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Abstract
Cooperative multi-agent policy gradient (MAPG) algorithms
have recently attracted wide attention and are regarded as
a general scheme for the multi-agent system. Credit as-
signment plays an important role in MAPG and can in-
duce cooperation among multiple agents. However, most
MAPG algorithms cannot achieve good credit assignment be-
cause of the game-theoretic pathology known as centralized-
decentralized mismatch. To address this issue, this paper
presents a novel method, Multi-Agent Polarization Policy
Gradient (MAPPG). MAPPG takes a simple but efficient po-
larization function to transform the optimal consistency of
joint and individual actions into easily realized constraints,
thus enabling efficient credit assignment in MAPG. Theo-
retically, we prove that individual policies of MAPPG can
converge to the global optimum. Empirically, we evaluate
MAPPG on the well-known matrix game and differential
game, and verify that MAPPG can converge to the global
optimum for both discrete and continuous action spaces. We
also evaluate MAPPG on a set of StarCraft II micromanage-
ment tasks and demonstrate that MAPPG outperforms the
state-of-the-art MAPG algorithms.

1 Introduction
Multi-agent reinforcement learning (MARL) is a critical
learning technology to solve sequential decision problems
with multiple agents. Recent developments in MARL have
heightened the need for fully cooperative MARL that max-
imizes a reward shared by all agents. Cooperative MARL
has made remarkable advances in many domains, includ-
ing autonomous driving (Cao et al. 2021) and cooperative
transport (Shibata, Jimbo, and Matsubara 2021). To mitigate
the combinatorial nature (Hernandez-Leal, Kartal, and Tay-
lor 2019) and partial observability (Omidshafiei et al. 2017)
in MARL, centralized training with decentralized execution
(CTDE) (Oliehoek, Spaan, and Vlassis 2008; Kraemer and
Banerjee 2016) has become one of the mainstream settings
for MARL, where global information is provided to promote
collaboration in the training phase and learned policies are
executed only based on local observations.

Multi-agent credit assignment is a crucial challenge in
the MARL under the CTDE setting, which refers to at-
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tributing a global environmental reward to the individ-
ual agents’ actions (Zhou et al. 2020). Multiple indepen-
dent agents can learn effective collaboration policies to ac-
complish challenging tasks with the proper credit assign-
ment. MARL algorithms can be divided into value-based
and policy-based. Cooperative multi-agent policy gradient
(MAPG) algorithms can handle both discrete and contin-
uous action spaces, which is the focus of our study. Dif-
ferent MAPG algorithms adopt different credit assignment
paradigms, which can be divided into implicit and explicit
credit assignment (Zhou et al. 2020). Solving the credit as-
signment problem implicitly needs to represent the joint ac-
tion value as a function of individual policies (Lowe et al.
2017; Zhou et al. 2020; Wang et al. 2021b; Zhang et al.
2021; Peng et al. 2021). Current state-of-the-art MAPG al-
gorithms (Wang et al. 2021b; Zhang et al. 2021; Peng et al.
2021) impose a monotonic constraint between the joint ac-
tion value and individual policies. While some algorithms
allow more expressive value function classes, the capacity
of the value mixing network is still limited by the monotonic
constraints (Son et al. 2019; Wang et al. 2021a). The other
algorithms that achieve explicit credit assignment mainly
provide a shaped reward for each individual agent’s action
(Proper and Tumer 2012; Foerster et al. 2018; Su, Adams,
and Beling 2021). However, there is a large discrepancy be-
tween the performance of algorithms with explicit credit as-
signment and algorithms with implicit credit assignment.

In this paper, we analyze this discrepancy and pin-
point that the centralized-decentralized mismatch hinders
the performance of MAPG algorithms with explicit credit
assignment. The centralized-decentralized mismatch can
arise when the sub-optimal policies of agents could nega-
tively affect the assessment of other agents’ actions, which
leads to catastrophic miscoordination. Note that the issue
of centralized-decentralized mismatch was raised by DOP
(Wang et al. 2021b). However, the linearly decomposed
critic adopted by DOP (Wang et al. 2021b) limits their rep-
resentation expressiveness for the value function.

Inspired by Polarized-VAE (Balasubramanian et al. 2021)
and Weighted QMIX (Rashid et al. 2020), we propose
a policy-based algorithm called Multi-Agent Polarization
Policy Gradient (MAPPG) for learning explicit credit as-
signment to address the centralized-decentralized mismatch.
MAPPG encourages increasing the distance between the
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global optimal joint action value and the non-optimal joint
action values while shortening the distance between multiple
non-optimal joint action values via polarization policy gradi-
ent. MAPPG facilitates large-scale multi-agent cooperations
and presents a new multi-agent credit assignment paradigm,
enabling multi-agent policy learning like single-agent policy
learning (Wei and Luke 2016). Theoretically, we prove that
individual policies of MAPPG can converge to the global
optimum. Empirically, we verify that MAPPG can con-
verge to the global optimum compared to existing MAPG
algorithms in the well-known matrix (Son et al. 2019) and
differential games (Wei et al. 2018). We also show that
MAPPG outperforms the state-of-the-art MAPG algorithms
on StarCraft II unit micromanagement tasks (Samvelyan
et al. 2019), demonstrating its scalability in complex scenar-
ios. Finally, the results of ablation experiments match our
theoretical predictions.

2 Related Work
Implicit Credit Assignment
In general, implicit MAPG algorithms utilize the learned
function between the individual policies and the joint action
values for credit assignment. MADDPG (Lowe et al. 2017)
and LICA (Zhou et al. 2020) learn the individual policies by
directly ascending the approximate joint action value gra-
dients. The state-of-the-art MAPG algorithms (Wang et al.
2021b; Zhang et al. 2021; Peng et al. 2021; Su, Adams,
and Beling 2021) introduce the idea of value function de-
composition (Sunehag et al. 2018; Rashid et al. 2018; Son
et al. 2019; Wang et al. 2021a; Rashid et al. 2020) into
the multi-agent actor-critic framework. DOP (Wang et al.
2021b) decomposes the centralized critic as a weighted lin-
ear summation of individual critics that condition local ac-
tions. FOP (Zhang et al. 2021) imposes a multiplicative form
between the optimal joint policy and the individual opti-
mal policy, and optimizes both policies based on maximum
entropy reinforcement learning objectives. FACMAC (Peng
et al. 2021) proposes a new credit-assignment actor-critic
framework that factors the joint action value into individ-
ual action values and uses the centralized gradient estimator
for credit assignment. VDAC (Su, Adams, and Beling 2021)
achieves the credit assignment by enforcing the monotonic
relationship between the joint action values and the shaped
individual action values. Although these algorithms allow
more expressive value function classes, the capacity of the
value mixing network is still limited by the monotonic con-
straints, and this claim will be verified in our experiments.

Explicit Credit Assignment
In contrast to implicit algorithms, explicit MAPG algo-
rithms provide the contribution of each individual agent’s
action, and the individual actor is updated by following
policy gradients tailored by the contribution. COMA (Fo-
erster et al. 2018) evaluates the contribution of individual
agents’ actions by using the centralized critic to compute
an agent-specific advantage function. SQDDPG (Wang et al.
2020) proposes a local reward algorithm, Shapley Q-value,
which takes the expectation of marginal contributions of

all possible coalitions. Although explicit algorithms pro-
vide valuable insights into the assessment of the contribu-
tion of individual agents’ actions to the global reward and
thus can significantly facilitate policy optimization, the is-
sue of centralized-decentralized mismatch hinders their per-
formance in complex scenarios. Compared to explicit algo-
rithms, the proposed MAPPG can theoretically tackle the
challenge of centralized-decentralized mismatch and exper-
imentally outperforms existing MAPG algorithms in both
convergence speed and final performance in challenging en-
vironments.

3 Background
Dec-POMDP
A decentralized partially observable Markov decision pro-
cess (Dec-POMDP) is a tuple ⟨S,U, r, P, Z,O, n, γ⟩, where
n agents identified by a ∈ A ≡ {1, ..., n} choose sequen-
tial actions, s ∈ S is the state. At each time step, each
agent chooses an action ua ∈ U , forming a joint action
u ∈ U ≡ Un which induces a transition in the environ-
ment according to the state transition function P (s′ | s,u) :
S × U × S → [0, 1]. Agents receive the same reward ac-
cording to the reward function r(s,u) : S ×U → R. Each
agent has an observation function O(s, a) : S × A → Z,
where a partial observation za ∈ Z is drawn. γ ∈ [0, 1) is
the discount factor. Throughout this paper, we denote joint
quantities over agents in bold, quantities with the subscript
a denote quantities over agent a, and joint quantities over
agents other than a given agent a with the subscript −a.
Each agent tries to learn a stochastic policy for action se-
lection: πa : T × U → [0, 1], where τa ∈ T ≡ (Z × U)∗

is an action-observation history for agent a. MARL agents
try to maximize the cumulative return, Rt =

∑∞
t=1 γ

t−1rt,
where rt is the reward obtained from the environment by all
agents at step t.

Multi-Agent Policy Gradient
We first provide the background on single-agent policy gra-
dient algorithms, and then introduce multi-agent policy gra-
dient algorithms. In single-agent continuous control tasks,
policy gradient algorithms (Sutton et al. 1999) optimise a
single agent’s policy, parameterised by θ, by performing gra-
dient ascent on an estimator of the expected discounted to-
tal reward ∇θJ (π) = Eπ

[
∇θ log π (u | s)R0

]
, where the

gradient is estimated from trajectories sampled from the en-
vironment. Actor-critic (Sutton et al. 1999; Konda and Tsit-
siklis 1999; Schulman et al. 2016) algorithms use an esti-
mated action value instead of the discounted return to solve
the high variance caused by the likelihood-ratio trick in the
above formula. The gradient of the policy for a single-agent
setting can be defined as:

∇θJ (π) = Eπ [∇θ log π (u | s)Q (s, u)] . (1)

A natural extension to multi-agent settings leads to the
multi-agent stochastic policy gradient theorem with agent
a’s policy parameterized by θa (Foerster et al. 2018; Wei
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et al. 2018), shown below:

∇θJ (π) =Eπ

[∑
a

∇θa log πa (ua | τa)Q (s,u)

]
=
∑
s

dπ (s)
∑
a

∑
ua

πa (ua|τa)∇θa log πa (ua|τa)∑
u−a

π−a (u−a|τ−a)Q (s,u) . (2)

where dπ (s) is a discounted weighting of states encountered
starting at s0 and then following π. COMA implements the
multi-agent stochastic policy gradient theorem by replacing
the action-value function with the counterfactual advantage,
reducing variance, and not changing the expected gradient.

4 Analysis
In the multi-agent stochastic policy gradient theorem,
agent a learns the policy by directly ascending the ap-
proximate marginal joint action value gradient for each
ua ∈ U , which is scaled by Ma(s, ua,π−a) =∑

u−a
π−a (u−a | τ−a)Q (s,u) (see Equation (2)). For-

mally, suppose that the optimal and a non-optimal joint
action under s are u∗ and u# respectively, that is,
Q(s,u∗) > Q(s,u#). If it holds that Ma(s, u

∗
a,π−a) <

Ma(s, u
#
a ,π−a) due to the exploration or suboptimality of

other agents’ policies, we possibly have that πa(u∗a | τa) <
πa(u

#
a | τa). The decentralized policy of agent a is up-

dated by following policy gradients tailored by the central-
ized critic, which are negatively affected by other agents’
policies. This issue is called centralized-decentralized mis-
match (Wang et al. 2021b). We will show that centralized-
decentralized mismatch occurs in practice for the state-of-
the-art MAPG algorithms on the well-known matrix game
and differential game in the experimental section.

5 The Proposed Method
In this section, we first propose a novel multi-agent actor-
critic method, MAPPG, which learns explicit credit assign-
ment. Then we mathematically prove that MAPPG can ad-
dress the issue of centralized-decentralized mismatch and
the individual policies of MAPPG can converge to the global
optimum.

The Polarization Policy Gradient
In the multi-agent stochastic policy gradient theorem, the
scale of the policy gradient of agent a is impacted by
the policies of other agents, which leads to centralized-
decentralized mismatch. A straightforward solution is to
make the policies of other agents optimal. Learning other
agents’ policies depends on the convergence of agent a’s
policy to the optimal. If agent a’s policy converges to the
optimal, there seems no need to compute the scale of the
policy gradient of agent a. Therefore, we cannot solve the
problem of centralized-decentralized mismatch from a pol-
icy perspective, we seek to address it from the joint action
value perspective.

We define polarization joint action values to replace orig-
inal joint action values. The polarization joint action val-
ues resolve centralized-decentralized mismatch by increas-
ing the distance between the values of the global optimal
joint action and the non-optimal joint actions while shorten-
ing the distance between the values of multiple non-optimal
joint actions. By polarization, the influence of other agents’
non-optimal policies can be largely eliminated. For conve-
nience, the following discussion in the section will assume
that the action values are fixed in a given state s. In later sec-
tions, we will see how the joint action values are updated. If
the optimal joint action u∗ in state s can be identified, then
the polarization policy gradient is:

∇θJ (π) = Eπ

[∑
a

∇θa log πa (ua | τa)QPPG (s,u)

]
,

where

QPPG (s,u) =

{
1 if u = u∗

0 otherwise (3)

is the polarization joint action value function. For each
agent, only the gradient of the component of the optimal ac-
tion is greater than 0, whereby the optimal policy can be
learned. However, we cannot traverse all state-action pairs
to find the optimal joint action u∗ in complex scenarios;
therefore, a soft version of the polarization joint action value
function is defined as:

QPPG (s,u) = exp (α Q (s,u)) , (4)
where α > 0 denotes the enlargement factor determining
the distance between the optimal and the non-optimal joint
action values. However, Equation (4) cannot work in prac-
tice. On the one hand, the result of the exponential function
is easy to overflow. On the other hand, if ∀u, Q (s,u) ≤ 0,
the polarization joint action valuesQPPG (s,u) are between
0 and 1. To address the polarization failure, a baseline is in-
troduced as follows:

QPPG (s,u) =
1

β
exp (α (Q (s,u)−Q (s,ucurr))) , (5)

where β is a factor which can prevent exponential gradient
explosion and ucurr = [argmaxua πa(ua|τa)]na=1. By pro-
viding a baseline, the policy is guided to pay more attention
to the joint actions of {u : Q (s,u) > Q (s,ucurr)}, which
derives a self-improving method. Our method looks similar
to COMA , but they are different in nature. The baseline
in our MAPPG can help solve the centralized-decentralized
mismatch. However, the baseline in COMA is introduced to
achieve difference rewards.

Adopting polarization joint action values, MAPPG solves
the credit assignment issue by applying the following polar-
ization policy gradients:

∇θJ (π) =
1

β
Eπ

[∑
a

∇θa log πa (ua | τa)QPPG (s,u)

]

=
1

β

∑
s

dπ (s)
∑
a

∑
ua

πa (ua|τa)∇θa log πa (ua|τa)∑
u−a

π−a (u−a | s)QPPG (s, ua,u−a) . (6)
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From Equation (6), we can see that the gradient for ac-
tion ua at state s is scaled by MPPG

a (s, ua,π−a) =∑
u−a

π−a (u−a | s)QPPG (s, ua,u−a), which is the po-
larization marginal joint action value function.

The power function is adopted because it has two prop-
erties. (i) The second-order gradient of the power func-
tion is greater than 0, so it can increase the distance be-
tween the global optimal joint action value and the non-
optimal joint action values, while shortening the distance
between multiple non-optimal joint action values. (ii) For all
u ∈ {u : Q (s,u) < Q (s,ucurr)}, the corresponding po-
larized joint action valuesQPPG (s,u) are between 0 and 1,
which makes the policy learning focus more on the domain
{u : Q (s,u) > Q (s,ucurr)} in state s.

Theoretical Proof
In this subsection, we introduce the joint policy improve-
ment for MAPPG and mathematically prove that the indi-
vidual policies of MAPPG can converge to the global op-
timum. For convenience, this section will be discussed in
a fully observable environment, where each agent chooses
actions based on the state instead of the action-observation
history. To ensure the uniqueness of the optimal joint action,
we make the following assumptions.

Assumption 1. The joint action value function Q(s,u) has
one unique maximizing joint action for all s ∈ S and |U | <
∞.

First, we mathematically prove that each maximizing in-
dividual action of the polarization marginal joint action
value function is consistent with the maximizing joint ac-
tion’s corresponding component of the joint action value
function in Theorem 1.

Theorem 1 (Optimality Consistency). Let π be a joint
policy. Let u∗ = argmaxu∈U Q(s,u) and usec =
argmaxu∈(U−{u∗})Q(s,u). If it holds that ∀a ∈ A, α >

logπ−a(u∗
−a|s)

Q(s,usec)−Q(s,u∗) with α as defined in Equation (5), then we
have that for all individual actions u′a:

MPPG
a (s, u′a,π−a) < MPPG

a (s, u∗a,π−a) ,

where u′a ̸= u∗a.

Proof. See Appendix A.

Theorem 1 reveals an important insight. The enlarge-
ment factor regulates the distance between the optimal
and non-optimal action values, and MAPPG tackles the
challenge of centralized-decentralized mismatch with α >

logπ−a(u∗
−a|s)

Q(s,usec)−Q(s,u∗) .
Second, first-order optimization algorithms for training

deep neural networks are difficult to ensure global conver-
gence (Goodfellow, Bengio, and Courville 2016). Hence,
one assumption on policy parameterizations is required for
our analysis.

Assumption 2. Given the function ψ : S × U → R,
agent a’s policy πa(·|s) is the corresponding vector of ac-
tion probabilities given by the softmax parameterization for

all u′a ∈ U , i.e.,

πa(ua|s) =
exp (ψs,ua

)∑
u′
a∈U

exp
(
ψs,u′

a

) ,
where ψs,ua

≡ ψ(s, ua) with |U | <∞.

Then, following the standard optimization result of Theo-
rem 10 (Agarwal et al. 2021), we prove that the single agent
policy converges to the global optimum for the softmax pa-
rameterization in Lemma 1.

Lemma 1 (Individual Policy Improvement). Let the joint
action values remain unchanged during the policy improve-
ment. Let π0 = [π0

a]
n
a=1 be the initial joint policy and ψs,a

be the the corresponding vector of ψs,ua
for all ua ∈ U . The

update for agent a in state s at iteration t with the stepsize
η ≤ (1−γ)3

8 is defined as follows:

ψt+1
s,a =ψts,a + η∇ψt

s,a
V ts,a

(
πta,π

0
−a

)
,

where

V ts,a
(
πta,π

0
−a

)
=

∑
ua

πta (ua|s)MPPG
a

(
s, ua,π

0
−a

)
.

Then, we have that πta → π∗
a as t → ∞, where

argmaxua
π∗
a(ua|s) = argmaxua

MPPG
a

(
s, ua,π

0
−a

)
.

Proof. See Appendix B.

Finally, we prove that optimal individual policies can be
attained as long as MAPPG applies individual policy im-
provement to all agents in Theorem 2.

Theorem 2 (Joint Policy Improvement). Let the joint
action values remain unchanged during the policy im-
provement. Let u∗ = argmaxu∈U Q(s,u) and usec =
argmaxu∈(U−{u∗})Q(s,u). Let the joint policy at it-
eration t be πt = [πta]

n
a=1. If individual policy im-

provement is applied to each agent a ∈ A and α >

maxa∈A
logπ0

−a(u
∗
−a|s)

Q(s,usec)−Q(s,u∗) , then we have that πt → π∗ as
t→∞, where argmaxu π∗(u|s) = argmaxuQ (s,u) .

Proof. See Appendix B.

Although Theorem 2 requires that when optimizing the
policy of a single agent, other agents’ policies should be
maintained as π0

−a. MAPPG replaces π0
−a with the current

policies πt−a of other agents in practice, which is a more ef-
ficient sampling strategy. This change does not compromise
optimality empirically.

MAPPG Architecture
The overall framework of MAPPG is illustrated in Figure
1. For each agent a, there is an individual actor πa(ua|τa)
parameterized by θa. We denote the joint policy as π =
[πa]

n
a=1. Two centralized components are criticsQ(s,u) and

target critics Qtarget(s,u), parameterized by ϕ and ϕ−.
At the execution phase, each agent selects actions

w.r.t. the current policy and exploration based on the
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Figure 1: MAPPG framework.

local observation in a decentralized manner. By inter-
acting with the environment, the transition tuple e =
(s, [za]

n
a=1,u, r, s

′, [z′a]
n
a=1) is added to the buffer.

At the training phase, mini-batches of experiences are
sampled from the buffer uniformly at random. We train the
parameters of critics to minimise the 1-step TD loss by de-
scending their gradients according to:

∇ϕLtd (ϕ) = ∇ϕEe∼D
[
(y −Q (s,u))

2
]
, (7)

where y = r + γQtarget (s′, argmaxu′ π (u′|τ ′)). In the
proof of Theorem 2, some strong constraints need to be sat-
isfied. To derive a practical algorithm, we must make ap-
proximations. First, MAPPG adopts target critics for indi-
vidual policy improvement as an implementation of fixed
joint action values. Second, the estimation of the Q-value
has aleatoric uncertainty and epistemic uncertainty. Without
a constraint, maximization of J(π) with polarization would
lead to an excessively large policy update; hence, we now
consider how to modify the objective. We apply the pes-
simistic bound of QPPG with the help of two target critics
{Qtarget1 , Qtarget2 } and penalize changes to the policy that
make QPPG larger than L. We train two critics, which are
learned with the same training setting except for the initial-
ization parameters. The two target critics share the same net-
work structure as that of the two critics, and the parameters
of the two target critics are periodically synchronized with
those of the two critics, respectively. We train the parameters
of actors to maximize the expected polarization Q-function
which is called the MAPPG loss by ascending their gradi-

ents according to:

∇θJ (π) =
1

β
Eπ

[∑
a

∇θa log πa (ua | τa)

min
(
Q̂PPG (s,u) , L

)]
, (8)

where

Q̂PPG(s,u) = exp

(
α

(
min

k∈{1,2}
Qtargetk (s,u)

− max
k∈{1,2}

Qtargetk (s,ucurr)

))
.

To prevent vanishing gradients caused by the increasing ac-
tion probability with an inappropriate learning rate in prac-
tice, the gradients for the joint action u are set to 0 if
Q̂PPG(s,u) < 1 or ∀a, πa(ua|τa) > P where P ≥ 0.5,
which is called the policy gradient clipping. For complete-
ness, we summarize the training of MAPPG in the Algo-
rithm 1. More details are included in Appendix C.

6 Experiments
In this section, first, we empirically study the optimality of
MAPPG for discrete and continuous action spaces. Then,
in StarCraft II, we demonstrate that MAPPG outperforms
state-of-the-art MAPG algorithms. By ablation studies, we
verify the effectiveness of our polarization joint action val-
ues and the pessimistic bound ofQPPG. We further perform
an ablation study to verify the effect of different enlargement
factors on convergence to the optimum. In matrix and differ-
ential games, the worst result in the five training runs with
different random seeds is selected to exclude the influence of
random initialization parameters of the neural network. All
the learning curves are plotted based on five training runs
with different random seeds using mean and standard devia-
tion in StarCraft II and the ablation experiment.
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Algorithm 1: MAPPG

1: for episode = 1 to max training episode do
2: Initialize the environment
3: for t = 1 to max episode length do
4: For all agents, get the current state s and obser-

vations [za]
n
a=1, choose a joint action u w.r.t. the

current policy and exploration
5: Execute the joint action u, observe a reward r, and

get the next state s′ and observations [z′a]
n
a=1

6: Add the transition (s, [za]
n
a=1,u, r, s

′, [z′a]
n
a=1) to

the buffer D
7: if time to update actors and critics then
8: Sample a random minibatch of K samples from

D
9: Update ϕ by descending their gradients accord-

ing to Equation (7)
10: Update θ by ascending their gradients according

to Equation (8) with the policy gradient clipping
11: end if
12: if time to update target critics then
13: Replace target parameters ϕ−i ← ϕi for i ∈

{1, 2}
14: end if
15: end for
16: end for

Matrix Game and Differential Game
In the discrete matrix and continuous differential games,
we investigate whether MAPPG can converge to optimal
compared with existing MAPG algorithms, including MAD-
DPG (Lowe et al. 2017), COMA (Foerster et al. 2018), DOP
(Wang et al. 2021b), FACMAC (Peng et al. 2021), and FOP
(Zhang et al. 2021). The two games have one common char-
acteristic: some destructive penalties are around with the op-
timal solution (Zhang et al. 2021), which triggers the issue
of the centralized-decentralized mismatch.

Matrix Game The matrix game is shown in Table 1 (a),
which is the modified matrix game proposed by QTRAN
(Son et al. 2019). This matrix game captures a cooperative
multi-agent task where we have two agents with three ac-
tions each. We show the results of COMA, DOP, FACMAC,
FOP, and MAPPG over 10k steps, as in Table 1 (b) to 1 (f).
MAPPG uses an ϵ-greedy policy where ϵ is annealed from 1
to 0.05 over 10k steps. MAPPG is the only algorithm that
can successfully converge to the optimum. The results of
these algorithms on the original matrix game proposed by
QTRAN (Son et al. 2019), and more experiments and de-
tails are included in Appendix C.

Differential Game The differential game is the modifica-
tion of the Max of Two Quadratic (MTQ) Game from pre-
vious literature (Zhang et al. 2021). This is a single-state
continuous game for two agents, and each agent has a one-
dimensional bounded continuous action space ([-10, 10])
with a shared reward function. In Equation (9), u1 and u2
are the actions of two agents and r(u1, u2) is the shared re-
ward function received by two agents. There is a sub-optimal

u1

u2 A B C

A 15 -12 -12
B -12 10 10
C -12 10 10

(a) Payoff of matrix game

π1

π2 0.0(A) 0.8(B) 0.2(C)

0.0(A) 14.9 -11.8 -11.8
0.7(B) -12.1 9.9 9.9
0.3(C) -12.0 9.9 9.9

(b) COMA: π1, π2, Q

π1

π2 0.0(A) 0.7(B) 0.3(C)

0.0(A) -32.5 -11.2 -11.2
0.9(B) -11.4 9.9 9.9
0.1(C) -11.5 9.9 9.9

(c) DOP: π1, π2, Q

π1

π2 0.0(A) 0.5(B) 0.5(C)

0.0(A) -11.5 -11.5 -11.5
0.5(B) -11.5 9.9 9.9
0.5(C) -11.5 9.9 10.0

(d) FACMAC: π1, π2, Q

π1

π2 0.0(A) 0.0(B) 1.0(C)

0.0(A) 9.1 -4.4 -7.4
0.0(B) -5.3 9.0 5.0
1.0(C) -2.6 9.0 9.7

(e) FOP: π1, π2, Q

π1

π2 0.4(A) 0.3(B) 0.3(C)

0.4(A) 15.2 -12.2 -12.2
0.3(B) -12.0 10.0 10.0
0.3(C) -12.0 10.0 10.0

(f) MAPPG: π1, π2, Q

Table 1: The cooperative matrix game. Boldface means the
optimal/greedy actions from individual policies.

(a) MADDPG (b) FACMAC

(c) FOP (d) MAPPG

Figure 2: Learning paths of different algorithms in the MTQ
game. The horizontal and vertical axes represent u1 and u2,
respectively. All the points on a given contour line are all at
the same joint action values. The shallow red and dark red
indicate the start and end of the learning paths, respectively.

solution 0 at (-5, -5) and a global optimal solution 5 at (5, 5).
f1 = 0.8×

[
−
(
u1+5

5

)2 − (
u2+5

5

)2]
f2 = 1×

[
−
(
u1−5

1

)2 − (
u2−5

1

)2]
+ 5

r (u1, u2) = max (f1, f2)

. (9)

In MTQ, we compare MAPPG against existing multi-agent
policy gradient algorithms, i.e., MADDPG, FACMAC, and
FOP. Gaussian is used as the action distribution by MAPPG
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(a) 3s vs 4z (b) 3s vs 5z (c) 5m vs 6m (d) 8m vs 9m

(e) 10m vs 11m (f) 27m vs 30m (g) MMM2 (h) 3s5z vs 3s6z

Figure 3: Learning curves of all algorithms in eight maps of StarCraft II.

as in SAC (Haarnoja et al. 2018), and the mean of the Gaus-
sian distribution is plotted. MAPPG uses a similar explo-
ration strategy as in FACMAC, where actions are sampled
from a uniform random distribution over valid actions up
to 10k steps and then from the learned action distribution
with Gaussian noise. We use Gaussian noise with mean 0
and standard deviation 1. The learning paths (20k steps) of
all algorithms are shown as red dots in Figure 2 (a) to 2
(d). MAPPG consistently converges to the global optimum
while all other baselines fall into the sub-optimum. MAD-
DPG can estimate r(u1, u2) accurately, but fail to converge
to the global optimum. However, the regular decomposed
actor-critic algorithms (FACMAC and FOP) converge to the
sub-optimum and also have limitations to express r(u1, u2).
More details of the MTQ game experiments are included in
Appendix C.

StarCraft II
We evaluate MAPPG on the challenging StarCraft Multi-
Agent Challenge (SMAC) benchmark (Samvelyan et al.
2019) in eight maps, including 3s vs 4z, 3s vs 5z,
5m vs 6m, 8m vs 9m, 10m vs 11m, 27m vs 30m, MMM2
and 3s5z vs 3s6z. The baselines include 5 state-of-the-art
MAPG algorithms (COMA, MADDPG, stochastic DOP,
FOP, FACMAC). MAPPG uses an ϵ-greedy policy in which
ϵ is annealed from 1 to 0.05 over 50k steps. Results are
shown in Figure 3 and MAPPG outperforms all the base-
lines in the final performance, which indicates that MAPPG
can jump out of sub-optima. More details of the StarCraft II
experiments are included in Appendix C.

Ablation Studies
In Figure 4 (a), the comparison between the MAPPG and
MAPPG without the pessimistic bound demonstrates the
importance of making conservative policy improvements,

(a) 3s vs 4z (b) MTQ

Figure 4: Ablations on the SMAC benchmark and MTQ
game.

which can alleviate the problem of excessively large pol-
icy updates caused by inaccurate value function estimation.
The comparison between the MAPPG and MAPPG without
the polarization demonstrates the contribution of polariza-
tion joint action values to global convergence. In Figure 4
(b), we observe that MAPPG can converge to a policy that
can obtain a reward closer to the optimal reward as the in-
crease of the enlargement factor. The discrepancy between
the learning curve of α = {1, 2} and other learning curves
indicates the influence of polarization.

7 Conclusion
This paper presents MAPPG, a novel multi-agent actor-critic
framework that allows centralized end-to-end training and
efficiently learns to do credit assignment properly to enable
decentralized execution. MAPPG takes advantage of the po-
larization joint action value that efficiently guarantees the
consistency between individual optimal actions and the joint
optimal action. Empirically, MAPPG achieves competitive
results compared with state-of-the-art MAPG baselines for
large-scale multi-agent cooperations.
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