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Abstract

Constrained Reinforcement Learning (CRL) burgeons broad
interest in recent years, which pursues maximizing long-term
returns while constraining costs. Although CRL can be cast
as a multi-objective optimization problem, it is still facing the
key challenge that gradient-based Pareto optimization methods
tend to stick to known Pareto-optimal solutions even when they
yield poor returns (e.g., the safest self-driving car that never
moves) or violate the constraints (e.g., the record-breaking
racer that crashes the car). In this paper, we propose Gradient-
adaptive Constrained Policy Optimization (GCPO for short), a
novel Pareto optimization method for CRL with two adaptive
gradient recalibration techniques. First, to find Pareto-optimal
solutions with balanced performance over all targets, we pro-
pose gradient rebalancing which forces the agent to improve
more on under-optimized objectives at every policy iteration.
Second, to guarantee that the cost constraints are satisfied, we
propose gradient perturbation that can temporarily sacrifice
the returns for costs. Experiments on the SafetyGym bench-
marks show that our method consistently outperforms previous
CRL methods in reward while satisfying the constraints.

1 Introduction
Due to the close relationship with real-world applications,
Constrained Reinforcement Learning (CRL) has burgeoned
broad interests in recent years (Achiam et al. 2017; Ding
et al. 2020; Wachi and Sui 2020; Satija, Amortila, and Pineau
2020). Unlike unconstrained reinforcement learning which
only aims at maximizing cumulative returns, CRL pursues
rewards while satisfying specific constraints. For example,
in the scenario of auto-pilot, the well-trained agent should
arrive at the destination and meets the safety constraints
simultaneously (Kong, Zhang, and Xu 2021).

CRL problems are usually formulated as Constrained
Markov Decision Processes (CMDPs) (Altman 1999), which
incorporate rewards and constraints into the same framework.
Aside from returning a scalar reward after each action like
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conventional MDPs, CMDPs send back one or multiple cost
signals independent of reward. Constraints are expressed ex-
plicitly in CMDPs by limiting the expected sum of each cost
in the corresponding region.

Essentially, the purpose of CRL is to maximize rewards
while controlling costs, which would be naturally associated
with Multi-objective optimization. In recent years, Pareto ap-
proaches (Sener and Koltun 2018; Lin et al. 2019), which find
a steep gradient that benefits all objectives, have been gener-
ally leveraged to multi-objective optimization. The ultimate
goal of Pareto approaches is to find a Pareto-optimal (Pareto
1897) solution, in which no objective can be advanced with-
out harming any other objectives.

Adhering to this idea, the CRL problem can be trans-
formed into a search for a specific Pareto-optimal policy,
which should also remain in the feasible region restricted by
constraints. However, algorithms for CRL seldom consider
experience from Pareto optimization area because existing
Pareto approaches perform poorly in practical CRL prob-
lems (Tessler, Mankowitz, and Mannor 2018; Ray, Achiam,
and Amodei 2019). Although existing Pareto approaches are
able to find Pareto-optimal policy effectively, they not only
overlook the constraints, but also yield imbalanced perfor-
mance in terms of rewards and costs. As shown in Fig.1(b),
when the gradients of two objective functions disagree, tradi-
tional Pareto approaches will synthesize an updating vector
which is biased to the shorter gradient. Eventually, policy
updated in such biased direction will be either too risky to be
aware of the constraint or too conservative to interact with
the environment. A more detailed theoretical explanation is
presented in Section 4.

To tackle these challenges, we propose a practical algo-
rithm for CRL named GCPO (abbr. for Gradient-adaptive
Constrained Policy Optimization). Beyond previous Pareto
methods, GCPO employs two gradient recalibration techniques.
First, the gradient rebalancing mechanism redefines the length
of gradients of each objective and ensures that the agent fo-
cuses more on the underdeveloped objective, leading to more
balanced development. Second, to achieve feasible solutions,
we use gradient perturbation to force the agent to control the
costs when the constraints are not satisfied. Experimental re-
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sults on the widely used benchmark SafetyGym (Ray, Achiam,
and Amodei 2019) demonstrate the superiority of the proposed
method. The contributions are summarized as follows:
• We theoretically analyze the obstacles to applying existing

gradient-based Pareto methods to the CRL framework.
• We design a practical algorithm for CRL named GCPO

with two novel gradient recalibration techniques.
• We conduct extensive experiments on the SafetyGym envi-

ronment, the results of which demonstrate the superiority
of GCPO compared to the commonly used baselines.

2 Related Work
Constrained Reinforcement Learning
Constrained Reinforcement Learning is a generalized RL
with additional constraints in the environment. Convention-
ally, CRL is formulated as CMDP (Altman 1999), in which
the environment returns both a reward and non-negative costs
state-wise. CRL is broadly leveraged in several real-world ap-
plications, such as networks (Hou and Zhao 2017), smart
grids (Gao et al. 2020), and robotics (Dalal et al. 2018).
Among all CRL scenarios, safety is the most common con-
straint. Safety CRL (Sui et al. 2015; Wachi et al. 2018) has
more strict demand in constraints, which also raises the prob-
lem of safe exploration(Moldovan and Abbeel 2012).

Mainstreams of the CRL literature are (i) Lagrangian meth-
ods (Borkar 2005; Tessler, Mankowitz, and Mannor 2018;
Stooke, Achiam, and Abbeel 2020); (ii) Trust Region meth-
ods (Achiam et al. 2017; Yang et al. 2019). Besides, model-
based CRL methods (Chow et al. 2017; Berkenkamp et al.
2017; Wachi and Sui 2020) are worthy of being mentioned,
which guarantee agents to explore in states which are trace-
able from known states with low costs. Notably, Chow et al.
(2018, 2019) utilizes Lyapunov functions to analyze the stabil-
ity of dynamical systems as the constraints of safety;Tessler,
Mankowitz, and Mannor (2018) introduces a penalty term
into Lagrangian function for infeasibility, thus making in-
feasible solutions sub-optimal. However, most model-based
CRL algorithms are restricted to discrete-action domains due
to their value-based modeling methods of environments.

Pareto Optimization
Besides the approaches focusing on gradients, some other
Pareto approaches attempt to solve the Pareto Optimization
problem by searching the Pareto frontier directly (Yang, Sun,
and Narasimhan 2019; Xu et al. 2020). Since this scheme is
much slower in complicated and continuous environments,
we mainly focus on gradient-based Pareto optimization meth-
ods in this paper.

At present, Pareto optimizing (Fliege and Svaiter 2000;
Désidéri 2012) provides a novel and time-economical way
to solve the Multi-Objective Optimization Problem (MOOP)
by updating in the gradient descent direction that benefits all
objectives. Such direction is determined by a linear combi-
nation of gradients of each objective, whose weights, called
Pareto weights, are computed alongside the training process.
The Pareto weights have empirical formula only when the
number of the objectives is less than four. Under such cir-
cumstances, importing Pareto approaches would bring only

O(1) additional time complexity to the original algorithm.
Sener and Koltun (2018) first adapted the Pareto optimizer
in Désidéri (2012) to deep learning by designing an approx-
imate solver of Pareto weights. Similarly, Lin et al. (2019)
improved Fliege and Svaiter (2000) in order to comply with
multi-objective optimization problems with preferred vector.

In Appendix B, we first re-elaborate the algorithms pro-
posed in Fliege and Svaiter (2000) and Désidéri (2012) under
the CRL framework. Furthermore, we provide concise proof
for their effectiveness in finding Pareto direction and show
that they are fundamentally identical in CRL problems.

3 Preliminary
Constrained Markov Decision Process
Markov Decision Process A normal Markov Decision Pro-
cess (Sutton and Barto 1998) can be described as a quadruple
(S,A, P,R). Precisely, S denotes the state set; A denotes
the action set; P is the distribution returning the probability
of transiting to s′ assuming we take action a in s, denoted
as P (s′|s, a); R : S × A × S → R is the reward function,
which delivers reward r as soon as the transition s → s′ is
accomplished. We make decisions for choosing actions by a
policy π : S → ∆A, which returns a distribution over A. In
this work, we parameterize our policy πω by a neural network
with parameters ω ∈ Rk.

In an MDP, we take an action a ∼ π from initial state
s0 ∼ ρ0 (s0) iteratively, and transit to a new state ac-
cording to P , yielding a finite or infinite trajectory τ =
(s0, a0, r1, s1, a1, r2, . . .) ∼ π. Given a policy π, we are able
to evaluate the goodness of a state or action by state-value
function V (s), action-value function Q(s, a), and advantage-
value function A(s, a):

Qπ
R (st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlrt+l

]
,

V π
R (st)=Eat [Q

π
R (st, at)] , A

π
R(s, a)=Qπ

R(s, a)− V π
R (s).

(1)

In Eq (1), γ ∈ [0, 1] is the discount factor, which weighs
the future reward and instant reward. The ultimate goal of
reinforcement learning is to discover an optimal policy π∗

for MDP by solving:

argmax
π

Es0∼ρ0,τ∼π [V
π
R (s0)] . (2)

Constrained MDP In this paper, we concentrate on CMDP
with only one kind of cost, which is consistent with the set-
tings in Achiam et al. (2017); Tessler, Mankowitz, and Man-
nor (2018); Yang et al. (2019). The main difference between
CMDP and MDP is that CMDP has an extra cost function
C : S × A × S → R. Therefore, the feedback of the en-
vironment in one transition is a vector (r, c) ∈ R2, where
c ∈ R+ is the value of cost. Similarly, we have value func-
tions for cost: V π

C (st) , Q
π
C (st, at) , A

π
C(s, a) by switching

the reward r to the cost c in Eq (1).
Formally, the policy optimization problem in CMDP is

max
π

JR(π) = Es0∼ρ0,τ∼π [V
π
R (s0)] ,

s.t. JC(π) = −Es0∼ρ0,τ∼π [V
π
C (s0)] ≥ ζ,

(3)
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where ζ < 0 denotes the predefined constraint threshold. In
Eq (3), JR(π) and JC(π) represent the objective functions of
π with respect to reward and cost, respectively. Specifically,
here we let JC(π) negative for readability.

Pareto-optimal in CRL
To understand what is a Pareto-optimal policy, we need a rule
to compare which policy is better.

Definition 3.1 (Dominate). For two policies π and π′, we
say that π dominates π′, denoted as π ≻ π′ if and only if
JR(π) ≥ JR(π

′), JC(π) ≥ JC(π
′) and at least one inequa-

tion strictly holds.

By Definition 3.1, we know that a policy π is better than
π′ when π is not worse than π′ over reward and cost, and
outperforms π′ on at least one objective.

Definition 3.2 (Pareto-optimal Policy). We call a policy πω

global Pareto-optimal if and only if ∀ω′ ∈ Rk, πω′ ≻ πω

is invalid, i.e. ∀ω′ ∈ Rk, πω′ ⊁ πω. Similarly, we call a
policy πω local Pareto-optimal if and only if there exists
a neighborhood U ⊂ Rk of ω s.t. ∀ω′ ∈ U, πω′ ≻ πω is
invalid, i.e. ∀ω′ ∈ U, πω′ ⊁ πω .

Without additional specification, we use Pareto-optimal
referring to local Pareto optimal hereafter. A local Pareto-
optimal policy is guaranteed to be a global Pareto-optimal
policy only if JR(πω) and JC(πω) are concave over ω in Rk.
However, this assumption is too strict to be valid in most
Deep RL setting.

From the angle of optimizing multi-targets, we notice that
if π is a Pareto-optimal policy we cannot advance any objec-
tive function while maintaining the performance of the other.
This leads to the definition of Pareto direction:

Definition 3.3 (Pareto direction). Given a parameterized
policy πω, if a vector v ∈ Rk is an updating direction of
ω which can boost at least one J(πω) without harming the
other J(πω), then v is a Pareto direction of πω. Namely, if
⟨∇ωJR(πω),v⟩ ≥ 0, ⟨∇ωJC(πω),v⟩ ≥ 0 and at least one
inequation strictly holds, then we call v a Pareto direction
of π, where ⟨ , ⟩ is the standard inner product.

Pareto-optimal Searching To search for a Pareto-optimal
policy, the most straightforward idea is to design an itera-
tion ω′ = ω + η(ω)∆(ω), where ∆(ω) is a Pareto direc-
tion of ω, and η(ω) ∈ R+ is the step size. With appro-
priate η, we could ensure πω′ ≻ πω at each update un-
til πω is Pareto-optimal. Intuitively, ∆(ω) should be a lin-
ear combination of gradients of JR(πω) and JC(πω), i.e.
∆(ω) = βR∇ωJR(πω) + βC∇ωJC(πω), where βR and βC

are called Pareto weights.
Both Fliege and Svaiter (2000) and Désidéri (2012) are

established works for Pareto-optimal searching. Under the
problem settings of CRL, the Pareto weights are obtained in
Désidéri (2012) by solving the following Quadratic Program-
ming (QP):

min
βR,βC∈R

||βR∇ωJR(πω) + βC∇ωJC(πω)||22

s.t. βR, βC ≥ 0, βR + βC = 1.
(4)

(a) (b) (c)

Figure 1: An illustration of Pareto direction ∆(ω).
(a): ∆(ω) generalizes both gradients when they have similar
directions.
(b): ∆(ω) is biased to the shorter gradient when ∇ωJR(πω)
and ∇ωJC(πω) disagree in direction.
(c): ∆(ω) coincides with one of the gradients when the
perpendicular vector does not lie between ∇ωJR(πω) and
∇ωJC(πω)

Figure 1 illustrates the geometric relationship among
∇ωJR(πω),∇ωJC(πω) and ∆(ω) obtained by solving Prob-
lem (10) in three cases. If we overlap the starting points of
∇ωJR(πω) and ∇ωJC(πω), then ∆(ω) should be the vector
that starts from the same point and ends on the line segment
determined by endpoints of ∇ωJR(πω) and ∇ωJC(πω) as a
result of the constraints in Problem (10). Since we minimize
the length of ∆(ω), ∆(ω) is normally the perpendicular vec-
tor of ∇ωJR(πω) − ∇ωJC(πω) (See Figure 1 (a) and (b)).
However, it coincides with one of the gradient vectors when
the perpendicular vector does not lie between ∇ωJR(πω) and
∇ωJC(πω) as shown in Figure 1 (c).

Connections to Prior CRL Works
As aforementioned, the mainstream approaches to CRL prob-
lems could be grouped into two genres: (i) Lagrangian meth-
ods (Borkar 2005; Tessler, Mankowitz, and Mannor 2018;
Stooke, Achiam, and Abbeel 2020); (ii) Trust Region meth-
ods (Achiam et al. 2017; Yang et al. 2019). Lagrangian meth-
ods combine primal reward-oriented and cost-oriented objec-
tives into one dual min-max problem, converting CMDPs into
unconstrained MDPs, while Trust Region methods attempt
to determine a trust region in the parameter space, where
policies updated inside would not violate the constraints.

Prior CRL algorithms fundamentally aim at finding Pareto-
optimal policy (See proofs in Appendix C), which unifies our
work and existing works in methodology. Nevertheless, not
every Pareto-optimal policy makes sense in a CMDP. What
we truly need is a Pareto-feasible policy:

Definition 3.4 (Pareto-feasible Policy). We call a policy πω

Pareto-feasible if πω is Pareto-optimal while satisfying the
constraint of cost.

Figure 2 (a), (b), and (c) illustrate how prior CRL algo-
rithms search for Pareto-optimal policy. In Figure 2 (a), we
scalarize (r, c) per transition with random or preset weights
linearly. With a diverse selection of weights, the final policy
may be different. Under such conditions, the searching route
of linear scalarization could only reach a Pareto-feasible pol-
icy with certain weights (route 2). As shown in Figure 2 (b),
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Figure 2: An illustration of how various methods find Pareto-
optimal policies. (a) Linear scalarization; (b) Lagrangian
methods; (c) CPO; (d) GCPO.

Lagrangian methods ensure that JC(π) is stable near the
threshold but they may fail to find the Pareto-optimal pol-
icy because they can be too conservative to explore so that
they stick to a feasible solution and fail to reach Pareto-
optimal(route 2). For CPO (Achiam et al. 2017) in Fig-
ure 2 (c), it is able to maintain the policy within the fea-
sible region while increasing JR(π). Yet, it may violate the
constraint when the initial policy is too far from the feasi-
ble region (route 2). Results in experiments and theoretical
proofs in Appendix C could corroborate that the interpreta-
tion above is not heuristic. Figure 2 (d) illustrates that our
method (GCPO) can eventually find a Pareto-feasible policy,
although not every step is a Pareto direction.

4 Methodology
In this section, we first introduce the challenges of apply-
ing Pareto methods in CRL and theoretically explain what
triggers these disadvantages. Then we present a detailed state-
ment about two gradient recalibration mechanisms used in
our algorithm (GCPO) and how they effectively overcome
the disadvantages.

Challenges of Pareto-optimal Searching in CRL
Although the existing Pareto methods can find Pareto-optimal
policies effectively, we found two main disadvantages from
practice when applying them in CRL.

First, existing Pareto-optimal algorithms improve all ob-
jectives with a consistent extent (See Theorem 4.2), leading
to an imbalanced performance of JR(πω) and JC(πω). As
shown in Figure 1 (b), when the gradients of the objective
functions of reward and cost disagree, ∆(ω) determined by
Problem (10) is biased to the shorter gradient (i.e.∇ωJR(πω))
in direction. This fact implies that updating in such direc-
tion would focus on reward, which is already the better-
optimized objective compared to cost. In extreme cases, if
Pareto-optimal searching approaches or reaches a Pareto-
optimal policy which is not feasible, it has no chance to

escape and fails to find a Pareto-feasible policy. Generally,
policy updated by this biased gradient will be either too risky
to be aware of the constraint of cost or too conservative to
interact with the environment, which eventually generates an
imbalanced performance in rewards and costs.

Second, existing Pareto-optimal approaches overempha-
size the simultaneous growth of two objectives. Although
optimizing both objectives is significant in MOOP, it pre-
vents the agent from satisfying the constraint in CRL. In fact,
the agent in CRL needs to sacrifice JR(πω) for the improve-
ment of JC(πω) when the constraint is violated, which is not
possible in traditional Pareto methods.

Gradient Recalibration Mechanisms
Gradient Rebalancing This is the corresponding improve-
ment for the imbalanced development. To tackle this issue,
we should modify ∆(ω) to achieve a balanced improvement
in reward and cost at each iteration of policy parameters. Mo-
tivated by recent works about gradient normalization (Chen
et al. 2018; Mahapatra and Rajan 2020), we reform Prob-
lem (10) as:

min
βR,βC∈R

||βR∇N
ω JR(πω) + βC∇N

ω JC(πω)||22,

s.t. βR, βC ≥ 0, βR + βC = 1,
(5)

where ∇N
ω JR(πω) and ∇N

ω JC(πω) are rebalanced gradients
defined as:

∇N
ω JR(πω) =

∇ωJR(πω)

||∇ωJR(πω)||22
,

∇N
ω JC(πω) =

∇ωJC(πω)

||∇ωJC(πω)||22
.

(6)

In Eq (5), the length of rebalanced gradient vectors becomes
the reciprocal of the original length.With solution β∗

N =
(βN

R , βN
C ) ∈ R2

+, we can find a better updating direction
comparing to the Pareto direction derived from Problem (10):
Lemma 4.1. If πω is not Pareto-optimal, then ∆N (ω) :=
βN
R∇N

ω JR(πω)+ βN
C ∇N

ω JC(πω) is a Pareto direction of πω .
Theorem 4.2. Suppose the iteration paradigm is ω′ =
ω + η(ω)∆(ω) and η(ω) → 0. Then:
(i) if we use ∆(ω) derived from Problem (10), the improve-
ments in reward and cost are consistent. Specifically, when

β∗
R ∈ (0, 1),

JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→ 1.

(ii) if we use ∆N (ω) derived from Problem (5), the improve-
ments in reward and cost are proportional to the square
length of the corresponding gradient. Specifically, when

βN
R ∈ (0, 1),

JR(πω′)− JR(πω)

JC(πω′)− JC(πω)
→

||∇ωJR(πω)||22
||∇ωJC(πω)||22

.

The proofs of Lemma 4.1 and Theorem 4.2 are provided
in Appendix D.
Remark. Theorem 4.2 has two statements: (i) ∆(ω) derived
from Problem (10) would lead to imbalanced development.
Since the scales of ∇ωJR(πω) and ∇ωJC(πω) are different
in most realistic scenes, the ratio equal to 1 represents im-
balance. Moreover, if one objective is near-optimal, then this
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ratio will restrict the optimizing space of the other objective.
(ii) ∆N (ω) derived from Problem (5) would focus more on
the objective with longer gradient vector, which implies this
objective is farther from the optima. Meanwhile, ∆(ω) could
update parameters effectively even when one of the objectives
is near-optimal.

According to Theorem 4.2, updating in the direction of
∆N (ω) enables the agent to focus more on the objective
which is underdeveloped.

Gradient Perturbation This is the corresponding tech-
nique that forces the agent to sacrifice rewards to satisfy the
constraint. A naive idea is only optimizing the objective of
costs when the constraint is violated. But this is both inef-
ficient and not realistic because: (i) focusing only on costs
may drive the agent to be too conservative to explore; (ii)
sometimes optimizing rewards and costs are not competitive,
thus absolutely ignoring rewards is unwise.

We find that manipulating Pareto weights can achieve the
goal of sacrificing rewards when necessary. If current Pareto
direction is unable to improve the performance of cost to a
desirable extent, we manage to perturb the updating gradient
∆N (ω) by raising βN

C . Motivated by PPO (Schulman et al.
2017), we design a mechanism to control Pareto weight:
given a clipping threshold t ∈ [0, 1], the original Pareto
weight βN

R will be clipped to min(t, βN
R ). Since βN

R +βN
C =

1, clipping βN
R spontaneously brings an increment in βN

C .
To choose t with efficiency, we devise a heuristic mech-

anism which keeps the step size η(ω) as a constant and
changes t according to the performance of rewards and costs.
If the improvement of cost in one iteration is not good enough,
we decrease t by a certain quantity to make a stricter thresh-
old of clipping. Similarly, if the performance of reward has
not been improved within certain epochs, we increase t by
an identical quantity. We introduce how GCPO trains an
agent and modifies t in a pseudo-code, which can be found
in Appendix E.

With fixed η(ω) → 0, we can deduce a lower bound for
the growth of JC(π):
Theorem 4.3 (The lower bound of JC(π) improvement).
Given the parameter updating paradigm ω′ = ω +
η(ω)∆N (ω) and a clipping threshold t, we have a lower
bound for JC(π′

ω)− JC(πω):

JC(πω′)− JC(πω) ≥ η(ω)[t||∇ωJC(πω)||22⟨∇N
ω JR(πω)

−∇N
ω JC(πω),∇N

ω JC(πω)⟩+ 1]− CDmax
KL (πω′ , πω) ,

(7)

where C=4ϵγ/(1−γ)2, ϵ=maxs|Ea∼πω′ [A
πω (s, a)] |. And

this bound is strictly positive related to t.
Remark. Theorem 4.3 mainly explains that the gradient
perturbation mechanism ensures enough Pareto weight on
the underdeveloped objective of cost when βN

R violates the
clipping threshold. Moreover, although ∆N (ω) after pertur-
bation may not be a Pareto direction, it ensures a lower
bound for the improvement on JC(π), which is vital to satisfy
the constraint of cost.

The proof of Theorem 4.3 is provided in Appendix D. We
also prove that the lower bound is tighter than the situation

without clipping. Specifically, this theorem still holds if we
swap JC with JR.

Practical Implementation
Our method is adaptable and can be applied with any policy-
gradient-based RL algorithm. In this paper, we use Actor-
critic-based PPO (Schulman et al. 2015) as the base model
of GCPO. To estimate value functions for both reward and
cost, we have two critic networks to approach Qπ

R (st, at)
and Qπ

C (st, at) separately. Following PPO framework,
∇ωJR(πω) and ∇ωJC(πω) are determined as:

∇ωJR(πω) =
∂
∑

s,a∼τ [A
πold

R (s, a)]

∂ω
,

∇ωJC(πω) =
∂
∑

s,a∼τ [−Aπold

C (s, a)]

∂ω
.

(8)

5 Experiments
To validate our proposed algorithm, we conduct experiments
on SafetyGym (Ray, Achiam, and Amodei 2019), a CRL
benchmark. We first provide an overview of the tasks and
baselines involved in the experiments, and then we demon-
strate the significance of GCPO by responding to the follow-
ing questions:

• Q1: How does GCPO perform compared to the baselines?
• Q2: How does GCPO adapt to tasks of different levels

and cost thresholds?
• Q3: How do the two gradient recalibration mechanisms

affect the performance of GCPO respectively?

Environmental Setup
Experiments are conducted in three tasks under the environ-
ment SafetyGym :

• Goal: In this task, the agent wins rewards by reaching the
destinations (green cylinders) and gains cost for passing
traps (blue circles) and hitting vases (cyan cubes).

• Button: In this task, the agent wins rewards by pushing a
stationary button (orange balls) and gains cost for passing
traps (blue circles) and hitting obstacles (purple cubes)
with a fixed moving trajectory.

• Push: In this task, the agent wins rewards by pushing
a crossing workpiece (a yellow column) to a specific
destination (green cylinders) and gains cost for passing
traps (blue circles) and hitting towers (Blue cylinders).

For each task, there are two difficulty levels: level-2 envi-
ronments have more cost-consuming items than level-1 en-
vironments, making it harder to satisfy the constraint. Each
environment is simulated in Mujoco (Todorov, Erez, and
Tassa 2012) with a point-based agent.

Involved Baselines
We compare GCPO with baselines from three domains:
(i) traditional policy-based RL methods (TRPO (Schul-
man et al. 2015), PPO (Schulman et al. 2017));
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Model Goal-Lvl 1 Goal-Lvl 2 Button-Lvl 1 Button-Lvl 2 Push-Lvl 1 Push-Lvl 2

Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret

TRPO 56.14 25.12 213.17 23.58 138.36 25.83 172.61 25.59 47.11 7.90 75.16 4.69
PPO 58.09 24.99 198.65 22.27 150.12 26.01 188.17 23.93 67.12 3.41 71.25 2.21

TRPOL 25.47 17.03 25.27 5.49 32.59 8.18 22.51✓ 3.73 26.31 4.19 23.38✓ 1.30
PPOL 14.21 ✓ 13.58 31.66 1.15 23.01✓ 4.84 17.99✓ 2.38 40.20 2.15 17.27✓ 1.52
CPO 42.52 23.21 60.11 14.37 80.25 18.25 74.43 16.78 38.94 7.21 29.37 1.84

MGDA 40.15 25.61 60.91 7.31 54.62 6.02 11.20✓ 1.99 16.93✓ 0.80 29.77 0.89

GCPO 23.12 ✓ 21.86 20.84 ✓ 8.39 22.67 ✓ 9.38 23.83 ✓ 6.44 17.17 ✓ 2.39 20.92 ✓ 2.98

Table 1: Results of GCPO and other baselines with a constraint of cumulative cost < 25. The cumulative costs below the
threshold are followed by a check mark.

Model Goal-Lvl 1 Goal-Lvl 2 Button-Lvl 1 Button-Lvl 2 Push-Lvl 1 Push-Lvl 2

Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret

TRPOL 28.01✓ 24.57 50.15 8.72 48.97✓ 12.90 69.21 7.27 44.72✓ 6.13 54.41 2.09
PPOL 26.12✓ 25.11 63.02 4.73 73.15 10.65 62.02 4.14 33.62✓ 3.67 41.74✓ 1.62

GCPO 40.68✓ 25.29 48.41✓ 16.38 46.57✓ 14.66 48.81✓ 13.89 44.71✓ 4.15 43.03✓ 2.52

Table 2: Results of GCPO and other baselines with a constraint of cumulative cost < 50.

Model Goal-Lvl 1 Goal-Lvl 2 Button-Lvl 1 Button-Lvl 2 Push-Lvl 1 Push-Lvl 2

Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret Cost Ret

GCPO-R 30.80 13.21 50.57 1.51 35.29 5.94 17.21✓ 2.18 8.89✓ 0.75 17.75✓ 1.61
GCPO-P 45.22 17.89 42.49 2.23 52.05 3.90 54.74 3.50 31.11 1.36 28.77 2.25

GCPO 23.12✓ 21.86 20.84✓ 8.39 22.67✓ 9.38 23.83✓ 6.44 17.17✓ 2.39 20.92✓ 2.98

Table 3: Ablation study with a constraint of cumulative cost < 25.

(ii) Constrained RL methods (TRPO-Lagrangian, PPO-
Lagrangian, CPO (Achiam et al. 2017)); (iii) Pareto ap-
proach (MGDA (Désidéri 2012)). We consider both mean
reward and mean cost as two metrics to evaluate the models.

For all methods we conduct 5 runs (1000 episodes each,
10000 steps each episode) with different random seeds and
5× 100 episodes of test runs on another 5 random seeds. The
threshold for cumulative cost is 25, as recommended in Ray,
Achiam, and Amodei (2019). For reproducibility, a detailed
statement about the architectures and hyper-parameters is
presented in Appendix F.

Comparison Analysis (Q1)
Results of the final tests are listed in Table 1 and learning
curves are provided in Figure 3 . To be clear, what we truly
need in CRL are feasible policies, therefore any policy that
fails to satisfy the constraint is considered inferior to any
feasible policy.

Baselines analysis
• Lagrangian methods can find feasible or near-feasible

policies in most tasks, but their performances on Lvl 2
tasks are unsatisfactory. This fact shows that Lagrangian
methods are too conservative in difficult environments.

• CPO fails to find feasible or even near-feasible policy.
This happens because reaching the feasible region in Safe-
tyGym is challenging.

• As a deputy of existing Pareto methods, MGDA’s final
policy not only has extremely imbalanced performance in
reward and cost but also fails to meet the constraint except
in Button-Lvl 2 and Push-Lvl 1, which coincides with the
defects of Pareto methods mentioned in Section 4.

Both Table 1 and Figure 3 confirm that GCPO can find a
feasible policy in all tasks while even Lagrangian methods
fail to meet the threshold in some Lvl 2 tasks. Moreover, in
all tasks, our method outperforms all baselines which can
find feasible policies.

In Figure 3, the learning curves illustrate that GCPO’s
performance on reward improves quickly at the beginning
of training and then decreases apparently. The decline in
reward indicates the effectiveness of gradient perturbation to
sacrifice reward for better performance on cost.

Adaptability Analysis (Q2)
To show the adaptability of GCPO, we compare GCPO with
Lagrangian methods under another cost threshold (Table 2).

In Table 2, GCPO loses to TRPOL in Push-Lvl 1 and then
gains its advantage back in Push-Lvl 2. Here we provide an
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Figure 3: Reward and cost curves in all 6 tasks. The dashed line in cost curves represents the threshold. All lines are averaged
over 5 runs and shaded areas indicate one standard deviation.

insight for this interesting phenomenon: the cost threshold
in Table 2 is 50, which allows Lagrangian methods to satisfy
the constraint more easily and penalizes our recalibration
techniques–to sacrifice reward for cost. As the difficulty level
upgrades, GCPO performs clearly better than TRPOL, show-
ing that GCPO can handle difficult tasks as well as easy ones.
GCPO underperforms TRPOL in only one task out of all
baselines and 6 tasks, which cannot deny its superiority.

In Table 1 and Table 2, GCPO shows an obvious advan-
tage compared to Lagrangian methods in tasks of different
levels and thresholds. Moreover, as the threshold goes from
25 to 50, the cumulative cost and reward of GCPO both in-
crease, indicating that GCPO adapts effectively to the relaxed
constraint by sacrificing the performance of cost for reward.

Ablation Study (Q3)
We make an ablation study by GCPO-R (without gradient
rebalancing) and GCPO-P (without gradient perturbation).

As shown in Table 3, GCPO has significant advantages
in both reward and cost performance compared to the ab-
lation baselines, indicating that both gradient recalibration
techniques are vital and effective for GCPO.

The overall performance of GCPO-R is much better than
GCPO-P. We argue that this happens because gradient per-
turbation puts a hard restriction to Pareto weights, which is
more effective in improving the performance of cost.

6 Conclusion
In this paper, we mainly introduce a novel CRL paradigm
named GCPO from the perspective of Pareto optimization.
We theoretically analyze that the main challenges of applying
existing Pareto approaches in CRL are imbalanced perfor-
mance over rewards and costs and incapability of reaching
Pareto-feasible. Therefore we devise two gradient recalibra-
tion techniques. Specifically, gradient rebalancing redefines
the calculation of Pareto weights and ensures that the agent
focuses more on the underdeveloped objective while gradi-
ent perturbation aims to meet the constraints by temporarily
sacrificing rewards. Experiments on SafetyGym validate the
superiority of GCPO over the commonly used baselines and
demonstrate its adaptability to tasks of different levels and
cost thresholds. In addition, the ablation study verifies the
necessity of the two gradient recalibration techniques.
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