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Abstract
Many real-world optimisation problems are defined over both
categorical and continuous variables, yet efficient optimisation
methods such as Bayesian Optimisation (BO) are ill-equipped
to handle such mixed-variable search spaces. The optimisation
breadth introduced by categorical variables in the mixed-input
setting has seen recent approaches operating on local trust
regions, but these methods can be greedy in suboptimal regions
of the search space. In this paper, we adopt a holistic view
and aim to consolidate optimisation of the categorical and
continuous sub-spaces under a single acquisition metric. We
develop a tree-based method which retains a global view of the
optimisation spaces by identifying regions in the search space
with high potential candidates which we call value proposals.
Our method uses these proposals to make selections on both
the categorical and continuous components of the input. We
show that this approach significantly outperforms existing
mixed-variable optimisation approaches across several mixed-
variable black-box optimisation tasks.

Introduction
Bayesian optimisation (BO) has established itself as an ef-
ficient method for optimising black-box functions that are
costly to evaluate (Jones, Schonlau, and Welch 1998; Shahri-
ari et al. 2015; Sazanovich et al. 2021; Cowen-Rivers et al.
2022). Typical BO methods model the black-box function of
interest using a surrogate statistical model (usually a Gaus-
sian Process (GP) (Dudley 2010)), seeking out the next point
to evaluate by optimising a more tractable (typically differ-
entiable) function called an acquisition function. The role
of the acquisition function is to balance two conflicting re-
quirements: exploitation of the current knowledge about the
objective function and exploration to gain more knowledge
about the objective function. BO has been applied effec-
tively to tasks that range from experimental design (Griffiths
and Hernández-Lobato 2017; Li et al. 2018; Shields et al.
2021; Deane et al. 2022) to hyperparameter search (Snoek,
Larochelle, and Adams 2012; Gardner et al. 2014; Nguyen
et al. 2020b) in machine learning models. Notably, it is often
observed that BO is particularly well-suited for applications
where the number of allowable evaluations on the objective
function is limited (Bull 2011).
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Algorithms Trust Categories h Continuous x | h
region selection across categories

EXP3BO (Gopakumar et al. 2018) ✓global ✗independent ✗non-shared
BanditBO (Nguyen et al. 2020a) ✓global ✗independent ✗non-shared

CoCaBO (Ru et al. 2020) ✓global ✗independent ✓shared
CASM... (Wan et al. 2021) ✗local ✓jointly ✓shared

VPT (Ours) ✓global ✓jointly ✓shared

Table 1: Comparison with the mixed categorical-continuous
BO approaches in terms of properties and relative trade-offs.

However, many real world optimisation problems involve
a mixture of continuous and categorical variables in the input
space. For example, in automated machine learning applica-
tions (Hutter, Kotthoff, and Vanschoren 2019; Parker-Holder
et al. 2022) where the aim is to automatically select a ma-
chine learning model along with its corresponding optimal
hyperparameters, each model can be seen as a categorical
choice while the hyperparameters of the model can be viewed
as category-specific continuous variables. Another example
is in the chemical reaction space, where often the function
we are interested in optimising is represented by both cate-
gorical (compositional) variables and continuous (process)
variables (Zhou, Li, and Zare 2017). These scenarios pose
challenges for current BO models (particularly those using
GPs as their underlying surrogate models) which lack the
ability to deal effectively with such problems containing
multi-layered and complicated search spaces.

The mixed-input setting presents several difficulties; the
most apparent of which is that the assumption the acquisition
function is differentiable over the input space no longer holds.
This has been addressed recently in various ways ranging
from one-hot encoding of the categorical components (Snoek,
Larochelle, and Adams 2012; Golovin et al. 2017), hierarchi-
cal models (Hutter, Hoos, and Leyton-Brown 2011; Bergstra
et al. 2011) and most recently, hybrid approaches utilising
Multi-Armed Bandits (MABs) (Auer, Cesa-Bianchi, and Fis-
cher 2002) and BO for handling the respective categorical and
continuous subspaces. More importantly, the complexity of
the optimisation space in mixed-input functions increases dra-
matically due to the introduction of categorical variables (Ru
et al. 2020; Wan et al. 2021). In the BO setting, this is further
compounded by a limited budget for evaluating the objective.
As such, recent approaches (Eriksson et al. 2019; Wan et al.
2021) have employed local trust regions to reduce the size
of the search space for making optimisation more tractable.
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However, this approach can result in the model converging
to suboptimal solutions in local regions of the search space
during optimisation.

In this paper, we present a new approach for optimising
black-box functions with multiple continuous and categorical
inputs. For carrying out a decision on the categorical part of
the input, our method uses a tree-based approach to identify
high potential candidates sampled from the surrogate model,
which we call value proposals. This enables a global, uni-
fied approach for optimising on the discrete and continuous
sub-spaces of the input, where the decision-making process
for both categorical and continuous variables is based on a
common metric obtained from the underlying surrogate. We
show that this approach significantly improves over existing
baselines when applied to a variety of mixed input synthetic
and real-world problems.

Background
Generally, we can organise the literature related to our work
into three categories:

One-hot Encoding was used prior to the introduction of
hierarchical and categorical-specific models for mixed in-
put tasks. These methods (Snoek, Larochelle, and Adams
2012; González et al. 2016; Golovin et al. 2017) transform
categorical variables into a one-hot encoded representation,
which were used by Bayesian Optimisation frameworks to
deal with inputs of mixed nature. In this scenario, the cate-
gorical variable with N choices is transformed into a vector
of length N with a single non-zero element. Since categories
are mutually exclusive, this type of approach treats each extra
variable as continuous in [0, 1] using a standard Bayesian
Optimisation algorithm for optimisation. However, this type
of approach places an equal measure of covariance between
all category pairs (despite some or all pairs having differ-
ent or no correlations), resulting in an acquisition function
that is difficult to optimise with large areas of flatness (Rana
et al. 2017). To address this issue, (Garrido-Merchán and
Hernández-Lobato 2020) restricted the objective function to
change only at designated points of 0 and 1, using a kernel
function which computed covariances after rounding off the
input. However, with this approach, the resulting acquisition
function becomes step-wise, making it difficult to optimise.

Hierarchical methods were another approach for dealing
with mixed inputs. Here, alternative surrogate models which
can more naturally handle both continuous and categorical
variables were used instead of a Gaussian process. Sequen-
tial Model-based Algorithm Configuration (SMAC) (Hut-
ter, Hoos, and Leyton-Brown 2011) uses Random Forests
(RFs) (Breiman 2001) as a surrogate model to handle both
categorical and continuous components in the input. However,
the random nature of RFs (through a reliance on bootstrap-
ping samples and randomly choosing subsets of variables to
be tested at each node) weakens the reliability of the derived
acquisition function. Adding to this, RFs have a tendency to
overfit to training data, requiring careful selection of the num-
ber of trees in the model to avoid overfitting. Other tree-based
approaches include the Tree-Parzen Estimator (Bergstra et al.
2011), which uses tree-structured Parzen density estimators.

Category-specific approaches handle each component of
the input separately. (Gopakumar et al. 2018) developed
EXP3BO, an approach to deal with mixed categorical and
continuous input spaces by utilising a Multi-Armed Bandit
to make categorical choices and training a separate surro-
gate model specific for each choice of category. As a result,
the observed data is divided into smaller subsets (one for
each category), resulting in a sample-inefficient optimisation
procedure that cannot handle problems with a large number
of categorical choices. (Nguyen et al. 2020a) introduced a
batched setting to the optimisation framework of (Gopaku-
mar et al. 2018) and replaced the respective EXP3 and Up-
per Confidence Bound (UCB) algorithms of the framework
with Thompson Sampling (Chapelle and Li 2011). A key
limitation of these frameworks is that they only allow for
optimisation of a single categorical variable; the work of (Ru
et al. 2020) extended this type of approach by allocating a
MAB per categorical variable, enabling the optimisation of
functions with multiple categorical variables. However, each
MAB is individually updated using the EXP3 algorithm and
this may lead to estimates which are disjoint from the BO
back-end. CASMOPOLITAN (Wan et al. 2021) utilised local
trust regions in both the categorical and continuous parts of
the input to reduce the overall size of the search space for
optimisation.

Preliminaries
Problem Setup
We consider the problem of optimising a black-box func-
tion f(z) where the input z is comprised of categorical and
continuous parts i.e. z = [h,x]. Here, h = [h1, ..., hk] is a
vector of categorical variables from the discrete topological
space C, with each categorical variable hi ∈ {1, 2, ..., Nj}
taking one of Nj different values. The continuous component
of the input, x, is drawn from a dx-dimensional hypercube
X . Formally, the optimisation of the black-box function f is
expressed as:

z∗ = [h∗,x∗] = argmax
z

f(z) (1)

which is performed sequentially by making a series of evalua-
tions on z1, ...zT . The goal is to find the best configuration z∗

that maximises y, which is the value returned from our objec-
tive function f . For convenience, we use c to denote a possi-
ble combination of categorical choices out of C =

∏k
j=1 Nj

available combinations, such that c ∈ {1, ..., C}.

Bayesian Optimisation
Given a black-box objective function f : X → R, the goal of
BO is to find the optimal value x∗ under a setting with lim-
ited evaluations on f (Snoek, Larochelle, and Adams 2012;
Nguyen and Osborne 2020). This optimal value maximises
the objective f , and is defined as x∗ = argmaxx∈X f(x).
The process of BO involves using a surrogate to model the
objective f ; typically, f is assumed to be a smooth function
and commonly a Gaussian Process (GP) (Rasmussen 2003)
is used for the surrogate. The GP models an underlying prob-
ability distribution over functions f and is represented by
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mean and covariance functions (or kernel) µ(x) and κ(x,x′)
respectively, where f(x) ∼ GP(µ(x), κ(x,x′)). In this work,
our choice of kernel κ is the mixed-kernel (Ru et al. 2020;
Parker-Holder et al. 2021; Wan et al. 2021; Zuo et al. 2022)
which is suited towards modelling mixed-input type problems
(for additional details on the mixed-kernel, please refer to the
supplementary material).

The surrogate encodes our prior beliefs about the objec-
tive f and we can build a posterior through further obser-
vations when we evaluate f(x). Using this posterior, at a
given optimisation iteration t, an acquisition function αt(x)
can be built, which can then be optimised to identify the
next point to be sampled such that xt = argmaxx∈X αt(x).
Since αt(x) is derived from our surrogate model, it is com-
paratively cheaper to compute and can be optimised using
standard optimisation techniques.

Decision Trees & Forests
Decision Trees consist of a set internal nodes and termi-
nal nodes. The internal nodes (referred to as decision nodes)
dictate the routing path of data through the tree, via split
functions which drive data samples to left or right child deci-
sion nodes, whilst terminal leaf nodes contain values which
contribute to the prediction made by the tree (Safavian and
Landgrebe 1991). The set of decision nodes is defined as
D = {d0, · · · , dN−1}, where each node holds a decision
function d(x; θ) parameterised by θ. A terminal leaf node is
defined as ℓ = δ(x; Θ) where δ represents the routing func-
tion which directs data x to the terminal leaf node ℓ, given
the parameters of the tree Θ.

The stored value in leaf node ℓ is defined as q = Q(ℓ),
where Q is a mapping of ℓ to its stored value (for more details,
please see the supplementary material).

Decision Forests are the ensemble setting of decision trees.
Here, the ensemble of F trees is combined to give a single
output, usually by averaging the predictions delivered by each
tree (Ho 1995). Hence, the prediction made by the ensemble
for the input x is given as:

V =
1

F

F∑
j=1

Q(ℓ) =
1

F

F∑
j=1

Qj(δj(x; Θj)) (2)

where Qj , δj and Θj are the respective leaf node mapping
function, routing function and parameters of tree j in the
ensemble.

Local Trust Regions in BO
Under the BO setting, local trust regions (TRs) have been
effectively applied to help with scaling up the optimisa-
tion process of higher dimensional problems. The key idea
behind this approach is to break down the function land-
scape into several smaller local regions (called trust regions)
which should be easier to optimise when compared to the
entire function landscape. TuRBO (Eriksson et al. 2019) first
established TRs in the continuous input setting, as hyper-
rectangles centred around the best solution found so far dur-
ing optimisation (x∗). These hyper-rectangles are initialised

to a base side length L, and re-scaled on each of the d dimen-
sions by the GP model’s corresponding lengthscale parameter
li, where the re-scaled side length on the ith dimension is
given as:

Li =
liL

(
∏d

j=1 lj)
1/d

. (3)

To maintain these TRs, (Eriksson et al. 2019) adopts the
simplex approach of (Nelder and Mead 1965) using a shrink-
ing and expanding heuristic (for additional details, please re-
fer to the supplementary material). CASMOPOLITAN (Wan
et al. 2021) adapted the approach of (Eriksson et al. 2019) for
the categorical and mixed-input setting, using a Hamming
distance (Hamming 1950) based TR to partition the categori-
cal component of the input space. Here the TR is defined in
terms of a radius Lh from the best observed location h∗:

TRh(h
∗)Lh =

{
h|

dh∑
i=1

δ(hi, h
∗
i ) ≤ Lh

}
(4)

where the same shrinking and expanding heuristic
from (Nelder and Mead 1965) is used to maintain the size of
the TR.

Method
There are a few issues with the local TR-based approach. The
first is sensitivity to the size of the local TR: maintaining the
correct side length L is critical as too large of a TR would
mean losing local accuracy and too small would mean the TR
may not contain good solutions. The second is in maintaining
a correct TR size during optimisation; this is an additional
consideration that must be made on top of balancing between
exploration and exploitation. Finally, a local TR-based model
needs to be able to identify if it has converged to a suboptimal
solution and make a decision on when to employ its restart
strategy (Eriksson et al. 2019; Wan et al. 2021), which is yet
another heuristic that needs to be tuned for the problem at
hand.

Our proposed method addresses each of these aforemen-
tioned issues; instead of restricting the input space to local
trust regions, we can instead utilise an auxiliary model along-
side the surrogate model to identify non-local sub-regions of
the input search space earlier in the optimisation pipeline. The
auxiliary model maintains a global view of the input search
space and effectively establishes trust regions that are not
necessarily restricted to their locality (see Table 1). For the
auxiliary model that is used to identify non-local trust regions,
we utilise a tree-based approach which have been shown to
perform well across both continuous (Bartz-Beielstein and
Markon 2004; Zuo, Avraham, and Drummond 2018, 2021)
and categorical data (Breiman 2001; Zuo and Drummond
2017) and have an innate ability to handle mixed-input type
data efficiently (Breiman 2001; Chen et al. 2015; Zuo and
Drummond 2020), making them particularly suited for opti-
mising mixed-input objectives under the BO setting (Hutter,
Hoos, and Leyton-Brown 2011).

Value Proposal Trees (VPT)
The VPT process is detailed in Algorithm 1 and can be sum-
marised by three main components: (i) a candidate generation
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process queries the statistical surrogate model to obtain a set
of potential input configurations to evaluate; (ii) this set of
input configurations and their corresponding acquisition val-
ues are fit to a tree-based regression model and clustered
by a similarity measure; (iii) a top cluster is chosen as the
value proposal set - a set of candidates that share similarities
and possess categorical variable configurations which are
predicted to have high potential in maximising the objective.
The BO back-end is used to optimise the continuous variables
for the candidates within this top cluster given their respec-
tive categorical variable configuration and the candidate with
the highest acquisition value from within the value proposal
set is selected as the next configuration for evaluating the
black-box objective function.

Algorithm 1: Value Proposal Trees
Input: Black-box function f , Initial data D0, Max iterations

T , Number of possible categorical combinations C
Output: The best recommendation z∗

T = [h∗
T ,x

∗
T ]

for t = 1, ..., T do
Fit a GP model using Dt−1 Generate N candidates Tt

from a GP surrogate Train a tree-based regression model
using Tt Generate proximity matrix Pt Use Pt to cluster
Tt to generate the value proposal set Vt

for c ∈ {1, ..., Ct} do
x∗
t,c = argmax

x
αt,c(x|Dt−1,ht,c)

vt,c = αt,c(x
∗
t,c|Dt−1,ht,c)

Vt[c] = [x∗
t,c, vt,c]

c∗ = argmax
c
Vt

Set z∗
t = [h∗

t ,x
∗
t ] = [ht,c∗ ,x

∗
t,c∗ ] and obtain f∗

t = f(z∗
t )

Augment the data: Dt ← Dt−1

⋃
(z∗

t , f
∗
t )

Sampling the Posterior occurs at each optimisa-
tion t iteration where VPT first queries the surro-
gate model to produce a set of N candidates Tt =
{(zt,0, αt,0), (zt,1, αt,1), (zt,2, αt,2), ..., (zt,N , αt,N )}.
Each sample i in the set Tt is a pair consisting of a candidate
input configuration zt,i and its corresponding acquisition
value αt,i. For convenience and the sake of brevity, we drop
the t subscript notation from zt,i and its acquisition value
αt,i when referring to individual samples from the candidate
set Tt from this point onward. Before optimisation begins,
the objective function f is first evaluated a number of times
using input configurations which are uniformly sampled
from the input search space. The results of these evaluations
are added to the initial observation set D0 and a posterior is
fitted to D0 by maximising the log marginal likelihood. From
the initial observation setD0, we obtain our initial incumbent
E0 by selecting the observation with maximises the objective
function f (i.e. E0 = argmaxz f(z)). We can then sample
the required N candidates from the fitted surrogate model.

For sampling, we employ a trust region based technique
similar to (Wan et al. 2021). Here, we develop a general strat-
egy for sampling the categorical component of the input ht

using the current incumbent Et−1 for optimisation iteration t.
Selecting candidates at optimisation iteration t on the cate-
gorical choices of the input involves searching in a local trust

region around the current incumbent Et−1 via making pertur-
bations to the categorical component of the input. Motivated
by (Wan et al. 2021), we use Hamming distance (Hamming
1950) to determine the range of permissible perturbations to
the categorical variables from the current incumbent.

Regression & Clustering with Trees is performed on the
set of candidates Tt for fitting a tree-based regression model.
For the ith sample in Tt, we use the candidate input configu-
ration zi as the input to the regression model and its corre-
sponding acquisition value αi as the regression target. Here,
the regression tree model is fit on Tt via induction (Quinlan
1986) and minimises mean squared loss between the predic-
tion of the model and the target acquisition value:

MSE =
1

N

N∑
i=1

(αi − yi)
2 (5)

where yi denotes the predicted acquisition value for sample
i in the set Tt. The fitted regression model is used to gener-
ate a proximity matrix Pt, a square matrix which is used to
measure the similarity between samples in Tt. For each sam-
ple in the set Tt, we compute its pairwise distance to other
samples in the set using a count of common leaf nodes the
pairwise samples share (normalised across the F trees in the
ensemble). That is, for sample i, we compute its proximity p
to sample j as:

pi,j =
1

F

F∑
k=1

Iℓi=ℓj . (6)

Here, IC is an indicator function which equals 1 when its
condition C is met and 0 otherwise. The proximity matrix
Pt is thus composed of normalised values in the range of
[0, 1]. Using the proximity matrix Pt, samples from Tt can
be clustered according to their similarity, generating the set
of clusters {K0, ...,KK}. Each cluster is scored using its
acquisition value αk, by averaging over the individual acqui-
sition values corresponding to samples from within the given
cluster k:

αk =
1

Nk

Nk∑
i=1

αk,i (7)

where Nk is the number of samples in cluster k and the αk,i

is the acquisition value corresponding to the ith sample in
cluster k.

Creating Value Proposals occurs via selecting the cluster
k∗ with the largest acquisition value, which creates the value
proposal set Vt:

k∗ = argmax
k∈{1,...,K}

αk. (8)

Following this, the categorical part of the input ht is fixed and
the BO back-end is then used to maximise the acquisition
function and optimise the continuous part of the input xt.
This step is done in parallel for each candidate zc in cluster
k∗, where we find the corresponding optimal value for x
given the selected categorical values which is denoted as
x∗
t,c. Following optimisation of the continuous part of the
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(a) Func2C (b) Func3C (c) Reizman-Suzuki

(d) SVM-Boston (e) XG-MNIST (f) NASBench-101

Figure 1: Performance of VPT against existing methods on various synthetic and real-world tasks. The shaded regions represent
the standard error from the mean value (solid line) over random trials.

input xt for each sample Vt, we obtain a cluster of candidates
which represents high potential samples to evaluate on the
objective function f . We refer to these candidates as value
proposals, and this is collected in the set of value proposals
Vt (containing Ct proposals) for the optimisation iteration t.

The value proposal with the maximum acquisition value
within the value proposal set Vt is selected and its correspond-
ing input configuration [h∗

t ,x
∗
t ] is chosen as the next query

point of the objective function f . Following this, the newly
observed function value f∗

t and corresponding input z∗
t is

added to the observation set Dt.

Experiments
We compared VPT against several competing baselines
which can handle mixed-variable inputs: SMAC (Hut-
ter, Hoos, and Leyton-Brown 2011), TPE (Bergstra et al.
2011), GP-based BO with one-hot encoding (One-Hot BO),
EXP3BO (Gopakumar et al. 2018), Bandit-BO (Nguyen
et al. 2020a), CoCaBO (Ru et al. 2020) and CASMOPOLI-
TAN (Wan et al. 2021). All baseline methods are imple-
mented according to their publicly available Python repos-
itories (please see the supplementary material for detailed
settings used in these baselines). Additionally, we imple-
mented RandomBO, where the EXP3 agent in CoCaBO is
replaced by a random selection agent.

VPT Settings We utilise the same mixed-kernel GP surro-
gate as (Wan et al. 2021), which uses a fixed kernel mixture

hyperparameter of λ = 0.5. We follow the optimisation ap-
proach of (Wan et al. 2021), optimising GP hyperparameters
by maximising the log marginal likelihood using variational
inference (VI) (Ranganath, Gerrish, and Blei 2014), with a
learning rate of α = 0.03. At each optimisation iteration,
we generate N = 1000 randomly selected candidates, sam-
pling from a local trust region of the current incumbent. For
the tree-based regression model, we use the Extremely Ran-
domised Trees (ERT) approach (Geurts, Ernst, and Wehenkel
2006), constructing an ensemble of 100 trees, each with a
maximum depth equal to the number of categorical variables
in the black-box function of interest. Clustering is performed
using DBSCAN (Ester et al. 1996). We use the proximity
matrix generated from the ERT model to specify ϵ, where we
use the 20th percentile of distances for the value of ϵ. We set
the minimum number of points clustered around a region for
it to be considered dense as 5.

Datasets For all benchmarks, the continuous inputs were
normalised to x ∈ [0, 1]dx and all experiments were con-
ducted on an 8-core 3.4Ghz Intel Xeon processor with 64GB
RAM. Our benchmarks include a variety of synthetic and real,
single and multi-objective problems (for additional details,
please see the supplementary material).

Performance of VPT
We evaluated the optimisation performance of our proposed
VPT method against existing methods. Following (Ru et al.
2020), we set each optimisation trial to consist of T = 200
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t=0 t=50 t=100 t=200

Figure 2: Clustering of categorical candidates generated by CASMOPOLITAN (Wan et al. 2021) (top) and VPT (bottom) of
the Func2C dataset. For each method, N = 1000 candidates were generated at each optimisation iteration and the optimal
categorical configuration is [1, 1]. The x-axis and y-axis show the different possible choices for each categorical variable (k = 2),
with a small amount of noise added to help with visualisation. For VPT, the different colours represent different clusters as
indicated by the regression tree model. When compared to the local trust region approach of (Wan et al. 2021), our method
establishes trust regions that non-local and span across multiple categorical configurations. In contrast, CASMOPOLITAN is
restricted in selecting specific categorical configurations which may not be optimal.

iterations. We performed 20 random trials for the Func2C,
Func3C and Reizman-Suzuki datasets. For the SVM-Boston,
XG-MNIST and NASBench-101 datasets, we performed 10
random trials. Means and standard errors over all trials are
presented.

The gray dotted line in Fig. 1 represents an Oracle agent
that we trained (similar to (Gopakumar et al. 2018)). Here,
we run BO for each of the C choices of possible categorical
combinations, with each choice allocated its own separate GP
surrogate model GPc. We allocate each of the C choices the
full T = 200 iterations as well as all 24 initial sample points
and optimise the hyperparameters for GPc every iteration by
maximising the log marginal likelihood. At each iteration t,
the Oracle’s performance is then taken as the best value for
f over all possible categorical choices C. Hence, we use the
Oracle to represent a best possible outcome scenario at each
iteration t.

Across all synthetic and real-world problems, our VPT
method outperforms other competing approaches, where the
general trend is that VPT demonstrates a significant improve-
ment in initial performance and more quickly converges to-
wards the performance of the Oracle agent. Across the com-
peting baselines, we observe that there is large variance in per-
formance between different problems, but the performance
of our VPT approach remains consistent across different
datasets. This is encouraging to see and highlights the bene-
ficial properties of our method over competing mixed-input
approaches (highlighted in Table 1).

Note that due to the nature of the EXP3BO and Bandit-
BO methods maintaining separate surrogate models for each

of the possible C categories and being allocated 3 initial
samples per surrogate, for problems where C is large (e.g.
Func3C, XG-MNIST and NASBench-101), their initial per-
formance at t =1 is significantly higher due to the larger
number of initial samples observed from f (e.g. 180 samples
for Func3C vs. 24 for all other methods including VPT).

Local vs. Non-local Trust Regions
Here, we further show the trade-offs associated with local
TR-based approaches such as CASMOPOLITAN (Wan et al.
2021) as indicated in Table 1, when compared to our VPT
method. In Fig. 2 we show the visualised clustering of candi-
dates generated by (Wan et al. 2021) and our VPT method
at t = 0, t = 50, t = 100 and t = 200 optimisation itera-
tions for the Func2C synthetic problem. We plot the different
possible choices for each of the k = 2 variables on the re-
spective x-axis and y-axis. Each point represents a candidate
generated by (Wan et al. 2021) and our VPT method at the
specified optimisation iteration. At each of the shown optimi-
sation iterations, CASMOPOLITAN appears to concentrate
its categorical configurations around a few selections, and
largely misses the optimal categorical configuration of [1, 1].
In contrast, VPT maintains a diverse set of candidates which
covers all possible categorical configurations and the optimal
categorical configuration contains candidates from several
different clusters (represented by different colours).

VPT Ablation Study
We perform an ablation study comparing our VPT method
with its possible variations including Random Candidate
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(a) Func2C (b) Func3C (c) Reizman-Suzuki

(d) SVM-Boston (e) XG-MNIST (f) NASBench-101

Figure 3: Ablation study between our proposed VPT method and its variations. The shaded regions represent the standard error
from the mean value (solid line) over random trials.

Bayesian Optimisation (RCBO) and Selected Candidate
Bayesian Optimisation (SCBO). RCBO omits the tree fit-
ting and clustering step in our VPT approach and instead just
optimises the continuous component of the input for the full
set of generated candidates using the previously described
trust region sampling method, selecting the candidate with
the largest acquisition value. SCBO generates a candidate
for each possible categorical combination and selects the
arm which maximises the acquisition value after optimising
for the continuous component of the input. All 3 methods
share the same BO back-end of (Wan et al. 2021) which uses
a mixed-kernel surrogate GP model where optimisation is
performed using variational inference. The results of this
ablation study across the 6 datasets are shown in Fig. 3.

For RCBO, we observe that the exclusion of tree-fitting
and clustering from the VPT approach results in a reduction
in performance over optimisation trials, particularly on the
SVM-Boston and NASBench-101 datasets. This indicates
that using the tree-based regression model and clustering
does indeed help in identifying high potency candidates for
further optimisation.

For SCBO, there are two main issues; the first is that mak-
ing a selection through comprehensively considering all pos-
sible categorical variable configurations can result in SCBO
getting stuck locally and repeatedly selecting the same sub-
optimal arm. The second issue is that as the number of cate-
gorical variables increase, the possible configuration space
exponetially increases and SCBO subsequently incurs expo-

Method

RCBO SCBO VPT
Func2C 7.1587 2.3063 2.5666
Func3C 8.6316 2.5372 2.5346
Reizman-Suzuki 4.4041 2.2138 2.3854
SVM-Boston 8.9047 2.4609 2.5397
XG-MNIST 13.0525 5.2359 4.7051
NASBench-101 11.7123 4.2158 4.1572
Average 8.7359 3.1616 3.1482

Table 2: The mean wall-clock time (in seconds) overheads
for each BO iteration across 200 optimisation rounds.

nential computation costs as shown in Table 2 for problems
with a large number of possible categorical configurations
(XG-MNIST and NASBench-101).

Conclusion
In this paper, we presented a mixed-variable black-box op-
timisation approach which adopts a global BO approach in
the joint optimisation of categorical and continuous variables.
Our approach adopts a tree-based method to establish non-
local trust regions for identifying high potential candidates to
be optimised in a BO setting. Empirically, we show that VPT
gives significant improvements in performance over existing
mixed-variable optimisation approaches on a wide range of
problems.
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