
SVP-T: A Shape-Level Variable-Position Transformer for
Multivariate Time Series Classification

Rundong Zuo1, Guozhong Li1, Byron Choi1, Sourav S Bhowmick2,
Daphne Ngar-yin Mah3, Grace L.H. Wong4

1 Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
2 School of Computing Engineering, Nanyang Technological University, Singapore

3 Department of Geography, Hong Kong Baptist University, Hong Kong SAR
4 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR

{csrdzuo, csgzli, bchoi}@comp.hkbu.edu.hk, assourav@ntu.edu.sg, daphnemah@hkbu.edu.hk, wonglaihung@cuhk.edu.hk

Abstract

Multivariate time series classification (MTSC), one of the
most fundamental time series applications, has not only
gained substantial research attentions but has also emerged
in many real-life applications. Recently, using transformers to
solve MTSC has been reported. However, current transformer-
based methods take data points of individual timestamps as
inputs (timestamp-level), which only capture the temporal de-
pendencies, not the dependencies among variables. In this pa-
per, we propose a novel method, called SVP-T. Specifically,
we first propose to take time series subsequences, which can
be from different variables and positions (time interval), as
the inputs (shape-level). The temporal and variable dependen-
cies are both handled by capturing the long- and short-term
dependencies among shapes. Second, we propose a variable-
position encoding layer (VP-layer) to utilize both the variable
and position information of each shape. Third, we introduce a
novel VP-based (Variable-Position) self-attention mechanism
to allow the enhancing of the attention weights of overlapping
shapes. We evaluate our method on all UEA MTS datasets.
SVP-T achieves the best accuracy rank compared with sev-
eral competitive state-of-the-art methods. Furthermore, we
demonstrate the effectiveness of the VP-layer and the VP-
based self-attention mechanism. Finally, we present one case
study to interpret the result of SVP-T.

1 Introduction
Multivariate time series (MTS), recording a group of vari-
ables at each timestamp, is ubiquitous in diverse domains,
such as economics, smart city, medicine, and astronau-
tics (Palpanas 2015). Time series classification is one of the
most fundamental time series applications (Bagnall et al.
2017). However, compared to univariate time series clas-
sification (UTSC) (Bagnall et al. 2017; Shifaz et al. 2020),
multivariate time series classification (MTSC) has received
less research attention (Li et al. 2021). One of the key is-
sues for MTSC is to capture the interactions among differ-
ent variables (Ruiz et al. 2020), e.g., one activity (play-
ing badminton) determined by several shapes from different
variables around the same time in human activity recogni-
tion (Bagnall et al. 2018).

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Several methods have been proposed to solve the issue of
such interactions of variables. (Hao and Cao 2020) proposed
two novel cross-attention modules on their network. How-
ever, the model starts with a convolution operation with local
neighborhood information layer by layer, which is known
to be prone to the position-dependent prior bias on vari-
ables. ShapeNet captures the potential interactions between
variables by learning subsequence representations (Li et al.
2021). Nevertheless, the representations do not consider the
information about the variables and the positions of subse-
quences.

Recently, transformer models have exhibited superior
performance in capturing long- and short-term dependen-
cies in the applications of natural language processing
(NLP) (Vaswani et al. 2017; Devlin et al. 2019). More-
over, some transformer-based methods have been proposed
for time series applications. For instance, Informer employs
transformer for time series forecasting (Zhou et al. 2021)
for efficiently handling extremely long input sequences.
(Zerveas et al. 2021) have proposed a transformer-based
framework for time series representation learning for down-
stream tasks (e.g., regression and classification). Applying a
transformer on MTS avoids using a sequence-aligned recur-
rent architecture, i.e., the models learn the temporal depen-
dencies without position-dependent prior bias.
Challenges. We note that the input token of previous
transformer-based methods (called timestamp-level trans-
former in this paper) for MTS is taken from one timestamp of
all variables (Zhou et al. 2021; Zerveas et al. 2021), which
means they only consider the temporal dependencies, and do
not yet consider the dependencies between variables, since
the transformer is for learning the dependencies among input
tokens, not the dependencies within each individual token
(shown in Figure 1(a)). Meanwhile, the input length of the
timestamp-level transformer depends on the length of time
series T , and thus the time complexity of the self-attention
mechanism in the transformer is O(T 2). Therefore, a time
series with a large T makes a transformer time-consuming.

We are the first to take shapes as the input for the trans-
former (also called shape-level transformer in this paper,
shown in Figure 1(b)) to handle both the temporal and
variable dependencies. When using these shapes as the in-
put, there are two additional challenges. First, the variable

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11497

(a) LHS: the timestamp-level transformer; RHS: the dependencies
(illustrated with curved lines) of all tokens (timestamps) to the
first token learned by the transformer. The input token fed into the
timestamp-level transformer combines all variables at one timestamp,
and thus the transformer only captures the temporal dependencies.

(b) LHS: our shape-level transformer; RHS: the dependencies (il-
lustrated with curved lines) of all tokens (shapes) to the first to-
ken learned by the transformer. The input token of the shape-level
transformer is from one variable vi together with the corresponding
time interval (position pi). By capturing the dependencies between
shapes, the dependencies of variables and positions are learned. The
red line denotes the dependency between the 1-st and 3-rd variables.

Figure 1: (a) Timestamp-level input vs (b) our shape-level
input for transformer.

and position (VP) information of the shapes have not been
considered by the encoder of the transformer. Second, the
shapes that appear almost simultaneously (overlap in time)
are important to many applications, such as human activity
recognition (Zhou, De la Torre, and Hodgins 2012; Wang
et al. 2019), which can be specifically emphasized.
Contributions. In this paper, we propose a shape-level
variable-position transformer model, named SVP-T, to ad-
dress the above-mentioned challenges. To the best of our
knowledge, this is the first work to take time series subse-
quences as the input (shape-level) and consider their vari-
able and position information in a transformer architecture.
An overview of SVP-T is presented in Figure 2.

SVP-T takes the shapes from different variables and posi-
tions as input. The novelty is that we 1© utilize shapes nearby
the cluster centers, obtained from a clustering algorithm,
rather than each timestamp, as the input for SVP-T. Fig-
ure 1 shows the difference between a previous timestamp-
level transformer (Zerveas et al. 2021) (Figure 1(a)) and our
shape-level transformer, SVP-T (Figure 1(b)). Instead of us-
ing a fixed position encoding in (Vaswani et al. 2017) or
a fully learnable position encoding in (Devlin et al. 2019;
Zerveas et al. 2021), we 2© propose a variable-position en-
coding layer (VP-layer) to specifically utilize the variable
and position of our shapes, which makes the model sense the
input time series instance. Finally, we 3© introduce a novel
VP-based (Variable-Position) self-attention mechanism to

Figure 2: The overview of our method. 1© Preprocess-
ing. A variable-wise clustering method discovers L shapes
of each instance as the input tokens (Section 3.1). 2©
SVP-T. A VP-layer encodes variable-position informa-
tion of shapes (Section 3.2) and a VP-based self-attention
mechanism in the transformer encoder which captures
long- and short-dependencies between shapes (Section 3.3).
{S1, S2, · · · , SL} are the shapes shown in Figure 1(b).

enable enhancement of the attention weights of overlapping
shapes for MTSC. As a proof of concept, we propose to in-
crease the attention weight of two shapes that are close in
time but from different variables.

We conduct experiments on all datasets of the UEA
MTS archive. The evaluation shows that our SVP-T outper-
forms 12 baseline methods in terms of accuracy rank and the
additional experiments show the effectiveness of our pro-
posed modules. Furthermore, we perform a case study to
show how our SVP-T handles input shapes by analyzing
the internal representation.
Organization. The rest of this paper is organized as follows.
Section 2 presents the related work on MTS. The definition of
MTS and details of SVP-T are introduced in Section 3. Sec-
tion 4 reports the experimental results and one case study.
Section 5 concludes the paper and presents avenues for fu-
ture work.

2 Related Work
In this section, we present the existing methods for
MTSC and the transformer-based methods for time series.

2.1 Multivariate Time Series Classification
We categorize the MTSC methods into two types, namely
traditional (non-deep learning) methods and deep learning
ones. For details of traditional methods, interested readers
can refer to an excellent survey paper (Ruiz et al. 2020).
Hence, we focus more on deep learning methods.

LSTM-FCN (Karim et al. 2019) was proposed with an
LSTM layer and stacked CNN layers to generate the fea-
tures from time series. The features are then transmitted

11498

to a softmax layer to output the probability of each class.
(Hao and Cao 2020) found an issue that CNN-based mod-
els cannot capture the long dependencies well among differ-
ent variables. To handle the issue, they added two cross at-
tention modules on their CNN-based model. TapNet applies
LSTM, CNN, and attentional prototype learning techniques
for MTSC (Zhang et al. 2020). Furthermore, it utilizes un-
labeled data for semi-supervised learning and obtains better
performances. (Li et al. 2021) proposed ShapeNet to learn
the time series subsequences representation into a unified
space for the final shapelet selection. However, they did not
consider the information of positions in time series subse-
quences. RLPAM (Gao et al. 2022) first converts MTS into
a univariate cluster sequence and then uses reinforcement
learning for selecting patterns.

2.2 Transformer-Based Methods for Time Series
The transformer architecture has successfully been applied
to important applications including natural language pro-
cessing (Vaswani et al. 2017; Devlin et al. 2019) and com-
puter vision (Dosovitskiy et al. 2021; Liu et al. 2021).

Recently, there have been some successes in time series
applications, such as forecasting (Wu et al. 2020; Lim et al.
2021) and representation learning (Eldele et al. 2021). In-
former employs transformer for efficiently forecasting long
sequence time series under long-tail distribution (Zhou et al.
2021). TS-TCC (Eldele et al. 2021) utilizes transformer in
temporal contrasting to extract the temporal features for
unsupervised time series representation learning. (Zerveas
et al. 2021) proposed a novel framework based on the trans-
former encoder to learn the representation of MTS for down-
stream tasks (e.g., classification and regression). The effi-
ciency of this method is limited by the length of the time se-
ries and its performance is relatively weak in low dimension
datasets (Zerveas et al. 2021). We notice that all the previ-
ous transformer-based methods take the data at timestamps
of the time series as the input (as shown in Figure 1(a)).

3 Methods
In this section, we first give some notations of multi-
variate time series. Then we propose a novel shape-level
variable-position transformer, called SVP-T, for MTSC.
Specifically, we propose shape inputs for the transformer,
a variable-position encoding layer, and a VP-based self-
attention mechanism.
Multivariate Time Series (MTS). Prior to the technical dis-
cussions, we provide some notations here. We denote MTS as
X ∈ RV×T , where V is the number of variables and
T is the series length of each variable. Specifically, X ={
X1, X2, · · · , XV

}
, where Xv is the time series of the v-

th variable. Xv = (xv1, x
v
2, · · · , xvT), where xvt is the value

of the t-th timestamp in the v-th variable. An MTS dataset
shown in the top left of Figure 2 consists of N instances and
each instance has one corresponding class label.

3.1 Shapes Input for Transformer
An excellent review paper (Ruiz et al. 2020) demon-
strates that the discriminative time series subsequences (e.g.,

interval-based, dictionary-based, and shapelet-based meth-
ods) significantly improve the accuracy performance of
MTSC. Inspired by the aforementioned results, we transform
original time series into shapes as the input for our SVP-T.
We follow the existing works (Zakaria et al. 2016; Grabocka,
Wistuba, and Schmidt-Thieme 2016; Li et al. 2021) to apply
clustering for discovering shapes.

For self-containedness, we describe how shapes are gen-
erated as follows. First, we generate numerous time series
subsequences for all instances. Second, we employ a clas-
sic clustering algorithm (e.g., kmeans) based on Euclidean
Distance to each variable. The K cluster centers for vari-
able v are Cv = {Cv1 , Cv2 , · · · , CvK}, which are represen-
tative of a number of time series subsequences of v. The
nearest time series subsequences Sv = {Sv1 , Sv2 , · · · , SvK}
to Cv are the tokens as input shapes of SVP-T. After that,
one MTS instance X is transformed into a set of shapes
S = {S1, S2, · · · , SL}, where L = K × V .

From Figure 1(a), we can observe that the input length of
previous transformer-based methods are determined by the
length of MTS (namely, T). As the time complexity of the
self-attention mechanism is O(T 2) (Vaswani et al. 2017),
this would be inefficient in handling long time series in a
timestamp-level transformer. In contrast, L in our shape-
level transformer is tunable. From our experiments shown in
Figure 7, we achieve good accuracy when L is much smaller
than T (e.g., EigenWorms, and StandWalkJump).

3.2 Variable-Position Encoding Layer
Since the transformer model contains no recurrence and no
convolution, a fixed sinusoidal position encoding, is pro-
posed to capture the input sequence in the seminal work of
transformer (Vaswani et al. 2017). BERT (Devlin et al. 2019)
proves that a fully learnable position encoding performs bet-
ter. Both the fixed position encoding and fully learnable po-
sition encoding utilize the order of sequence for input to-
kens, i.e., word embeddings in NLP (Vaswani et al. 2017).
However, such order of sequence may not carry the seman-
tics for the need of other applications (Shiv and Quirk 2019).

As we mentioned in Section 3.1, the input tokens of SVP-
T are the shapes. In the “shapes-as-input-tokens” situation,
the order of sequence for shapes is less important when com-
pared to the relative positions of the shapes in the original
time series instance, which are the corresponding variables
and time intervals (called VP information). An example of
VP information for input shapes is illustrated in Figure 3.

To include such VP information in learning, we propose
a variable-position encoding layer (VP-layer) in SVP-T,
which is shown in the middle right-hand side of Figure 2.

The input of the VP-layer is the VP information. Specif-
ically, for the i-th shape Si, the corresponding VP informa-
tion Pi is defined as follows:

Pi = (
vi
V
,
ti,start
T

,
ti,end
T

) (1)

where vi, ti,start and ti,end are the variable, the first times-
tamp, and the last timestamp of Si, respectively. We nor-
malize them to the range of [0, 1] by dividing them with the
number of variables V or their original time series length T .

11499

(a) The shapes S1, S2, S3, and S4 in their original time series
instance (Blue and orange are the two variables (1, 2) of the
partial MTS instance from the BasicMotions dataset)

(b) The VP information (Pi in Formula 1) of the shapes. The
first, second, and third components are the first timestamp, the
last timestamp, and the corresponding variable, respectively
(The length T = 100 and the number of variables V = 6).

Figure 3: An example to illustrate VP information

Pi is transmitted into a linear layer with a trainable weight
Wp:

P ′i = PiWp,Wp ∈ R3×dmodel (2)
where dmodel is the dimension of the input in the trans-
former (Vaswani et al. 2017). The final i-th input Ui of our
transformer encoder is:

Ui = P ′i +WsSi (3)

where Ws is the shared weight of a linear layer (shown in
Figure 2: a linear projection of shapes).

3.3 VP-Based Self-Attention Mechanism
We propose a VP-based self-attention mechanism for the
transformer encoder to capture the long- and short-term de-
pendencies between different shapes. The canonical self-
attention transforms the input embedding U into three fea-
ture spaces Q, K, and V , where all of them are vec-
tors (Vaswani et al. 2017). They are defined as follows:

Q = UWq,K = UWk, V = UWv (4)

where Wq , Wk ∈ Rdmodel×dk , Wv ∈ Rdmodel×dv . For clar-
ity, we let d = dk = dv in this paper. The projection space
Q, K, and V are called query, key, and value space, respec-
tively. They are used to compute the attention by mapping a
query and a set of key-value pairs to an output. The attention
is computed as follows:

Attention(Q,K, V) = softmax(
QKT

√
d

)V (5)

The attention weights for the values are calculated as:

Score = softmax(
QKT

√
d

) (6)

(a) (S1, S2) overlap (b) (S1, S2) do not overlap

Figure 4: An illustration of overlapping calculation
(shown in Formula 8). (S1, S2) are two shapes of dif-
ferent variables (v1, v2) from the BasicMotions dataset.
(a) min(t1,end, t2,end) > max(t1,start, t2,start). (b)
min(t1,end, t2,end) < max(t1,start, t2,start).

There is, however, a special characteristic of MTS datasets
that needs further consideration. When two shapes 1© over-
lap with each other and 2© are from different variables, they
together can be important shapes for MTSC and their atten-
tion weight should be higher. It should be remarked that
the overlapping behavior has been successfully applied to
the 2D-image data in object detection (Girshick et al. 2014;
Rezatofighi et al. 2019). We are the first to utilize the cor-
responding characteristics for MTSC. Figure 4(a) shows an
example of overlapping shapes S1 and S2.

Incorporating the above-mentioned characteristics into
MTSC, we propose a VP-based self-attention mechanism,
which allows the attention weights of these overlapping
shapes to be explicitly enhanced. Our goal is to modify the
attention weights matrix Score to Score′ using a matrix M
called the Overlapping-Enhancement matrix:

Score′ = softmax(Score�M) (7)
The overlapping of two shapes Si, Sj is defined as:

Olap(Si, Sj) =


max(min(ti,end, tj,end)−

max(ti,start, tj,start), 0) vi 6= vj

0 vi = vj
(8)

For presentation simplicity, we use v, ti,start, and ti,end to
present viV , ti,start

T , and ti,end

T , when T , V are not relevant to
the discussion.

We remark a special case where two shapes are from the
same variable, their overlapping part is repetitive and thus,
Olap = 0. For shapes from different variables, we give an
example of overlapping shapes in Figure 4.
Example 1. (S1, S2) are two time series subsequences from
two variables. There are two cases. 1© When there is an
overlapping between (S1, S2), namely, min(t1,end, t2,end)
is larger than max(t1,start, t2,start) as shown in Fig-
ure 4(a). Their Olap is then larger than 0. 2© When
there is no overlapping between (S1, S2), namely,
min(t1,end, t2,end) is smaller than max(t1,start, t2,start),
as shown in Figure 4(b). Their Olap is 0.

Finally, one element M(i, j) of the Overlapping-
Enhancement matrix is calculated by:

M(i, j) = αerelu(Olap(Si,Sj)−β) (9)

11500

Figure 5: An example of where the attention weight should
be increased. There are three circumstances. 1© (S1, S2),
they overlap in time, but they come from the same variable.
2© both (S1, S4) and (S1, S5), they do not overlap in time.
3© (S1, S3), they overlap in time and come from different

variables. The dash line is the overlapping part of (S1, S2).
Only the attention weight of 3© should be increased.

where α ≥ 1, and β ∈ [0, 1]. If the overlapping of two
shapes (Si, Sj) is larger than β, the relu function leads it to
stay the same and the result of M(i, j) would be larger than
one, which amplifies the corresponding attention weight.
Otherwise, the relu makes it to be 0 and the attention weight
remains unchanged. That is, no matter how far two shapes
are in position, if their overlapping is less than β, the self-
attention mechanism would learn the long- and short-term
dependencies equally, as (S1, S4) and (S1, S5) shown in
Figure 5. Meanwhile, if the above characteristic does not
exist, we can set β ≥ 1 and the self-attention mechanism
could be as before.

4 Experiments
In this section, we evaluate the performance of SVP-T. We
start by introducing the experiment setting, including the
environment, datasets, metrics, and the implementation de-
tails. Then, we present the baseline methods compared in
Section 4.2. In Section 4.3, we report the accuracies of all
methods. We investigate the effectiveness of our VP-layer
and VP-based self-attention mechanism in Section 4.4. In
addition, we conduct an experiment on how L influences
the classification results in Section 4.5. Finally, we present a
case study of a dataset named BasicMotions.

4.1 Experiment Setting
Environment. All the experiments are implemented on a
machine with one Xeon Gold 6226 CPU @ 2.70GHz and
one NVIDIA Tesla V100S. Python 3.8, and Pytorch 1.10.0
are used to build and train our model. Datasets. We eval-
uate our method on a well-known benchmark of MTS, the
UEA archive, which is consists of 30 different datasets. De-
tails of these datasets can be found in (Bagnall et al. 2018).
Metrics. We choose classification accuracy as our evalua-
tion metric. Meanwhile, we compute the average rank, the
number of Top-1, Top-3, and Top-5 accuracy, the number of
wins/draws/losses, to show the robustness of different meth-
ods. Finally, we conduct Friedman and Wilcoxon signed-
rank test following the process in (Demšar 2006) to eval-
uate whether the result is statistically significant. Imple-
mentation details. We set α = 1.5 and β = 0 in For-
mula 9. Since the benchmark datasets are highly heteroge-

neous, as well as the MTS data in nature, we follow the pre-
vious work (Zerveas et al. 2021), that splits the training set
into two parts, 80% − 20%. Then, we take the 20% part as
the validation set to tune the hyperparameters. When the hy-
perparameters are fixed, we train our model on the whole
training set and finally, evaluate it on the official test set.
Our tuned hyperparameters of all datasets are shown in Ap-
pendix A.1. We adopt batch normalization, instead of layer
normalization, for better performance on time series appli-
cations (Zerveas et al. 2021).

4.2 Baselines
We compare SVP-T with 12 methods and briefly introduce
each of them. Readers who are interested in them may re-
fer to the original papers. Three benchmarks (Bagnall et al.
2018) (EDI ,DTWI , andDTWD) are based on Euclidean
Distance, dimension-independent dynamic time warping,
and dimension-dependent dynamic time warping. MLSTM-
FCNs (Karim et al. 2019) is a deep learning method
for MTS, which applies an LSTM layer and stacked CNN
layers to generate features. WEASEL-MUSE (Schäfer and
Leser 2017) is a bag-of-pattern based approach which ex-
tracts and represents features to words. Scalable Repre-
sentation Learning (SRL) (Franceschi, Dieuleveut, and
Jaggi 2019) employs negative sampling techniques with an
encoder-based architecture to learn the representation. Tap-
Net (Zhang et al. 2020) is a recent model with an attentional
prototype learning in its deep learning-based network for
MTSC. ShapeNet (Li et al. 2021) projects the MTS subse-
quences into a unified space and applies clustering to find the
shapelets. Rocket, MiniRocket (Dempster, Petitjean, and
Webb 2020; Dempster, Schmidt, and Webb 2021) use ran-
dom convolutional kernels to extract features from univari-
ate time series, and they extended their codes to MTSC. RL-
PAM (Gao et al. 2022) introduces reinforcement learning to
the pattern mining of MTS. TStamp Transformer (Zerveas
et al. 2021) takes the values at each timestamp as the input
for a transformer encoder as Figure 1(a) shown, which is the
baseline for evaluating our idea of taking shapes as input.

4.3 Performance Evaluation
The accuracies of all the baseline experimental results
are taken from the original papers or the survey (Ruiz
et al. 2020) except for MiniRocket and TStamp Trans-
former (Zerveas et al. 2021). The details of them are shown
in Appendix A.2. We set a fixed random seed for repro-
ducibility. For consistency of presentation, we follow the re-
sults of (Gao et al. 2022) to keep three decimal places.

As Table 1 shown, the overall accuracy of SVP-T outper-
forms all the related methods. Specifically, the average rank
of SVP-T is 4.017, which is the best among 13 methods.
Meanwhile, the gap in terms of average rank between SVP-
T and the runner-up, MiniRocket, is about 1, which shows a
clear lead considering that the average ranks of MiniRocket
and RLPAM are nearly the same (less than 0.1 difference).
For the number of top-1 accuracy, we find that SVP-T is
slightly lower than RLPAM and MiniRocket. However, the
number of top-3 accuracies and the number of top-5 accura-
cies of SVP-T are both higher than all of the other methods,

11501

EDI DTWI DTWD MLSTM
-FCNs

WEASEL
+MUSE SRL TapNet ShapeNet Rocket Mini

Rocket RLPAM TStamp
Transformer Ours

AWR 0.970 0.980 0.987 0.973 0.990 0.987 0.987 0.987 0.996 0.992 0.923 0.983 0.993
AF 0.267 0.267 0.220 0.267 0.333 0.133 0.333 0.400 0.249 0.133 0.733 0.200 0.400
BM 0.676 1.000 0.975 0.950 1.000 1.000 1.000 1.000 0.990 1.000 1.000 0.975 1.000
CT 0.964 0.969 0.989 0.985 0.990 0.994 0.997 0.980 N/A 0.993 0.978 N/A 0.990
CK 0.944 0.986 1.000 0.917 1.000 0.986 0.958 0.986 1.000 0.986 1.000 0.958 1.000
DDG 0.275 0.550 0.600 0.675 0.575 0.675 0.575 0.725 0.461 0.650 0.700 0.480 0.700
EW 0.549 N/A 0.618 0.504 0.890 0.878 0.489 0.878 0.863 0.962 0.908 N/A 0.923
EP 0.666 0.978 0.964 0.761 1.000 0.957 0.971 0.987 0.991 1.000 0.978 0.920 0.986
ER 0.133 0.914 0.929 0.133 0.133 0.133 0.133 0.133 0.981 0.981 0.819 0.933 0.937
EC 0.293 0.304 0.323 0.373 0.430 0.236 0.323 0.312 0.447 0.468 0.369 0.337 0.331
FD 0.519 0.000 0.529 0.545 0.545 0.528 0.556 0.602 0.694 0.620 0.621 0.681 0.512
FM 0.550 0.520 0.530 0.580 0.490 0.540 0.530 0.580 0.553 0.550 0.640 0.776 0.600
HMD 0.278 0.306 0.231 0.365 0.365 0.270 0.378 0.338 0.446 0.392 0.635 0.608 0.392
HW 0.200 0.316 0.286 0.286 0.605 0.533 0.357 0.452 0.567 0.507 0.522 0.305 0.433
HB 0.619 0.658 0.717 0.663 0.727 0.737 0.751 0.756 0.718 0.771 0.779 0.712 0.790
IW 0.128 N/A N/A 0.167 N/A 0.160 0.208 0.250 N/A 0.595 0.352 0.684 0.184
JV 0.924 0.959 0.949 0.976 0.973 0.989 0.965 0.984 0.965 0.989 0.935 0.994 0.978
LB 0.833 0.894 0.870 0.856 0.878 0.867 0.850 0.856 0.906 0.922 0.794 0.844 0.883
LSST 0.456 0.575 0.551 0.373 0.590 0.558 0.568 0.590 0.632 0.643 0.643 0.381 0.666
MI 0.510 N/A 0.500 0.510 0.500 0.540 0.590 0.610 0.531 0.550 0.610 N/A 0.650
NT 0.850 0.850 0.883 0.889 0.870 0.944 0.939 0.883 0.885 0.928 0.950 0.900 0.906
PD 0.705 0.939 0.977 0.978 0.948 0.983 0.980 0.977 0.996 N/A 0.982 0.974 0.983
PM 0.973 0.734 0.711 0.699 0.000 0.688 0.751 0.751 0.856 0.522 0.632 0.919 0.867
PH 0.104 0.151 0.151 0.110 0.190 0.246 0.175 0.298 0.284 0.292 0.175 0.088 0.176
RS 0.868 0.842 0.803 0.803 0.934 0.862 0.868 0.882 0.928 0.868 0.868 0.829 0.842
SCP1 0.771 0.765 0.775 0.874 0.710 0.846 0.652 0.782 0.866 0.925 0.802 0.925 0.884
SCP2 0.483 0.533 0.539 0.472 0.460 0.556 0.550 0.578 0.514 0.522 0.632 0.589 0.600
SAD 0.967 0.959 0.963 0.990 0.982 0.956 0.983 0.975 0.630 0.620 0.621 0.993 0.986
SWJ 0.200 0.333 0.200 0.067 0.333 0.400 0.400 0.533 0.456 0.333 0.667 0.267 0.467
UGL 0.881 0.868 0.903 0.891 0.916 0.884 0.894 0.906 0.944 0.938 0.944 0.903 0.941
Avg.Rank 10.533 9.450 8.850 8.750 6.883 7.100 6.950 5.517 5.417 5.000 5.050 7.483 4.017
Num.Top-1 1 1 1 0 5 1 2 3 5 7 8 5 5
Num.Top-3 1 2 1 1 6 6 3 7 13 14 16 9 18
Num.Top-5 2 2 3 5 15 12 13 18 17 21 20 10 24
Wins 27 27 28 27 21 21 24 19 17 17 15 21 -
Draws 0 2 1 0 3 2 1 2 1 1 3 0 -
Losses 3 1 1 3 6 7 5 9 12 12 12 9 -
P-value 0.000 0.000 0.000 0.000 0.006 0.003 0.000 0.118 0.217 0.765 0.967 0.047 -

Table 1: Accuracies of our method and 12 related methods on all datasets of the UEA archive

11502

 0

 0.2

 0.4

 0.6

 0.8

 1
ou

rs

 0 0.2 0.4 0.6 0.8 1

w/o VP-layer

x

Ours is better
here

(a) VP-layer vs. fully learnable
positional encoding in trans-
former

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x

Ours is better
here

(b) VP-based self-attention
mechanism vs. original self-
attention mechanism

Figure 6: Effectiveness analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

Articu. Basic. Eigen. Stand.
Stand.

Ac
cu

ra
cy

100
300
600
900

 1200

Figure 7: Accuracy by varying the number of shapes L. The
series length T = 144, 100, 17984, 2500 for four datasets.

which shows the results of SVP-T are more robust. Also,
the performance of RLPAM relies on the quality of its uni-
variate cluster sequence and MiniRocket needs random ker-
nels for transformation. In terms of 1-to-1 comparison with
other methods, SVP-T wins/draws on at least 18 out of 30
datasets. For the Friedman and Wilcoxon test, we set the sig-
nificant level to α = 0.05 as (Bagnall et al. 2018; Li et al.
2021). The statistical significance is p ≤ 0.05, which con-
firms there is a significant difference among the 13 methods.
The p-values of SVP-T to all methods are less than 0.05,
which indicates the results are statistically significant except
for ShapeNet, Rocket, MiniRocket, and RLPAM.

Comparison with Timestamp-level transformer. To
evaluate our contribution of taking shapes as the input of
a transformer, we compare our SVP-T with TStamp Trans-
former (Zerveas et al. 2021) shown in the last two columns
of Table 1. In terms of 1-to-1 comparison, SVP-T wins on
21 out of the 30 datasets. The p-value of SVP-T to TStamp
Transformer is smaller than 0.05, which shows a statistically
significant improvement of taking shapes as input.

4.4 Effectiveness Analysis
We conduct experiments to demonstrate the effectiveness of
the VP-layer and the VP-based self-attention mechanism.
VP-layer vs. fully learnable positional encoding. To study
the performance of the VP-layer, we change the VP-layer to
fully learnable positional encoding and conduct an experi-
ment on all the datasets. Figure 6(a) shows that the accura-

Shape ID

va
lu

e

(a) Attention
Shape ID

Sh
ap

e
ID

(b) Attention weights

Figure 8: Visualization of one instance from the class play-
ing badminton: (a) The X-axis denotes the ID of input
shapes, and the Y-axis denotes the attention. The shapes are
ranked by the values of Y-axis. (b) The X-axis and Y-axis
denote the ID of input shapes. For (i, j), the color indicates
the attention weight between two shapes (Si, Sj). e.g., the
attention weight between shapes S4 and S38 is shown in red.

cies of using the VP-layer are clearly better than fully learn-
able positional encoding, which supports the effectiveness
the VP-layer proposed in Section 3.2.
VP-self-attention mechanism vs. original self-attention.
To study the performance of our VP-based self-attention
mechanism, we change the self-attention to the original self-
attention mechanism (Vaswani et al. 2017). The result in
Figure 6(b) shows that the accuracies achieved using the VP-
based self-attention mechanism proposed in Section 3.3 are
above directly using the original self-attention mechanism.

4.5 Evaluation the Effect of L
We conduct experiments to investigate how the number of
input shapes L would influence the classification result.

Generally, the more shapes, the more accurate SVP-T.
On the other hand, the time complexity of the transformer-
based model is O(L2). Hence, there is a trade-off between
accuracy and efficiency. We report four datasets because
they have a wide range of lengths and variables.

Figure 7 shows the accuracy by varying L. There is no
significant improvement in the accuracy of ArticularyWor-
dRecognition when L is larger than 100, which means a
small number L = 100 shapes could have a great perfor-
mance. The same phenomenon can be observed in other
datasets when L varies. Therefore, the efficiency of our
model could be further improved by finding the minimum
L for each dataset. We also find that when L is larger than
900, the accuracies of all datasets remain unchanged. There-
fore, we set the default L for all datasets to 900.

4.6 A Case Study of BasicMotions
To interpret the result of SVP-T, a human activity recog-
nition dataset from UEA archive, BasicMotions with four
classes (namely, playing badminton, standing, walking, and
running) and six variables (Bagnall et al. 2018), is employed
to illustrate without domain knowledge. We follow the steps
of visualization attention and attention weights in (Abnar
and Zuidema 2020).

11503

overlapping

time series:
shape:

shape:
time series:

va
lu

e
va

lu
e

Figure 9: The overlapping shapes S4 and S38 of one instance
from the class “playing badminton”. The shapes S4 and S38

are from different variables and overlap in time.

We randomly select one instance from the class “playing
badminton” in the test set for analysis. Figure 8(a) shows
the attention of different shapes. The red bars and the blue
bars are from the first three variables (3D accelerometer),
and the last three variables (3D gyroscope), respectively. We
can observe that the shapes with higher attention are mostly
from the last three variables (blue). The possible reason is
that the discriminative shapes more likely exist in the three
gyroscope variables (blue) for the class “playing badminton”
than for the other three classes.

We also find the shape S4 has high attention while it be-
longs to the first variable (3D accelerometer). To seek the
reason, we further visualize the attention weights matrix
(Score′ in Formula 7) shown in Figure 8(b). We discover the
attention weights given to S4 are relatively higher than oth-
ers. Specifically, the high attention weight between S38 and
S4 indicates a higher dependency. By tracking them back
to the original time series instance, a clear overlapping be-
havior (shown in Figure 9) can be observed, which is de-
scribed in Section 3.3, and further illustrates the effective-
ness of our VP-based self-attention mechanism. Meanwhile,
Figure 8(b) shows the high data sparsity (the colored points
vs. the dark points) in our SVP-T, which has the potential
of utilizing sparsity to improve efficiency (Zhou et al. 2021).

5 Conclusion
In this paper, we propose a novel shape-level variable-
position transformer method, named SVP-T, for MTSC. We
use time series subsequences, rather than timestamps, as the
input tokens of a transformer-based model, which captures
both variable and position dependencies in MTS. In particu-
lar, a variable-position encoding layer is proposed to utilize
the VP information of each shape. In addition, we propose a
variable-position self-attention mechanism in SVP-T to en-
hance the attention weights of the overlapping shapes. The
experiment shows the accuracy of SVP-T has the highest
rank when compared to the state-of-the-art methods. As for

future work, we plan to utilize the sparsity we observed from
Section 4.6 to improve the efficiency of SVP-T.

Acknowledgments
Thanks for the helpful feedbacks from the anonymous re-
viewers. This work was supported by the Hong Kong Re-
search Grant Council (HKRGC), RIF R2002-20F, and Hong
Kong Baptist University’s Interdisciplinary Research Clus-
ters Matching Scheme, HKBU IRCMS/19-20/H01.

References
Abnar, S.; and Zuidema, W. 2020. Quantifying Attention
Flow in Transformers. In ACL.
Bagnall, A.; Dau, H. A.; Lines, J.; Flynn, M.; Large, J.;
Bostrom, A.; Southam, P.; and Keogh, E. 2018. The
UEA multivariate time series classification archive, 2018.
arXiv:1811.00075.
Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; and Keogh, E.
2017. The great time series classification bake off: a review
and experimental evaluation of recent algorithmic advances.
DMKD.
Dempster, A.; Petitjean, F.; and Webb, G. I. 2020. ROCKET:
Exceptionally Fast and Accurate Time Series Classification
Using Random Convolutional Kernels. DMKD.
Dempster, A.; Schmidt, D. F.; and Webb, G. I. 2021.
MiniRocket: A Very Fast (Almost) Deterministic Transform
for Time Series Classification. In SIGKDD.
Demšar, J. 2006. Statistical comparisons of classifiers over
multiple data sets. JMLR.
Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In ICLR.
Eldele, E.; Ragab, M.; Chen, Z.; Wu, M.; Kwoh, C. K.; Li,
X.; and Guan, C. 2021. Time-Series Representation Learn-
ing via Temporal and Contextual Contrasting. In IJCAI.
Franceschi, J.-Y.; Dieuleveut, A.; and Jaggi, M. 2019. Unsu-
pervised Scalable Representation Learning for Multivariate
Time Series. In NeurIPS, 4652–4663.
Gao, G.; Gao, Q.; Yang, X.; Pajic, M.; and Chi, M. 2022.
A Reinforcement Learning-Informed Pattern Mining Frame-
work for Multivariate Time Series Classification. In IJCAI.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In ICCV.
Grabocka, J.; Wistuba, M.; and Schmidt-Thieme, L. 2016.
Fast classification of univariate and multivariate time series
through shapelet discovery. KAIS, 49(2): 429–454.
Hao, Y.; and Cao, H. 2020. A New Attention Mechanism to
Classify Multivariate Time Series. In IJCAI.

11504

Karim, F.; Majumdar, S.; Darabi, H.; and Harford, S.
2019. Multivariate LSTM-FCNs for time series classifica-
tion. Neural Networks, 116: 237–245.
Li, G.; Choi, B.; Xu, J.; Bhowmick, S. S.; Chun, K.-P.; and
Wong, G. L. 2021. Shapenet: A shapelet-neural network
approach for multivariate time series classification. In AAAI.
Lim, B.; Arık, S. Ö.; Loeff, N.; and Pfister, T. 2021. Tempo-
ral fusion transformers for interpretable multi-horizon time
series forecasting. International Journal of Forecasting.
Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.;
and Guo, B. 2021. Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows. In ICCV.
Palpanas, T. 2015. Data series management: The road to big
sequence analytics. ACM SIGMOD Record, 44(2): 47–52.
Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.;
and Savarese, S. 2019. Generalized intersection over union:
A metric and a loss for bounding box regression. CVPR.
Ruiz, A. P.; Flynn, M.; Large, J.; Middlehurst, M.; and Bag-
nall, A. 2020. The great multivariate time series classifica-
tion bake off: a review and experimental evaluation of recent
algorithmic advances. DMKD.
Schäfer, P.; and Leser, U. 2017. Multivariate time se-
ries classification with WEASEL+ MUSE. arXiv preprint
arXiv:1711.11343.
Shifaz, A.; Pelletier, C.; Petitjean, F.; and Webb, G. I. 2020.
TS-CHIEF: a scalable and accurate forest algorithm for time
series classification. DMKD.
Shiv, V.; and Quirk, C. 2019. Novel positional encodings to
enable tree-based transformers. In NeurIPS.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NeurIPS.
Wang, H.; Ho, E. S.; Shum, H. P.; and Zhu, Z. 2019. Spatio-
temporal manifold learning for human motions via long-
horizon modeling. TVCG, 27(1): 216–227.
Wu, N.; Green, B.; Ben, X.; and O’Banion, S. 2020. Deep
transformer models for time series forecasting: The in-
fluenza prevalence case. arXiv preprint arXiv:2001.08317.
Zakaria, J.; Mueen, A.; Keogh, E.; and Young, N. 2016. Ac-
celerating the discovery of unsupervised-shapelets. DMKD.
Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.;
and Eickhoff, C. 2021. A Transformer-Based Framework
for Multivariate Time Series Representation Learning. In
SIGKDD.
Zhang, X.; Gao, Y.; Lin, J.; and Lu, C.-T. 2020. Tapnet:
Multivariate time series classification with attentional proto-
typical network. In AAAI.
Zhou, F.; De la Torre, F.; and Hodgins, J. K. 2012. Hier-
archical aligned cluster analysis for temporal clustering of
human motion. TPAMI, 35(3): 582–596.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond Efficient Trans-
former for Long Sequence Time-Series Forecasting. In
AAAI.

11505

