
Perez, C.; Such, F. P.; and Karaletsos, T. 2020. Generalized
Hidden Parameter MDPs: Transferable Model-Based RL in
a Handful of Trials. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, 5403–5411.
Ramachandran, D.; and Amir, E. 2007. Bayesian Inverse
Reinforcement Learning. In IJCAI, volume 7, 2586–2591.
Rao, S. S. 2019. Engineering Optimization: Theory and
Practice. John Wiley & Sons.
Reddy, S.; Dragan, A.; and Levine, S. 2018. Shared Auton-
omy via Deep Reinforcement Learning. In Proceedings of
Robotics: Science and Systems. Pittsburgh, Pennsylvania.
Shah, R.; Freire, P.; Alex, N.; Freedman, R.; Krashenin-
nikov, D.; Chan, L.; Dennis, M.; Abbeel, P.; Dragan, A.;
and Russell, S. 2020. Benefits of Assistance over Reward
Learning. Workshop on Cooperative AI (Cooperative AI @
NeurIPS 2020).
Shah, R.; Gundotra, N.; Abbeel, P.; and Dragan, A. 2019.
On the feasibility of learning, rather than assuming, human
biases for reward inference. In International Conference on
Machine Learning, 5670–5679. PMLR.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press, 2nd edition.
Viappiani, P.; and Boutilier, C. 2010. Optimal Bayesian Rec-
ommendation Sets and Myopically Optimal Choice Query
Sets. In Proceedings of the 23rd International Conference
on Neural Information Processing Systems, 2352–2360.
Warnell, G.; Waytowich, N.; Lawhern, V.; and Stone, P.
2018. Deep TAMER: Interactive Agent Shaping in High-
Dimensional State Spaces. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, vol-
ume 32, 1545–1553.
Wirth, C.; Akrour, R.; Neumann, G.; Fürnkranz, J.; et al.
2017. A survey of Preference-Based Reinforcement Learn-
ing Methods. Journal of Machine Learning Research,
18(136): 1–46.

11559

