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Abstract

The Area Under the ROC Curve (AUC) is an important model
metric for evaluating binary classifiers, and many algorithms
have been proposed to optimize AUC approximately. It raises
the question of whether the generally insignificant gains ob-
served by previous studies are due to inherent limitations of
the metric or the inadequate quality of optimization.
To better understand the value of optimizing for AUC,
we present an efficient algorithm, namely AUC-opt, to
find the provably optimal AUC linear classifier in R2,
which runs in O(n+n− log(n+n−)) where n+ and n−
are the number of positive and negative samples respec-
tively. Furthermore, it can be naturally extended to Rd in
O((n+n−)

d−1 log(n+n−)) by calling AUC-opt in lower-
dimensional spaces recursively. We prove the problem is NP-
complete when d is not fixed, reducing from the open hemi-
sphere problem.
Experiments show that compared with other methods, AUC-
opt achieves statistically significant improvements on be-
tween 17 to 40 in R2 and between 4 to 42 in R3 of 50 t-SNE
training datasets. However, generally the gain proves insignif-
icant on most testing datasets compared to the best standard
classifiers. Similar observations are found for nonlinear AUC
methods under real-world datasets.

1 Introduction
The Area Under the ROC Curve (AUC) (Hanley and Mc-
Neil 1982) is an important model evaluation metric that can
be applied to a wide range of learning tasks such as binary
classification (Bradley 1997), bipartite ranking (Freund et al.
2003), and recently fairness learning (Kallus and Zhou 2019;
Vogel et al. 2021). It is a generally more reliable quality
measure than the accuracy when the dataset is highly im-
balanced, which often is the case in real-world problems.
Multiple studies (Cortes and Mohri 2004; Joachims 2005)
argue that optimizing classifiers for AUC may result in bet-
ter classifiers than minimizing error rates.

A wide variety of algorithms (Provost and Fawcett 2001;
Ferri, Flach, and Hernández-Orallo 2002; Yan et al. 2003;
Cortes and Mohri 2004; Rakotomamonjy 2004; Herschtal
and Raskutti 2004; Brefeld and Scheffer 2005; Joachims
2005; Calders and Jaroszewicz 2007; Qin, Liu, and Li 2010;
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Le et al. 2010; Zhao et al. 2011; Gao et al. 2013; Ying,
Wen, and Lyu 2016; Eban et al. 2017; Liu et al. 2020) have
been proposed to optimize AUC approximately under dif-
ferent learning settings. Typically, these methods relax the
original nonconvex nondifferentiable objective to either con-
vex or differentiable. Despite these advances, there exists no
strong evidence that these algorithms generally perform bet-
ter than standard classifiers. Empirical observations (Rako-
tomamonjy 2004; Joachims 2005) from previous indicate
generally minor and statistically insignificant gains on par-
ticular datasets. This vagueness makes the question whether
the observed results are due to the inherent limitations of the
metric or the inadequate quality of optimization.

To better understand the virtues of optimizing for AUC,
we investigate it from both computational and algorithmic
viewpoints. Although AUC optimization is often reported to
be NP-hard for linear hypothesis classes (Gao et al. 2013;
Gao and Zhou 2015; Gultekin et al. 2020), we show that it
is polynomial-time solvable if the data dimension d is fixed.
We also prove that it is NP-complete if d is not fixed in ad-
vance. The key idea of our proof is a reduction from the open
hemisphere problem (Johnson and Preparata 1978).

With the hope of polynomial-time solvable of linear clas-
sifiers, we present an efficient algorithm, namely AUC-opt,
that can provably optimize AUC in R2. A key observation
is that given any n training samples on the plane, the num-
ber of “interesting” classifiers is at most O (n+n−) where
n+ and n− are the number of positive and negative sam-
ples respectively. Inspired by the idea of the topological
sweep (Edelsbrunner and Guibas 1989), we calculate the
AUC for the “minimal” slope once and then iterate through
all other slopes by an ascending order using only constant
update-time per iteration, yielding an O(n+n− log n) algo-
rithm. Furthermore, our method can be naturally extended
to Rd in O((n+n−)d−1 log(n)) by calling AUC-opt in low-
dimensional spaces recursively. This algorithm as an ex-
ponential depends on d and hence will be impractical on
large real-world datasets where samples are usually high-
dimensional. Our goal here is not a general-purpose al-
gorithm but to address whether the observed limitations
of previous AUC optimizers result from inadequate op-
timization of a convex function or are an inherent result
of the AUC objective criteria. Doing such experiments re-
quires the exact optimization of AUC-opt, even if we are
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Figure 1: The popular AUC classifier SVM-Perf (Joachims
2005) fails to find a decent AUC separator on an adversar-
ial example (left), performing similar to Logistic Regres-
sion (LR). The corresponding ROC curves and AUC scores
(right) for these and our AUC-opt, which beats SVM-Perf
and LR by a large margin.

limited to small data sets in low dimensions.
Fig. 1 presents a toy example as an illustration where there

are significant improvements. To further validate AUC-opt,
we conduct experiments on 50 real-world datasets projected
onto both R2 and R3 by using t-SNE (Maaten and Hinton
2008). Experiments comparing AUC-opt against seven lin-
ear classifiers show that AUC-opt achieves statistically sig-
nificant improvements on between 17 to 40 of 50 t-SNE
datasets at the training stage. To summarize, our main con-
tributions are:

• For the first time, we prove the linear AUC optimization
problem is NP-complete when n and d are arbitrary but
polynomial-time solvable for fixed d. A key to our proof
is a reduction of the open hemisphere problem. Although
NP-hard of the problem was often reported, we have not
identified proof in the literature.

• We then present AUC-opt, to find the provably
optimal AUC linear classifier in R2. It runs in
O(n+n− log(n+n−)), which is optimal under the alge-
braic computation tree model (Ben-Or 1983). It can be
naturally extended to Rd in O((n+n−)d−1 log(n+n−))
by decomposing original problem into same subproblems
of lower dimensional spaces and calling AUC-opt recur-
sively.

• Experiments comparing AUC-opt against seven other
classification methods show that AUC-opt achieves sig-
nificant improvements on between 17 to 40 in R2 and on
between 4 to 42 in R3 of 50 t-SNE training datasets. But
generally, the gain proves insignificant on most testing
datasets compared to the best standard classifiers. Em-
pirical results suggest that approximate AUC classifiers
have space to improve.

• Similarly, empirical findings on nonlinear classifiers fur-
ther suggest that the partial loss of significance of ap-
proximate AUC optimizers may be due to imperfect ap-
proximation, thus having space to improve current ap-
proximate algorithms.

Related Work
AUC optimization. In the seminal work, Cortes and Mohri
(2004) shows that AUC is monotonically increasing with

respect to the accuracy and is equal to the accuracy when
n+ = n−. Yet, because the variance is not zero, opti-
mizing directly for AUC may still yield better AUC val-
ues than that of standard classifiers. Many AUC optimiza-
tion methods have been proposed over past years (Yan et al.
2003; Herschtal and Raskutti 2004; Brefeld and Scheffer
2005; Joachims 2005; Rakotomamonjy 2004; Calders and
Jaroszewicz 2007; Ying, Wen, and Lyu 2016; Yang and Ying
2022). These approaches all focus on approximation due to
the nonconvex and nondifferentiable of the AUC objective.
To avoid this, Yan et al. (2003) propose to replace the 0-1
objective by a sum of differentiable sigmoid so that a gradi-
ent descent-based method can be applied. Joachims (2005)
relaxes the problem to a convex one so that SVM can be
used (see also (Rakotomamonjy 2004; Brefeld and Schef-
fer 2005)). A study of Rakotomamonjy (2004) indicates
that optimizing SVM objective is also attend to optimize
AUC (Rakotomamonjy 2004; Steck 2007). More recently,
methods for optimizing AUC are studied under the online
learning setting (Zhao et al. 2011; Gao et al. 2013; Ying,
Wen, and Lyu 2016; Liu et al. 2018). However, performance
gains are insignificant found in these studies, and there is a
lack of comparison between AUC optimizers and standard
methods. Different from these previous works, our goal is to
optimize AUC score without approximation.
Bipartite ranking. The AUC optimization is closely related
with the bipartite ranking problem (Freund et al. 2003; Le
et al. 2010; Qin, Liu, and Li 2010; Rudin and Wang 2018)
where minimizing the pairwise misranking error is equiva-
lent to maximize the AUC score. For example, RankBoost
(Freund et al. 2003), a popular ranking algorithm, implic-
itly optimizes AUC as proved in (Cortes and Mohri 2004).
Kotłowski, Dembczyński, and Hüllermeier (2011) consider
maximizing AUC as a minimization of the rank loss. Re-
cently, Rudin and Wang (2018) propose to directly optimize
rank statistics by using mixed-integer programming. More
works can be found in Menon and Williamson (2016) and
references therein.
Computational complexity results. Although NP-hard of
the problem is often cited as folklore (Gao et al. 2013; Gao
and Zhou 2015; Gultekin et al. 2020), we have not identified
proof in the literature. Several NP-hardness results have pre-
viously been shown for both classifications of 0-1 loss and
ranking (Feldman et al. 2012; Ben-David, Eiron, and Long
2003; Cohen, Schapire, and Singer 1998). Cohen, Schapire,
and Singer (1998) show that finding the optimal ranking
is NP-complete. Although Joachims (2005) shows that the
AUC optimization can be reformulated as a classification
problem, a proof of NP-hardness from it does not seem to
follow naturally. Instead, we prove the NP-hardness by the
reduction from the open hemisphere problem.

Paper Outline and Notations
The remainder of this paper is organized as follows. We first
present preliminaries in §2. The proof of NP-hardness of
AUC optimization is given in §3. AUC-opt and its gener-
alization to high-dimensional space are given in §4. We em-
pirically evaluate AUC-opt and then make our conclusion
in §5 and §6, respectively. Throughout this paper, we re-
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strict our attention to optimize AUC in a linear hypothesis
class H i.e. f ∈ H := {w : w ∈ Rd}. Given a set of
n training examples D := {(xi, yi) : i ∈ {1, 2, . . . , n}}
where xi ∈ Rd and yi ∈ {±1}, we rewrite D as a union
of D+ and D− where D+ is the set of positive samples
written as {(x+

1 , y
+
1 ), . . . , (x

+
n+

, y+n+
)} and D− is the set

of negative samples written as {(x−
1 , y

−
1 ), . . . , (x

−
n−

, y−n−
)},

respectively. Clearly, n = n+ + n− and D = D+ ∪
D−. xij is denoted as j-th entry of vector xi, i.e. xi =
[xi1, xi1, . . . , xid]

⊤.

2 Preliminaries
We first review the definition of AUC statistic and give the
problem formulation under linear hypothesis H. We discuss
that the problem is efficiently solvable when D is separable.

Definition 1 (AUC Statistic (Clémençon et al. 2008)). Let
(X,Y ) and (X ′, Y ′) be two pairs of random variables in
Rd×{±1} following the same unknown distribution. Denote
the probability of an event A condition on {Y = 1, Y ′ =
−1} as P{A|Y = 1, Y ′ = −1}. Given a score function
f : Rd 7→ R, the AUC statistic is

AUC(f) := P{f(X) > f(X ′)|Y = 1, Y ′ = −1}.

Statistically, AUC(f) is the probability that a randomly
chosen positive sample is ranked by f higher than a ran-
domly chosen negative one (tie-breaks lexicographically). It
is equivalent to the Wilcoxon statistic (Hanley and McNeil
1982). Given D, our linear AUC optimization is empirically
defined as the following.
Problem 1 (Linear AUC Optimization (LAO)). Given the
dataset D and the hypothesis class H := {w : w ∈ Rd},
the LAO problem is to find a w ∈ H such that the empirical
AUC score is maximized, that is

(LAO) w⋆ ∈ argmax
w∈H

n+∑
i=1

n−∑
j=1

1[w⊤x+
i > w⊤x−

j ]

n+n−
, (1)

where the indicator 1[A] = 1 if A is true 0 otherwise.

Due to the non-convexity of 0-1 loss in LAO, directly op-
timizing (1) is challenging. Notice that w⋆ is not unique as
p + αw⋆ with α > 0 and p ∈ R is always an optimizer.
Although (1) is hard to optimize, if D is linearly separable,
that is, there exists a w such that for any (x+

i , y
+
i ) ∈ D+,〈

w,x+
i

〉
≥ 0 and for any (x−

j , y
−
j ) ∈ D−,

¨
w,x−

j

∂
< 0,

then one can always find a w such that AUC(w) = 1 in
polynomial-time (Elizondo 2006; Yogananda, Murty, and
Gopal 2007) by using Perceptron (Freund and Schapire
1999) or linear programming techniques. For example, the
worst time complexity of an iterative reduction algorithm is
O(nr3) where r ≤ min(n, d + 1) (Elizondo 2006). In the
rest of this paper, we assume D is not linearly separable.

Although previous studies have claimed the NP-hardness
of LAO (Gao et al. 2013; Gao and Zhou 2015; Gultekin
et al. 2020), no previous literature proves it even for the lin-
ear classifier case. It motivates us to prove the NP-hardness
under the linear hypothesis.

3 NP-hardness of LAO
This section proves the LAO problem under the linear
hypothesis is NP-complete if n and d are not fixed but
polynomial-time solvable when d is fixed. We first intro-
duce the open hemisphere problem and then prove the NP-
complete by a reduction from it.
Definition 2 (Open hemisphere). Given the unit sphere
Sd−1 := {s ∈ Rd : ∥s∥2 = 1}, the open hemisphere of
w is defined as a set {s ∈ Sd−1 : ⟨w, s⟩ > 0}.
Problem 2 (Open hemisphere problem (Johnson and
Preparata 1978)). Let K := {s1, s2, . . . , st} be a subset of
Qd ∩ Sd−1 where Q is the set of rationals. The open hemi-
sphere problem is to find an open hemisphere such that it
contains a largest subset of K, that is,

argmax
w∈Rd

|{si ∈ K : ⟨w, si⟩ > 0}|.

To ease our analysis, we formulate the open hemisphere
problem as a feasibility problem. Given positive integers d,
m and a set K, does there exist a hyperplane w such that at
least m inequalities are satisfied, that is,

(OH) |{si ∈ K : ⟨w, si⟩ > 0}| ≥ m ? (2)

Lemma 1 (NP-complete of OH (Johnson and Preparata
1978)). Given positive d, n, m, and K ⊆ Qd∩Sd−1, the fea-
sibility of OH problem defined in (2) is NP-complete when
both n and d are not fixed.

The above lemma shows the fact that OH is NP-complete.
Based on this lemma, we have the following main theorem.
Theorem 1 (NP-complete of LAO). Consider the linear
AUC optimization problem defined in Problem 1, if D is not
linear separable, LAO is NP-complete when both n and d
are arbitrary.

Before proving Thm. 1, we first reformulate the LAO
problem as a feasibility problem and then show this feasi-
bility problem is NP-complete.
Problem 3 (The feasibility problem of LAO). Given a finite
dataset D, a set of linear classifiers H, and positive integers
d, t as an input, the feasibility problem of LAO is to ask, does
there exist w ∈ H such that

n+∑
i=1

n−∑
j=1

1[w⊤x+
i > w⊤x−

j ] ≥ t ? (3)

Proof Sketch.1 Without loss of generality, let us assume
the problem in Qd. To prove the NP-complete, we only need
to show that the feasibility of LAO defined in Problem 3 is
both in NP and is NP-hard by a reduction from OH. First of
all, Problem 3 is in NP. Given any w ∈ H, one can find a
polynomial-time verifier such that it finishes in O(npnqd)
time, and each certificate has a polynomial length for the
input.

To show Problem 3 is NP-hard, given any instance of the
OH problem, the goal is to prove that an instance of (3) can
solve it. To do this, we construct the training dataset D so

1A detailed proof is in the supplementary.
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that an instance of Problem 3 can be defined. Notice that
one can rewrite vectors in K and construct new vectors x+

i

and x−
1 as the following

s1 = (s1 + x−
1 )︸ ︷︷ ︸

x+
1

−x−
1 , . . . , st = (st + x−

1 )︸ ︷︷ ︸
x+

t

−x−
1 . (4)

The set of training labels is constructed such that
y+1 , y

+
2 , . . . , y

+
t are all ones and y−1 = −1. Combin-

ing it with equations in (4) provides a dataset D =
{(x+

1 , y
+
1 ), . . . , (x

+
t , y

+
t ), (x

−
1 , y

−
1 )}. The two left figures

of Fig. 2 illustrate this reduction where the top figure is a
sphere, and each positive sign represents si while the nega-
tive sign is x−

1 = 0. The sphere contains 14 points, which
correspond to 14 inequalities of the left-hand side of (3). The
normal w defines a hyperplane which corresponds to t = 8
of the right-hand side of (3). The bottom figure shows an
AUC curve where TPR and FPR are true positive rates and
false positive rates, respectively. It indicates that w exists,
so the number of inequalities that can be satisfied is at least
m. This transformation and checking procedure can be done
in polynomial time. Therefore, any answer to the instance
of LAO is affirmative if and only if the instance of OH is
affirmative; hence, the problem is NP-hard. ■

4 Proposed Methods for LAO
In this section, we first present a trivial method in R2 and
then propose AUC-opt inspiring from topological sweep-
ing. We then extend AUC-opt to Rd by projecting high-
dimensional problems into low-dimensional ones.

A Trivial Method

Notice that every pair of training samples defines a support-
ing line that separates the rest training samples, and the num-
ber of these interesting lines are at most O(n2). Given any
two sample xi := [xi1, xi2]

⊤ and xj := [xj1, xj2]
⊤, the

slope of the line defined by xi and xj is m = −(xi2 −
xj2)/(xi1 − xj1). Hence, one can find an algorithm runs in
O(n3 log n) and takes O(n2) space by using the following
two steps: 1) identify all n(n− 1) slopes m; and 2) for each
slope m, let w := [m, 1]⊤ and then calculate AUC(w) by
using an O(n log n) algorithm (Fawcett 2006). w⋆ is the one
that gives the highest AUC(w) value.

AUC-opt

However, the above trivial method can be significantly im-
proved. There are two successive algorithmic improvements
needed. The first is that the number of interesting slopes is
at most O(n+n−) by noticing that training pairs with the
same labels are not interesting. The second improvement is
inspired by the topological sweep (Edelsbrunner and Guibas
1989) that we can save n running time by sorting all slopes
once; that is, we only need to calculate the AUC score once
for the minimal slope and then sweep over all the rest of the
slopes in ascending order.

w T
P
R

FPR

8
14

w−w+ w

Figure 2: Sphere and its AUC score.

Algorithm 1: [AUCopt,w] =AUC-opt(D)

1: S = {} ▷ Initialize a slope set
2: for (i, j) ∈ {1, . . . , n+} × {1, . . . , n−} do
3: m = −(x+

i2 − x−
j2)/(x

+
i1 − x−

j1) ▷ Calculate a slope
4: S = S ∪ {(m, i, j)}
5: end for
6: Let ϵ < min(i,j)̸=(i′,j′)

∣∣∣xi2−xj2

xi1−xj1
− xi′2−xj′2

xi′1−xj′1

∣∣∣ be a positive
constant smaller than the minimal difference between any two
slopes.

7: Let min(S) = min{m|(m, i, j) ∈ S}
8: w = [min(S)− 1, 1]⊤

9: AUCcur = AUC(w) ▷ Algo. 1 in Fawcett (2006)
10: AUCopt = AUCcur

11: for (m, i, j) ∈ sort(S) do
12: c1 = 0, c2 = 0,u = [m− ϵ, 1]⊤,v = [m+ ϵ, 1]⊤

13: if u⊤x+
i > u⊤x−

j then c1 = 1

14: if v⊤x+
i > v⊤x−

j then c2 = 1

15: AUCcur = AUCcur +(c2 − c1)/(n+n−)
16: if AUCopt < AUCcur then
17: AUCopt = AUCcur, w = [m+ ϵ, 1]⊤

18: end if
19: if AUCopt < 1−AUCcur then
20: AUCopt = 1−AUCcur, w = [−m− ϵ,−1]⊤

21: end if
22: end for

The description of AUC-opt is presented in Algo. 1. There
are three main steps: 1) to obtain all possible slopes and store
them into S (L1 to L5); 2) to calculate the AUC score of the
minimal slope (L7 to L9); and 3) to update w and its AUC
score (L10 to L21). The critical part is the update rules of
sweeping w. More specifically, at each iteration (from L10
to L21), the change of AUC score is from {0,±1/(n+n−)}
by “sweeping” w (L10 - L13). We illustrate this procedure
on the upper right of Fig. 2 where red plus signs are positives
while blue bar signs are negatives. Let w = [s, 1]⊤,w− =
[s − ϵ, 1]⊤, and w+ = [s + ϵ, 1]⊤. The increase of slope
from w− to w+ only changes the ordering of two samples
which corresponds to a magnitude change of |1/(n+n−)|
for AUC(w). The following theorem shows w returned by
Algo. 1 is optimal.

Theorem 2. Given the dataset D := {(xi, yi) : i ∈
{1, 2, . . . , n}} where xi ∈ R2 and yi ∈ {±1} and a
collection of linear separators H := {w : w ∈ R2}.
The proposed AUC-opt, solves the LAO problem (1) in
O(n+n− log(n+n−)). This time complexity is tight under
the algebraic computation tree model.
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Proof. We first show that w returned by AUC-opt is opti-
mal. The key of our proof is to show that Algo. 1 iterates
all possible AUC scores given by noticing that all slopes of
lines between two consecutive slopes give the same AUC
score.

Let w = [w1, w2]
⊤ be any line in R2. We as-

sume that w is a normal vector of two training samples
x+
i ,x

−
j , that is, w is given by ⟨w,x+

i − x−
j ⟩ = 0.

The slopes of these normal vectors on R2 can be cal-
culated. Let the collection of all such slopes be S :=¶
−(x+

i2 − x−
j2)/(x

+
i1 − x−

j1) : x
+
i ,x

−
j ∈ D

©
. Sort the col-

lection of slopes S and R2 has been partitioned into n+n−+
1 parts.

We consider two consecutive slopes in the sorted S more
carefully. Let us denote two consecutive sorted slopes as
s1 and s2 which associated with two pairs (x+

i ,x
−
j ) and

(x+
i′ ,x

−
j′), respectively. We only need to show that ∀s ∈

(s1, s2), [s, 1]
⊤ has identical AUC score. To do so, all we

need to do is to show that given any x+
i ,x

−
j , w scores

x+
i ,x

−
j as a same ordering. In other words, given any w :=

{[s, 1]⊤ : s ∈ (s1, s2)}, the quantity x⊤
i w − x⊤

j w always
has same sign. In the rest proof, we show this by carefully
constructing a quantity function s(λ) as the following

s(λ) := −
x+
i2 − x−

j2

x+
i1 − x−

j1

λ−
x+
i2′ − x−

j2′

x+
i1′ − x−

j1′
(1− λ),

where λ ∈ (0, 1).
We need to study the monotonicity of s(λ), we define

another function h(λ) := s(λ) (xi1 − xj1) + xi2 − xj2.
Clearly, h(λ) is non-decreasing function by noticing that
h′(λ) = s2 − s1 ≥ 0. We just need to show h(λ) never
vanishes at λ ∈ (0, 1). Assume that we have h(λ) = 0,
then we have s(λ) = −(xi2 − xj2)/(xi1 − xj1). It makes
a contradiction since there is no existing slope between s1
and s2. Similarly, one can show that for any two consecutive
slopes s1, s2, ∀s ∈ (s1, s2),w := [−s,−1]⊤, also defines
the same AUC score. Since Algo. 1 iterates all such lines,
the best AUC score of w returned by AUC-opt is indeed op-
timal.

AUC-opt finishes in O(n+n− log(n+n−)) since the time
complexity is dominated by sorting all n+n− slopes (L10).
The tightness of time complexity follows by Lemma 3.6.16
of Lee and Preparata (1984). ■

Generalization to Rd

When problem dimension d ≥ 3, inspired from Johnson
and Preparata (1978), the general idea of solving high-
dimensional LAO problem is that one can decompose the
original d dimensional problem into several d − 1 subprob-
lems. Notice that each hyperplane H(u) uniquely defines an
interesting subspace, and there are at most n+n− such sub-
spaces. We project points onto H(u) and then solve problem
in d−1 dimensional subspace (changing the number of coor-
dinates from d to d−1), recursively. Specifically, let the pro-
jection be defined as P (x) := x− (x⊤ ·u/∥u∥2) ·u where
u is the normal vector of H(u). The critical property of P is

that for any x ∈ H(u), x⊤P (x+
i − x−

j ) = x⊤(x+
i − x−

j ).
Therefore, the inner products of training samples with w are
the same as those of projected training samples.

Due to this inevitable recursion, the number of interest-
ing hyperplanes exponentially depends upon d; hence time
complexity of AUC-opt in Rd is O

(
(npnq)

d−1 log(npnq)
)
.

We summarize this recursive procedure in Algo. 2. Due to
the space limitation, detailed algorithm description is in the
supplementary.

Algorithm 2: [AUCopt,w] =AUC-opt(D, d)

1: K = {(x+
i − x−

j ) : i ∈ {1, . . . , n+}, j ∈ {1, . . . , n−}}
2: if d=2 then
3: return AUCcur,w

′ = AUC-opt(D) ▷ call Algo. 1
4: end if
5: for u ∈ K do
6: P =

¶Ä
x− x⊤·u

∥u∥2 · u, y
ä
: (x, y) ∈ D

©
▷ project points

of D onto the hyperplane defined by u.
7: P ′ = change coordinates(P) ▷ change coordinates so

that points are presented in d− 1 coordinates.
8: AUCcur,w

′ = AUC-opt(P ′, d− 1)
9: w = change coordinates(w′) ▷ change d− 1

coordinates of w′ back to d coordinates.
10: if AUCopt < AUCcur then
11: w⋆ = w, AUCopt = AUCcur

12: end if
13: end for

Theorem 3. Given the dataset D := {(xi, yi) : i ∈
{1, 2, . . . , n}} where xi ∈ Rd and yi ∈ {±1} and a col-
lection of linear separators H := {w : w ∈ Rd}. There
exists an algorithm solves the LAO problem (1) exactly in
O
(
(n+n−)d−1 log(n+n−)

)
.

Proof. The proof is in the supplementary. ■

5 Experiments
We evaluate AUC-opt on both R2 and R3 by using t-SNE
datasets. To confirm that AUC-opt produces the best possi-
ble linear AUC classifiers, we compare it with 7 other classi-
fiers on the binary classification task at the training and test-
ing stage. Furthermore, we compare the approximate AUC
methods with other standard methods for nonlinear classi-
fiers. More results and experimental details, including data
collection, baseline description, and parameter tuning, are
in the supplementary.2

Datasets and Experimental Setup
Datasets. We collect 50 real-world datasets where the pos-
itive ratio (np/n) of most datasets are ≤ 0.1. These highly
imbalanced datasets make optimizing AUC problem mean-
ingful. To generate 2 and 3 dimensional samples, we project
samples of these datasets onto R2 and R3 respectively using
t-SNE (Maaten and Hinton 2008) so that class patterns are
conserved. Models use projected points as training samples
while keep labels unchanged.

2Our code can be found in https://github.com/baojian/auc-opt
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Significance t-test (α = 0.05) on training Significance t-test (α = 0.05) on testing
SVM - 0 1 1 3 0 1 0 - 0 0 0 3 0 1 1
B-SVM 30 - 7 4 27 3 3 0 31 - 7 4 23 3 3 1
LR 31 11 - 2 27 2 5 0 32 14 - 2 26 2 5 2
B-LR 32 15 6 - 30 2 4 0 33 16 6 - 29 3 4 2

d = 2SVM-Perf 16 2 0 0 - 0 1 0 16 2 0 1 - 1 2 2
SPAUC 31 14 8 2 28 - 2 0 29 12 7 3 26 - 4 2
SPAM 33 10 9 3 29 1 - 0 32 11 6 3 26 1 - 2
AUC-opt 40 29 20 17 40 21 26 - 34 18 15 11 31 13 17 -

Table 1. The comparison of AUC scores over 200 trials of 50 t-SNE datasets on R2. Each cell (I,J) means the number of datasets
where method I is significantly better than method J by using t-test with a significance level of 5%. Numbers in the red region
are the results of AUC optimizers better than standard classifiers, while numbers in the blue region are the reverse.

Experimental setup. For each dataset, 50% samples are for
training and the rest for testing. All parameters are tuned
by 5-fold cross-validation. Each dataset is randomly shuf-
fled 200 times, and the reported results are averaged on 200
trials. All methods have been tested on servers with Intel(R)
Xeon(R) CPU (2.30GHz) 64 cores and 187G memory. For
all methods that involve randomness, the random state has
been fixed for the purpose of reproducibility.
Baselines. We consider the following baseline classifiers: 1)
Logistic Regression (LR); 2) B-LR. Balanced Logistic Re-
gression (B-LR). We adjust weights of samples inversely
proportional to class frequencies so that it can have better
performance on imbalanced datasets; 3) Support-vector Ma-
chine (SVM); 4) B-SVM. The balanced SVM (B-SVM) uses
the same strategy as B-LR; 5) SVM-Perf. The SVM-Perf al-
gorithm is proposed in Joachims (2005) where the goal is
to minimize the AUC loss by using SVM-based method; 6)
SPAUC. The Stochastic Proximal AUC (SPAUC) maximiza-
tion algorithm is proposed in Lei and Ying (2019); 7) SPAM.
The Stochastic Proximal AUC Maximization (SPAM) algo-
rithm is proposed in Natole, Ying, and Lyu (2018).

Results on T-SNE Datasets
Comparison of AUC scores. Table 1 presents the compar-
ison of AUC scores calculated on both training and testing
datasets in R2 and R3. To compare AUC scores from differ-
ent methods, for the method I and J on a specific dataset, we
calculate whether I is significantly better than J in a statisti-
cal sense. Important observations are: 1) AUC-opt achieves
more significant gains over standard classifiers than the ap-
proximate AUC optimizers on the training stage. It confirms
that gaps between AUC-opt and other approximate AUC op-
timizers are significant on some datasets; 2) Compared with
SVM and LR, balanced versions of SVM (B-SVM) and LR
(B-LR) have better performance. We see that the simple
weighting strategy improves the performance by adjusting
the weights on training samples;3 and 3) Compared with the

3The balanced version of a classifier is that a class weight has
been added for each sample. Specifically, weight n/(2 ∗ np) is for
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SVM - 4 2 3 10 9 15 19 8 15 17 29 30 3 12.62
B-SVM 22 - 6 4 15 12 18 21 12 15 19 36 38 20 18.31
LR 31 21 - 5 17 14 19 23 14 18 20 38 38 29 22.08
B-LR 31 23 8 - 17 14 19 23 14 19 21 37 37 28 22.38
RF 34 30 31 31 - 6 34 29 19 34 38 39 37 34 30.46
B-RF 36 33 31 31 19 - 33 32 19 35 37 38 36 35 31.92
GB 31 29 29 29 12 13 - 25 17 26 30 36 38 32 26.69
SVM-RBF 27 26 26 27 16 15 21 - 6 23 23 30 31 27 22.92
B-SVM-RBF 36 32 32 32 24 22 29 20 - 31 33 39 38 37 31.15
RankBoost 32 31 29 29 9 8 16 24 13 - 35 38 38 33 25.77
AdaBoost 31 29 26 27 7 8 9 22 12 3 - 37 35 31 21.31
SPAM 13 4 2 2 7 7 12 18 7 8 12 - 27 15 10.31
SPAUC 6 3 2 1 9 7 10 17 7 10 10 10 - 8 7.69
SVM-Perf 3 10 4 5 9 8 15 16 7 13 16 25 28 - 12.23

Table 2. The comparison of testing AUC scores of 50 real-world datasets. The settings are the same as in Table 1.

best standard classifier B-LR, AUC-opt produces significant
gains on 17 training datasets while reduced to 11 on testing
datasets. It is worse in R3. This degradation happens mainly
because results of B-LR are tuned by adding regularization
hence better generalization ability, while AUC-opt does not.
With regularization, B-LR has better generalization perfor-
mance on testing datasets, but regularization is not taken into
consideration in our method. Under R3, AUC-opt only beats
4 datasets over B-LR, the best classifier. It means that the
gain proves insignificant on most datasets.

We also report the mean with the Friedman Rank and
variance of AUC scores in Fig. 3 and 4, respectively. Re-
sults indicate the superiority of AUC-opt in optimizing AUC
scores. Variances of AUC shown in (c) and (d) indicate that
0-1 objective optimization (AUC-opt) is more robust, while
SVMs are not. Yet, the performance of SVM-Perf is better
than SVM but not B-SVM.

Results on Real-world Datasets
We test both the approximate AUC optimizers and the stan-
dard classification methods on 50 real-world datasets. The
AUC scores on testing are reported in Table 2. First, Bal-
anced Random Forest (B-RF) and Balanced SVM-RBF (B-
SVM-RBF) prove the best overall on testing AUC scores.
It wins 31.92 and 31.15 datasets on average respectively.
This performance is consistent with findings shown in both
Fernández-Delgado et al. (2014) and Couronné, Probst,
and Boulesteix (2018). Furthermore, a relationship between
RF and LR has been studied in Couronné, Probst, and
Boulesteix (2018) where it has been shown that RF can ob-
tain much higher AUC scores compared with LR. Boosting-
based methods such as AdaBoost4 and Gradient Boost (GB)

each positive sample while weight n/(2 ∗ nq) is for each negative
sample.

4We treat AdaBoost as the AUC-based method because theoret-
ical finding indicates that AdaBoost is equivalent to RankBoost.

also work well.
RankBoost is inferior to RF and B-RF, winning on only

9 and 8 datasets, respectively. The performance of Ad-
aBoost and RankBoost prove competitive with each other.
This has been theoretically justified in Rudin and Schapire
(2009). However, interestingly, RankBoost still outperforms
AdaBoost over 35 datasets in the testing stage. Gradient
Boost (GB) wins more datasets than RankBoost. Generally
speaking, two nonlinear AUC optimizers are inferior to these
popular nonlinear standard classifiers. This clearly suggests
that approximate AUC optimizers may not lead to the best
AUC performance, hence having space to improve. All lin-
ear methods lose on average to non-linear ones.

6 Conclusion and Future Work

Our complexity results show linear AUC optimization is
NP-complete via reduction to the open hemisphere prob-
lem. It remains interesting to prove the hardness results for
other hypothesis classes mentioned in Ben-David, Eiron,
and Long (2003). We then present an optimal method AUC-
opt that is both time and space-efficient for optimizing AUC
in R2. We demonstrate that it can be naturally extended to
Rd with a total cost O((n+n−)d−1 log(n+n−)). Our empir-
ical results suggest that to justify the objective to optimize
AUC, more effort may be needed to improve the optimiza-
tion quality of AUC optimizers.

AUC-opt is impractical for real-world datasets since the
time complexity is exponentially getting worse with the di-
mension d. However, it remains interesting to see whether
more efficient algorithms exist for higher dimensionality.
One potential direction is to use branch and bound Nguyen
and Sanner (2013). It is also interesting to compare our
method with Rudin and Wang (2018), a recently proposed
method that directly optimizes a rerank statistic.
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