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Abstract

We introduce the multi-agent transportation (MAT) problem,
where agents have to transport containers from their starting
positions to their designated goal positions. Movement takes
place in a common environment where collisions between
agents and between containers must be avoided. In contrast
to other frameworks such as multi-agent pathfinding (MAPF)
or multi-agent pickup and delivery (MAPD), the agents are
allowed to separate from the containers at any time, which
can reduce the makespan and also allows for plans in scenar-
ios that are unsolvable otherwise.
We present a complexity analysis establishing the problem’s
NP-completeness and show how the problem can be re-
duced to a sequence of SAT problems when optimizing for
makespan. A MAT solver is empirically evaluated with regard
to varying input characteristics and movement constraints
and compared to a MAPD solver that utilizes conflict-based
search (CBS).

Introduction
In the multi-agent pathfinding (MAPF) problem (Stern et al.
2019), the objective is to have a number of agents move in-
side a given environment from designated start to designated
goal positions while avoiding collisions. The environment
is modeled using an undirected graph in which movement
takes place in discrete time steps. A collision occurs when-
ever two agents occupy the same node at the same point in
time or when they use an edge at the same time step.

A generalization of this problem is the multi-agent pickup
and delivery (MAPD) problem (Ma et al. 2017; Liu et al.
2019), which models a warehouse logistics setting where
packets have to be picked up and delivered. In addition to
finding collision free trajectories, transportation tasks have
to be assigned to agents and the agents have to fulfill them.

In a production logistics setting, some of the assump-
tions of the MAPD setting might not apply. For example,
a transported payload might be so large that it is an obsta-
cle after being delivered to its target position. This happens,
e.g., when containers are used to deliver large workpieces
to construction sites. Because of that, it may be necessary
to temporarily move objects out of the way. In order to deal
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with such issues, we introduce the multi-agent transporta-
tion (MAT) problem. In MAT, a set of agents and a num-
ber of objects called containers are given. These containers
shall be transported to their respective goal positions by the
agents, whereby neither agents nor containers should collide
with each other. In order to solve such a problem, we do not
require a fixed assignment between agents and containers as
in the MAPD setting.

One such scenario is depicted in Figure 1. Here, in order
to get both containers C1 (yellow) and C2 (blue) to their
respective goal positions (colored and marked accordingly),
the agent A1 has to move container C1 out of the way first,
before it can bring container C2 to its goal position. Finally,
it needs to move C1 back to its goal position.
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Figure 1: MAT example with a single agent A1 and two
containers C1 and C2. The black crosses indicate blockades
that can never be occupied by any agent or container. We
show the state at different points in time when executing the
(unique optimal) plan.

MAT is a generalization of both MAPF and (offline)
MAPD, the quintessential differences being that containers
can collide with each other and that agents and contain-
ers are free to separate at any time. In so far, the problem
has some similarity to the package-exchange robot-routing
problem (Ma et al. 2016). However, in that framework, pack-
ages are not dropped and picked up again, but exchanged
across edges. In this framework all instances can be solved.
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Another problem that appears similar to MAT is the multi-
agent collective construction problem (Lam et al. 2020). In
this framework, blocks can be dropped and picked up again,
but the environment is three-dimensional and there are no
collisions between blocks because agents can step over ex-
isting blocks.

The rest of the paper is structured as follows. In the
next section, we will formally define the MAT problem
and provide some illustrative examples. We will show NP-
completeness of MAT and provide an algorithm for solving
it by reduction to a series of SAT problems. In doing so, we
use similar reductions as have been used for solving MAPF
(Surynek 2014; Surynek et al. 2016; Barták et al. 2017). We
empirically evaluate the runtime of our implementation with
regard to varying input characteristics, such as the number
of containers or the size of the environment, and movement
constraints, such as whether or not the containers block each
other. Finally, we will compare it with a MAPD solver that
utilizes conflict-based search (CBS).

Problem Definition
The multi-agent transportation problem (MAT) is formally
defined as follows. Given

• an undirected, connected, simple graph (V,E),

• a set of agents A,

• a set of containers C,

• starting positions s0 : A ∪ C → V , and

• goal positions g : C → V ,

we want to find a legal sequence s0, . . . , sk of MAT states
such that sk|C = g. The latter meaning that all of the con-
tainers are at their goal position in the final state.

Here, a state is any function st : A ∪ C → V which is
injective on A and injective on C. A sequence of states is
considered legal if for any st and st+1 the following con-
straints are met.

1. For any a ∈ A, st(a) = st+1(a) or (st(a), st+1(a)) ∈
E, i.e. an agent either stays in place or moves along an
edge.

2. For any c ∈ C, if st(c) ̸= st+1(c), then there exists an
a ∈ A such that (st(a), st+1(a)) = (st(c), st+1(c)), i.e.
a container can only move together with an agent.

3. For any a, a′ ∈ A where a ̸= a′, (st(a), st+1(a)) ̸=
(st+1(a

′), st(a′)), i.e. no two agents move along the
same edge at the same time.

Our constraints allow parallel and cyclic movement using
previously occupied nodes. Using the terminology of Stern
et al. (2019), we assume vertex and swapping conflicts, but
no following or cycle conflicts.

We call a legal sequence s0, . . . , sk of MAT states a MAT
plan. The length k of such plan is the plan’s makespan. In
the context of this paper, a plan is considered optimal if its
makespan is minimal.

Examples
An example instance with two agents and two containers is
shown in Figure 2. For this instance, there exists a unique
optimal solution with makespan 5, which we indicate with
arrows for the movement of the agents. If the containers
were not allowed to be transported by multiple agents, as
in MAPD, the minimal makespan would be 7.
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Figure 2: MAT example instance with a unique optimal so-
lution

Moreover, there are cases in which collaboration is a
must. Consider a setting as depicted in Figure 3, where the
agents block each other. Here we can have a MAT plan, but
no MAPD plan. The container must be handed over from
one agent to the other at the node x, the ‘counter’.
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C1

A2

x

Figure 3: Over-the-counter example

Computational Complexity
MAT appears to be computationally harder than MAPF.
However, we will show that MAT is nevertheless NP-
complete.

In order to show NP-hardness, one can reduce MAPF with
cyclic rotations, where the optimizing variant is known to be
NP-hard (Surynek 2010, Theorem 1), to MAT. This can be
done by viewing a MAPF agent as a pair of a MAT agent
and a MAT container starting at the same position.

Lemma 1. Deciding whether there exists a MAT plan with
makespan k is NP-hard.

Proving NP-membership is more involved. We have to
show that plans can be polynomially bounded. For that pur-
pose we will reduce MAT to a problem where so-called peb-
bles have to be moved on an undirected, connected graph,
whereby only one pebble can occupy one node at a given
point in time. The problem treated in the work of Korn-
hauser, Miller, and Spirakis (1984), the pebble motion (PM)
problem, allows moves that take one pebble from its current
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position to an adjacent unoccupied position, so-called sim-
ple moves. The pebble motion with rotations (PMR) prob-
lem (Yu and Rus 2014) additionally allows the pebbles to
move simultaneously on cycles of the graph. Such moves
are called rotations. A PMR instance is given as a triple
⟨G,S,D⟩, where G = ⟨V,E⟩ is a graph, S is the start con-
figuration, and D is the goal configuration.

In contrast to PMR, in MAT we may not be able to rotate
containers on large cycles, because we don’t have enough
agents that can transport the containers simultaneously. For
this reason, we introduce the pebble motion with limited
rotations (PMLR) problem. A PMLR instance is a PMR
instance with an additional parameter k that specifies the
largest possible rotation.

In order to establish a polynomial bound for this problem,
we utilize group theory. We start by introducing the neces-
sary definitions.

A permutation is a bijective function σ : X → X . We say
that a permutation is an m-cycle if it exchanges distinct ele-
ments x1, . . . , xm in a cyclic fashion, i.e., σ(xi) = xi+1 for
1 ≤ i < m, σ(xm) = x1 and σ(y) = y for all y /∈ {xi}mi=1.
Such cyclic permutation is denoted (x1 x2 · · · xm).

The composition of two permutations σ and τ , denoted
στ , is the function mapping x to τ(σ(x)). ϵ is the identity,
which maps every element to itself, and σ−1 is the inverse
of σ, i.e., σ−1(y) = x if and only if σ(x) = y. The k-fold
composition of σ with itself is denoted σk.

We will also consider the conjugate of σ by τ , denoted στ ,
which is defined to be τ−1στ . We will use exponential nota-
tion as in the book by Mulholland (2021): σα+β := σασβ .

Given a set of permutations T , the permutation group gen-
erated by T , G, is the closure of T under composition. Such
G forms a group under composition with ϵ being the iden-
tity element and σ−1 being the inverse of a given element σ.
The diameter of G then is the maximum over the number of
compositions required to generate each element of G.

In our context, two permutation groups are of particular
interest. One is Sn, the symmetric group over n elements,
which consists of all permutations. Sn is generated by the
set of all 2-cycles with diameter O(n2). Another group is
An, the alternating group over n elements, which is the set
of all permutations generated by compositions of cycles of
odd length, so-called even permutations. A generator of this
group is the set of all 3-cycles. An is a subgroup of Sn,
denoted An ≤ Sn, i.e., it contains only permutations from
Sn and is closed under composition and inverse.

A permutation group G is said to be k-transitive if for
all pairs of k-tuples (x1, . . . , xk), (y1, . . . , yk), there exists
a permutation σ ∈ G such that σ(xi) = yi, 1 ≤ i ≤ k. In
case of 1-transitivity we simply say that G is transitive.

Given a PMLR instance I = ⟨G,S,D, k⟩ and a set X of
nodes of G with |X| = p, where p is the number of pebbles,
we can transform S to S′ such that in S′ exactly the nodes in
X are occupied by some pebble using O(n2) simple moves
(Kornhauser 1984, Subsection 3.1). Therefore, w.l.o.g., we
can assume that in every PMLR state we consider the same
nodes are occupied. Let G(I) be the permutation group gen-
erated by simple moves and rotations with at most k pebbles

in I . Up to a polynomial factor, all possible configurations of
I can be obtained with a number of operations that is limited
by the diameter of G(I).

Lemma 2. Let I = ⟨⟨V,E⟩, S,D, k⟩ be a PMLR instance
such that G(I) is transitive. Then G(I) has a polynomial
diameter.

As in the work of Kornhauser et al. (1984), we consider
the transitive substructures that are formed by the subgraphs
containing only pebbles from S that form a transitive permu-
tation group. The subgraph contains all nodes that are reach-
able by this set of pebbles. The solutions for these transitive
substructures forms the overall solution, if it exists.

Corollary 1. Let I = ⟨⟨V,E⟩, S,D, k⟩ be a PMLR in-
stance. Then G(I) has a polynomial diameter.

Proof of Lemma 2. Let n = |V |. We will consider only
graphs with n > 7. For graphs with n ≤ 7, the diameter
is obviously constant.

If ⟨V,E⟩ is an n-cycle, or cycle graph, the diameter of
G(I) is O(n2), if only simple moves are possible. It is O(n)
if the cycle can be rotated.

For the remaining cases, we proceed with a case analysis.

Case p = n: In this case the graph is entirely filled with peb-
bles. This rules out simple moves, as they require an empty
node. Using transitivity, we can infer that the graph is two-
edge connected and that every node is part of some cycle.
If we are able to rotate all of the cycles, the lemma imme-
diately follows from (Yu and Rus 2014, Proposition 6). We
will therefore assume otherwise.

We will show that in this case, (i) one can generate a 3-
cycle from polynomially many rotations and that (ii) the per-
mutation group is 2-transitive. By (Driscoll and Furst 1983,
Definition 2.6, Theorem 3.2), this implies that the diameter
is polynomial.

Let us first consider a graph such as in Figure 4, which we
will call basic graph. W.l.o.g., we will assume that the left

Figure 4: A basic two-edge-connected graph (Yu and Rus
2014, Figure 8)

cycle is not larger than the right one, i.e., n1 ≤ n3. Further,
we assume that one of the ni’s is not equal to 2. The case
n1 = n2 = n3 = 2 will be taken care of later.

The available cyclic permutations corresponding to rota-
tions are α, β and their inverses α−1, β−1, where

α = (b1 · · · bn2 an1 · · · a1),
β = (b1 · · · bn2

cn3
· · · c1).
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For (i) let the desired 3-cycle be

σ :=





α, if n1 = 1

β−1 α β α−1, if n2 = 1

(β−1 α β α−1)α
−1(ϵ+β2) =: χ otherwise.

For the first case, note that n1 = 1 implies n2 = 2. This
follows from the fact that if n2 = 1 the graph would not be
two-edge connected and if n2 > 2 all rotations would be
possible, violating previous assumptions. For the third case,
we obtain the following 3-cycle:

χ = ((a1 b1)(bn2
cn3

))
α−1(ϵ+β2)

= ((a1 a2)(bn2−1 cn3
))

ϵ+β2

= (a1 a2)(bn2−1 cn3
)(a1 a2)(cn3

cn3−2)

= (bn2−1 cn3−2 cn3
)

and therefore

σ =





(a1 b1 bn2
), if n1 = 1

(a1 cn3 b1), if n2 = 1

(bn2−1 cn3−2 cn3
) otherwise.

For (ii) we show that for any given elements x1, x2 there
exists a sequence of moves such that x1 ends up at a1 and
x2 at b1. Start by moving x1 onto c1, which is always pos-
sible because G(I) is transitive. If x2 now lies on the right
cycle, there exists some k such that βα−1βk gives a config-
uration as required. Otherwise, there exists some k such that
αkβα−1 does the job.

If we can move any elements x1, x2 onto a1, b1, we can
also move a1, b1 to arbitrary positions by using the inverse
operations. By concatenating such sequences of (inverted)
operations we can ultimately move arbitrary x1, x2 to arbi-
trary y1, y2 and G(I) is 2-transitive.

As mentioned, (i) and (ii) imply that the diameter is poly-
nomial in this case. If the basic graph is embedded in any
transitive graph, then our arguments from above apply to any
two-edge connected graph with n > 7, provided it is not a
cycle graph (which we covered in the beginning) or a graph
made out of basic graphs such that n1 = n2 = n3 = 2.

In the latter case, the two-edge connected graph must con-
tain one of the subgraphs as shown in Figure 5 (note that
adding anything different to the n1 = n2 = n3 = 2 graph
results in one of the cases above with one ni ̸= 2). A 3-cycle
for each case can now be constructed as follows:

σ :=





δ−1 β δ2 α−1 β α2 = (x2 x4 x7), (I)
ζ β−1 ζ−1 β α2 = (x2 x3 x5), (II)
η β−1 η−1 α−1 β α = (x1 x3 x7). (III)

2-transitivity can be established as above, so that also in this
case, we have a polynomial diameter.
Case p < n: If the graph is biconnected and n > 7, then we
know by (Kornhauser, Miller, and Spirakis 1984, Theorem
1a, 1b) that any even permutation can be generated using
polynomially many moves. This implies that G(I) ≥ Ap.
As shown in (Yu and Rus 2014, Theorem 2, last paragraph)
it follows that G(I) has polynomial diameter.

x1
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α β
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x1

x2

x3

x4

x5

x6

x7

x8III

α β η

Figure 5: All relevant minimal extensions of basic graphs
with n1 = n2 = n3 = 2

If the graph is not biconnected, then it must be separable.
For any subcomponent of G that is transitive w.r.t. simple
moves we know by (Kornhauser, Miller, and Spirakis 1984,
Theorem 1) that any permutation can be generated with
polynomially many compositions. For any minimal sepera-
ble subcomponent containing a rotatable cycle we show that
also any permutation can be generated with polynomially
many compositions.

Consider the component as in Figure 6. As there is at least
one empty node, it is possible to arrive at a configuration
such that an empty node is adjacent to the cycle. Now we
can move a pebble of choice out of the cycle and back in at a
different position using linearly many operations. With that,
any two pebbles can be swapped and therefore any permu-
tation can be generated using polynomially many composi-
tions.

ex4

x3

x1

x2

1

2

3
4 4

4 4

Figure 6: Swapping pebbles x1 and x2 (adapted from (Ko-
rnhauser, Miller, and Spirakis 1984, Figure 10))

By dividing G into partially overlapping components of
these two kinds, we can compose any 2-cycle from linearly
many permutations of the individual components. It follows
that any σ ∈ G(I) = Sp can be generated using polynomi-
ally many compositions.

Using this lemma, showing NP-membership is straight-
forward.
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Lemma 3. Deciding whether there exists a MAT plan with
makespan k is in NP.

Proof. Membership follows if we can show that all MAT
plans can be polynomially bounded. Let us assume we have
n nodes in the graph and a agents.
Case a = n: In this case the agents block each other such
that simple moves are not possible. The problem can be re-
duced to PMR with agents as pebbles such that the result
follows from (Yu and Rus 2014, Theorem 7).
Case a < n: The problem can be reduced to PMLR with
containers as pebbles. Corollary 1 applies and we obtain a
polynomial upper bound for the movements of the contain-
ers. The additional movements of the anonymous agents has
an overhead of at most O(n) for each move of a container
such that the total number of movements is polynomially
bounded.

From Lemma 1 and Lemma 3 we obtain the following.

Theorem 1. Deciding whether there exists a MAT plan with
makespan k is NP-complete.

Algorithmic Solution
For a candidate makespan T ∈ N, we build a propositional
formula φ(T ) whose satisfying assignments constitute ex-
actly the successful plans with makespan at most T . In or-
der to find the optimal makespan, exponential search is em-
ployed, a method that has also been used in SAT planning
(Rintanen 2014). The exponential search proceeds by first
computing an upper bound for the optimal makespan by
jumping to successively higher candidate makespans. The
distance between the tested makespans can be adjusted via
the jumping parameter f and an initial lower bound may be
supplied, which can be obtained from preprocessing, as de-
scribed below. Once an upper bound has been determined,
binary search for the minimal T s.t. φ(T ) is satisfiable is
performed. The algorithm is sketched in Algorithm 1.

Algorithm 1 Exponential search for the optimal makespan

procedure MAKESPAN(lower bound=0, f=2)
T ← lower bound
while ¬ SAT(φ(T )) do

lower bound← T + 1
T ← max{⌈T · f⌉, 1}

end while
upper bound← T
return binary search(...)

end procedure

The formula can be built using the propositional variables
{st(o) = v}t∈{0,...,T},o∈A∪C,v∈V analogously to the previ-
ously defined MAT states. It is defined in a series of six
axioms shown in Figure 7. Axiom (1) defines initial and fi-
nal state. Axiom (2) enforces that st is functional. Here and
later, we utilize the AMO (at-most-one) constraint, which
states that at most one of a given set of propositional vari-
ables can be true. There exist many possible encodings of
AMO (see the paper by Frisch and Giannaros (2010) for an

∧

c∈C

sT (c) = g(c) ∧
∧

o∈A∪C

s0(o) = s0(o) (1)

T∧

t=0

∧

o∈A∪C

AMO({st(o) = v}v∈V ) (2)

T∧

t=0

∧

v∈V

AMO({st(a) = v}a∈A) ∧AMO({st(c) = v}c∈C)

(3)

T−1∧

t=0

∧

o∈A∪C

∧

v∈V

(st(o) = v → st+1(o) = v ∨
∨

(v,w)∈E

st+1(o) = w)

(4)

T−1∧

t=0

∧

{v,w}∈E

∧

a,b∈A
a ̸=b

¬(st(a) = v ∧ st+1(a) = w

∧ st(b) = w ∧ st+1(b) = v) (5)

T−1∧

t=0

∧

c∈C

∧

v∈V

∧

(v,w)∈E

(st(c) = v ∧ st+1(c) = w →
∨

a∈A

st(a) = v)

∧
∧

a∈A

(st(c) = v ∧ st+1(c) = w ∧ st(a) = v

→ st+1(a) = w) (6)

Figure 7: Axioms

extensive discussion) such as the sequential encoding from
the work by Sinz (2005) that we used, which is of size lin-
ear in the number of given variables, but introduces linearly
many auxiliary variables. Axiom (3) ensures that st is injec-
tive on A and injective on C. Axiom (4) states that objects
either stay at a node or move to an adjacent node. Axiom (5)
forbids that two agents use one edge at the same time, and
axiom (6) finally describes the restrictions on transporting a
container.

Preprocessing

We employ a preprocessing mechanism similar to the one
used by Barták et al. (2017), which allows us to determine a
lower bound on the effective distance d(o, v) of every object
o ∈ A∪C to every node v ∈ V . For an agent a this is just the
distance between s0(a) and v in the graph. For a container c,
because it cannot move by itself, d(c, v) is increased by the
minimum distance between s0(c) and any agent (in case v ̸=
s0(c)). Using the fact that t < d(o, v) implies st(o) ̸= v, we
can shortcut the propositional reasoning with these implied
unit clauses.

Additionally, preprocessing yields the lower bound on the
makespan max{d(s0(c), g(c))}c∈C , which can be utilized
to head start the exponential search. The distances can be
computed in low-order polynomial time using breadth-first-
search.
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Experimental Results
In order to evaluate the feasibility of our approach, we per-
formed three sets of experiments. First, we analyzed the
runtime necessary to solve varying MAT instances in order
to get an idea about the scalability of our approach. Sec-
ond, we compared MAT solving with solving simplifica-
tions of MAT, namely without container conflicts (assuming
that packets are small) and with a fixed association between
containers and agents (after target assignment). Third, we
compared our SAT-based implementation with a CBS-based
(Sharon et al. 2015) MAPD implementation on instances
with as many agents as there are containers.

In order to run our experiments, we randomly generated
quadratic grid graphs from the following parameters:

• g, the side length of the grid,
• b, the percentage of grid cells that are blockades,
• a, the number of agents,
• c, the number of containers.

All starting and goal positions are distributed among the free
cells uniformly at random ensuring only that the start config-
uration is legal and that each container could reach its desti-
nation if we would allow the objects to pass over each other.
We generated 10 such solvable problem instances for each
combination 4 ≤ g ≤ 12, b ∈ {10, 20} and 1 ≤ a, c ≤ 10,
where we call a given (g, b, a, c)-tuple a parameter set.

We used the SAT solver Cryptominisat (Soos, Nohl, and
Castelluccia 2009), which can be used incrementally allow-
ing us to retain all axioms concerning previous time steps
when jumping to a higher T . All tests presented in this pa-
per were conducted using the solver’s default configuration
and 4 threads on Intel Xeon Gold 6242 processors. The pro-
gram was allowed to run for at most 10 minutes in total per
instance and to use at most 16 GB of memory. We make the
source code and all test results available online1.

Input Characteristics and Scalability
In the following we will analyze the program’s runtime rela-
tive to the parameters. We aim at identifying MAT scenarios
that are more or less difficult to solve for our program or,
perhaps, in general.

The generated instances are quite diverse, which is also
reflected in the resulting runtimes which are spread over sev-
eral orders of magnitude. First of all, the size of the environ-
ment, which can vary by factors of up to 9 between g2 = 16
and g2 = 144, is a bad indicator for the runtime.

The runtime and solvability correlate much more strongly
with the number of objects. In Figure 8 we show the mean
runtimes and the percentage of unsolved instances by the
number of agents and the number of containers.

It is striking that the most difficult instances including al-
most all of the unsolved ones are such that there are less
agents than containers, i.e. a < c. In this case any additional
agent can reduce the runtime significantly. In case a ≥ c,
however, a further increase of the number of agents seems
to make the instances slightly more difficult.

1https://github.com/bachorp/mat

Figure 8: Effect of the number of agents a and the number
of containers c on the solvability and the mean (n = 180)
runtime of the solved instances. The lines are dashed if less
than half of the instances were solved and values for which
the number of agents equals the number of containers (a =
c) are indicated with a dot. The black line denotes the mean
runtime when solving MAPF instances with the respective
number of agents.

We also modified our solver to solve MAPF. Note that a
MAT instance with a = c (runtimes denoted with a fat dot
in Figure 8) does not necessarily correspond to a MAPF in-
stance (runtimes denoted with a black line in Figure 8). Most
of the time, agents and containers will start at distinct posi-
tions such that there is no clear pairing of agents and contain-
ers. Finding the optimal, possibly temporary, pairings in ad-
dition to non-colliding paths comes at a cost that can clearly
be seen by the big difference between the MAT and MAPF
runtimes.

Comparison with MAT Variants
As mentioned above, the property that containers can col-
lide leads to more possible conflicts and probably to higher
runtime and makespan of the generated plans. This can be
seen in the two scatter plots in Figure 9. Container collisions
are a major source for higher makespan and higher overall
runtimes. In other words, container collisions make it much
harder to solve the problem.

Figure 9: CPU runtime and makespan for non-blocking con-
tainers vs. MAT
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Another source of difficulty might be the fact that there
is no fixed assignment of agents to containers. As we have
demonstrated in the beginning, this can be necessary to find
a solution or allow for a shorter makespan.

We compared MAT with a variation, where a container
cannot be transported by multiple distinct agents. As can
be seen in Figure 10, for the CPU time, there is no clear
trend. On the other hand, there are apparently a number of
instances that allow for a shorter makespan if the agents are
allowed to cooperate in the transportation of the agents.

Figure 10: CPU runtime and makespan for MAT with a fixed
agent per container vs. MAT

Comparison with a CBS-based MAPD Solver
Although we would have loved to compare our MAT imple-
mentation with state-of-the-art implementations of a CBS-
based MAPD solver, we were not successful in identifying
a solver that exactly fits our setting and that optimizes for
makespan.

We therefore opted to adapt conflict-based search with
optimal task assignment (CBS-TA) (Hönig et al. 2018) to
our definition of optimizing MAPD. To do so, we (1) en-
hanced the low level search to search consecutive paths from
an agent to an container’s start and from that container’s
start to its goal and (2) modified the algorithm to optimize
for makespan. To find makespan-optimal task assignments,
we checked for each possible makespan c whether there ex-
ists a task matching consisting only of assignments with a
cost lesser or equal to c using the Hopcroft-Karp algorithm
(Hopcroft and Karp 1973). The remainder of the required
modifications is straightforward. The theoretical properties
of CBS-TA, i.e. completeness and optimality under the re-
spective objective function, still apply and can be proven
analogously.

Figure 11: CPU runtime and success rate for CBS-MAPD
vs. SAT-MAPD

We compared this version of CBS-TA, which we call
CBS-MAPD, with a MAPD variant of MAT, which we call
SAT-MAPD, where assignments are fixed and containers are
non-blocking, which is equivalent to the problem solved by
CBS-MAPD. As can be seen in Figure 11, CBS-MAPD
shows much faster runtimes in most cases. This can be at-
tributed to the search-based nature of the approach, which
works especially fast on relatively easy instances. However,
overall SAT-MAPD does not fall behind in terms of success
rate and even seems to gain the advantage with an increasing
number of agents.

Conclusion and Outlook
We introduced MAT, the multi-agent transportation prob-
lem. It is a generalization of the well-known MAPF and
MAPD problems. One main difference to MAPD is that
the transported payloads, called containers, can collide with
each other. This addresses the requirement in some applica-
tions, e.g. production logistics, that the containers are obsta-
cles once they have been brought to their target position. The
second difference is that payload assignment is not fixed,
i.e., agents can separate from containers at any point in time.
This is necessary to solve instances where containers have
to be moved out of the way (Figure 1) or the environment
is very tight (Figure 3). Further, it helps to reduce execution
costs (Figure 2).

Although the problem (in its optimizing version) appears
to be computationally harder than MAPF, it turns out that it
is still NP-complete. We achieved this result using previous
results on pebble motion problems and an analysis of the
cases with limited rotations employing group theory.

We devised a solver for MAT by reducing the problem to a
sequence of SAT problems similar to what has been done in
the context of MAPF. As expected, the additional degrees of
freedom of MAT compared to MAPF result in higher run-
times. The runtime is highest when there are significantly
more containers than agents.

By comparing variants of MAT (by simply changing the
axioms), we demonstrated the effect that blocking containers
and the ability of agents to cooperate in the transportation of
the containers have on runtime and makespan.

Finally, we explored whether CBS could potentially be
more efficient than our SAT method by comparing the two
approaches in a setting which is similar to MAPD.

In the future, we plan to work on optimizations of the sys-
tem and to solve some open theoretical problems. Although
we intended to solve MAT problems only for a small number
of agents, scalability needs to be improved. One envisioned
way is to design a MAT solver based on CBS. Many more
techniques and optimizations that have been used for solving
MAPF should be applicable to MAT as well.

On the theoretical side, we have shown that the plan
length can be polynomially bounded, but we have not shown
that feasibility can be decided in polynomial time. However,
we are optimistic that it is possible to come up with a linear-
time feasibility test, similar to the cases for the pebble mo-
tion problem on trees (Auletta et al. 1999) and PMR (Yu and
Rus 2014).
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