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Abstract

The click-through rate (CTR) prediction task is to predict
whether a user will click on the recommended item. As mind-
boggling amounts of data are produced online daily, acceler-
ating CTR prediction model training is critical to ensuring
an up-to-date model and reducing the training cost. One ap-
proach to increase the training speed is to apply large batch
training. However, as shown in computer vision and natural
language processing tasks, training with a large batch eas-
ily suffers from the loss of accuracy. Our experiments show
that previous scaling rules fail in the training of CTR predic-
tion neural networks. To tackle this problem, we first theo-
retically show that different frequencies of ids make it chal-
lenging to scale hyperparameters when scaling the batch size.
To stabilize the training process in a large batch size setting,
we develop the adaptive Column-wise Clipping (CowClip).
It enables an easy and effective scaling rule for the embed-
dings, which keeps the learning rate unchanged and scales
the L2 loss. We conduct extensive experiments with four CTR
prediction networks on two real-world datasets and success-
fully scaled 128 times the original batch size without accu-
racy loss. In particular, for CTR prediction model DeepFM
training on the Criteo dataset, our optimization framework
enlarges the batch size from 1K to 128K with over 0.1%
AUC improvement and reduces training time from 12 hours
to 10 minutes on a single V100 GPU. Our code locates at
github.com/bytedance/LargeBatchCTR.

Introduction
With the development of the Internet and the e-economy,
numerous clicking happens in online shopping (Ma et al.
2020; Zhou et al. 2019), video apps (Gomez-Uribe and Hunt
2016; Xie et al. 2020) and web advertisements (Covington,
Adams, and Sargin 2016; Zhao et al. 2019). Click-through
Rate (CTR) prediction is to predict whether a user will click
on the recommended item. It is a fundamental task in adver-
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Figure 1: Relative time of training DeepFM model on Criteo
dataset with one V100 GPU.

tising and recommendation systems. An accurate CTR pre-
diction can directly improve user experience (Kaasinen et al.
2009) and enhance ads profit (Wang 2020).

In a typical industrial dataset, the number of click samples
has grown up to hundreds of billion (Zhao et al. 2019; Xie
et al. 2020) and keeps increasing on a daily basis. The click-
through rate (CTR) prediction task is to predict whether a
user will click on the recommended item. It is a fundamen-
tal task in advertising and recommendation systems. Since
CTR prediction is a time-sensitive task (Zhao et al. 2019)
(e.g., latest topics, hottest videos, and new users’ hobbies),
it is necessary to shorten the time needed for re-training on
a massive dataset to maintain an up-to-date CTR prediction
model. In addition, given a constant computing budget, de-
creasing the training time also reduces the training cost, giv-
ing rise to a high return-to-investment ratio.

Recent years have witnessed rapid growth in GPU pro-
cessing ability (Baji 2018). With the growth of GPU mem-
ory and FLOPS, a larger batch size can take better advantage
of the parallel processing capability of GPUs. As shown in
Figure 1 (a), the time of one forward and backward pass is
almost the same when scaling 8 times batch size, indicat-
ing GPU with a small batch size is extremely underused.
Since the number of training epochs remains the same, large
batch training reduces the number of steps and thus signifi-
cantly shortens the total training time (Figure 1 (b)). In ad-
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Figure 2: A simple illustration of a Wide/Cross-and-Deep
style of CTR prediction model. The green data denotes a
dense one, while brown input in a categorical field stands
for a selected id.

Network Embedding (Dataset)

Name DeepFM DCN Criteo Avazu
#Params 0.431M 0.655M 372M 104M

Table 1: Number of parameters for different layers.

dition, a large batch benefits more in a multi-GPUs setting,
where gradients of the large embedding layer need to be ex-
changed between different GPUs and machines, resulting in
high communication costs. To avoid distraction from sys-
tem optimization in reducing communication costs (Mudi-
gere et al. 2021; Zhao et al. 2019; Xie et al. 2020), we fo-
cus on designing an accuracy-preserving algorithm for scal-
ing batch size on a single GPU, which can be easily ex-
tended for multi-node training. The challenge of applying
large batch training is an accuracy loss when naively increas-
ing the batch size (He et al. 2021), especially considering
that CTR prediction is a very sensitive task and cannot bear
the accuracy loss. Hyperparameter scaling rules (Krizhevsky
2014; Goyal et al. 2017) and carefully designed optimization
methods (You, Gitman, and Ginsburg 2017; You et al. 2020)
in CV and NLP tasks are not directly suitable for CTR pre-
diction. This is because, in CTR prediction, the inputs are
more sparse and frequency-unbalanced, and the embedding
layers dominate the parameters of the whole network (e.g.,
99.9%, see Table 1). In this paper, we identified the failure
reason behind previous scaling rules on CTR prediction and
proposed an effective algorithm and scaling rule for large
batch training.

In conclusion, our contributions are as follows:

• To the best of our knowledge, we are the first to investi-
gate the stability of the training CTR prediction model in
very large batch sizes. We attribute the hardship in scal-
ing the batch size to the difference in id frequencies.

• With rigorous mathematical analysis, we prove that the
learning rate for infrequent features should not be scaled
when scaling up the batch size. With CowClip, we can
adopt an easy and effective scaling strategy for scaling
up the batch size.
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Figure 3: Progress on AUC of CTR prediction models on
Criteo dataset in the past six years.

• We propose an effective optimization method of adaptive
Column-wise Clipping (CowClip) to stabilize the train-
ing process of the CTR prediction task. We successfully
scale up 128 times batch size for four models on two pub-
lic datasets. In particular, we train the DeepFM model
with 72 times speedup and 0.1% AUC improvement on
the Criteo dataset.

Related Work
Embeddings of CTR Prediction Model. The input of
the CTR prediction model is high-dimensional, sparse, and
frequent-unbalanced. As we will discuss the frequency in the
Section 3, we focus on the fact that the input feature space
for CTR prediction is high-dimensional and sparse, which
is an essential difference between the CTR prediction model
and other deep learning models.

A typical industrial CTR prediction model (Zhao et al.
2019; Xie et al. 2020; Zhou et al. 2019) has a high-
dimensional input space with 108 to 1012 dimensions after
one-hot encoding of the categorical features. At the same
time, a single clicking log may contain only hundreds of
non-zero entries. As a result, when we create the embed-
ding for each feature, the whole embedding layer can be
extremely large, and the parameters of the CTR prediction
model are dominated (e.g., 99.9%) by the embedding part
instead of the deep network part (Miao et al. 2021; Ginart
et al. 2021). Table 1 shows the case under our experimental
setting.

As the number of parameters in the embedding layer over-
whelms the one of the dense networks, the difficulty of large
batch optimization lies in the embedding layers. This paper
focuses on addressing the training instability caused by the
properties of embedding layers in the CTR prediction model.
No matter how the dense part, e.g., MLP, LSTM (Chen and
Li 2021), Transformer (Chen et al. 2019), changes, the train-
ing instability caused by the embedding part still exists.

CTR Prediction Network. A thread of work started
from (Cheng et al. 2016; Wang et al. 2017) occupies a ma-
jority of the above networks. They focused on designing a
two-stream network, as shown in Figure 6. Following W&D
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No Scale Sqrt Scale Linear Scale

Criteo

1k 80.76 80.76 80.76
2k –0.15 –0.01 –0.01
4k –1.35 –0.06 –0.11
8k –3.21 –0.21 –0.20

Criteo (Top 3 frequent ids)

1k 74.97 74.97 74.97
2k –0.10 –0.01 +0.04
4k –0.20 –0.02 –0.02
8k –0.28 –0.01 –0.01

Table 2: AUC (%) changes at different batch sizes on Criteo
with DeepFM and a modified version. Previous scaling rules
fail on Criteo but work for a revised version.

model (Cheng et al. 2016), there are many designs on the
wide/cross-stream. The details of DeepFM (Guo et al. 2018),
W&D, DCN (Wang et al. 2017), and DCN-v2 (Wang et al.
2021) used in our experiments are presented in the Ap-
pendix.

Large Batch Training Methods. To preserve the perfor-
mance of deep models at a large batch size, we need a good
scaling rule and a stable optimization strategy. The scaling
rule tells us how to scale the hyperparameters when scaling
up the batch size. The two most important hyperparameters
when scaling the batch size are learning rate and regular-
ization weight. Based on different assumptions, linear scal-
ing (Goyal et al. 2017) and square root scaling (Krizhevsky
2014; Hoffer, Hubara, and Soudry 2017) are the two most
common scaling rules in the deep learning community. Be-
sides, optimization strategies such as warmup (Gotmare
et al. 2019) and gradient clipping (Zhang et al. 2020) can
help stabilize the large batch training process. LARS (You,
Gitman, and Ginsburg 2017) and LAMB (You et al. 2020)
are two optimizers designed for large batch training, which
adopt different adaptive learning rates for each layer. Al-
though they achieve good results in CV and NLP tasks, they
are ineffective in the CTR prediction task because it is un-
necessary to use a layer-wise optimizer with a shallow net-
work (e.g., three or four layers). This paper re-designs the
scaling rule and optimization strategy for the embedding
layer, which can successfully scale up the batch size for CTR
prediction.

Additional related work can be found in Appendix, in-
cluding sensitiveness of CTR prediction and works utilizing
different frequencies.

Method
In CTR prediction, we have the training dataset D =
{xi, yi}Ni=1, where y ∈ {0, 1} denotes whether the user
clicked or not. The x contains information about the user,
the product, and the interaction, which can be categorical or
continuous. The categorical field is one-hot encoded to be a
vector xfj

i of dfj length, where dfj is the number of possible

C6

C1

C15

Figure 4: Distribution of different ids in three fields of the
Criteo dataset. The y-axis is in logarithm scale. The total
number of samples is 4.13× 107.

values (ids) in this field. To represent the frequency of each
id, we denote the k-th id in field j as idfj

k . The frequency and
occurrence probability of the id is:

count(idfj
k ) =

N∑
i=1

δ(x
fj
i [k] = 1),

P(idfj
k ∈ x) =

count(idfj
k )

N
,

where δ(·) equals 1 if the boolean condition holds and 0 oth-
erwise.

Given the predicting network f , the prediction is made
from f(x). The network and embeddings weights are de-
noted as w, and the training loss is L. This paper focuses on
the Wide/Cross-and-Deep kind of CTR prediction model, as
briefly described in Figure 2, one of the state-of-the-art net-
works in CTR prediction (Wang et al. 2021; Zhang, Huang,
and Zhang 2019).

In training the network, we use a batch size of b = |B|,
where B is a specific batch. The learning rate and L2-
regularization weight are denoted as η and λ. The total num-
ber of steps in an epoch is N

b .

Failure Cause of Traditional Scaling Rules
When training a neural network, at step t, an optimizer
Opt(·) takes in the weights and gradients, and output the
updated weights. With the L2-regularization, the update pro-
cess can be formulated as:

gt =
∑
x∈Bt

∇L(w, x) + λ

2
· ∥w∥22

wt+1 = η · Opt(wt, gt).

When changing the batch size, the hyper-parameter learning
rate η and L2-regularization weight λ should be adjusted for
maintaining the same performance as the original batch size.

Square root scaling (Krizhevsky 2014; Hoffer, Hubara,
and Soudry 2017) and linear scaling (Goyal et al. 2017) are
two widely used scaling rules in deep learning. The moti-
vation for sqrt scaling is to keep the covariance matrix of
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the parameters update the same, while for linear scaling, the
motivation is to keep the update in a large batch equal to up-
dates from s small batches when scaling s times the batch
size (details in Appendix). The two scaling rules have been
shown effective in CV and NLP tasks, and they are shown
as follows:
Scaling Rule 1 (Sqrt Scaling) When scaling batch size
from b to s · b, do as follows:

η →
√
s · η, λ→

√
s · λ

Scaling Rule 2 (Linear Scaling) When scaling batch size
from b to s · b, do as follows:

η → s · η, λ→ λ

Our first attempt at large batch training of the CTR predic-
tion model is to apply the above classic scaling rules: no
scaling, linear scaling (Goyal et al. 2017), and square root
scaling (Krizhevsky 2014). However, as seen in experiments
on the Criteo dataset with DeepFM model in Table 2 left,
the above rules fail in a CTR prediction model. We claim
that the reason for the failure lies in the different frequencies
of ids.

The product id of a popular item or ids in fields with a few
options (e.g., male and female in gender field) are frequent,
while the id of an inactive user seldom appears. In Figure 4,
we visualize the distribution of different ids’ frequencies in
three fields. The exponential distribution reveals different
frequencies among different ids. For the dense weights (e.g.,
kernel weights), their gradients appear for each sample while
embedding does not have gradients if the corresponding ids
do not show up. In CTR prediction, the embedding layers
dominate the parameters of the whole network, and differ-
ent occurrences of gradients make a great difference from
other deep neural networks.

First, we empirically verify our claim by the following
experiment. We keep the top three frequent ids in each field
and label the rest as a fourth id. In this way, all four ids
are very frequent and variations in frequencies are ablated in
this modified version of Criteo. As shown in Table 2 right,
both scaling rules successfully apply to the modified dataset,
which means the traditional scaling rule does not work in
CTR prediction due to the presence of infrequent ids.

Next, we provide the theoretical analysis for the failure of
sqrt and linear scaling. Different frequencies lead to vary-
ing occurrences of ids in batches. Only when the id appears
in the batch can the corresponding embedding be updated.
They only occur in a small fraction of batches for ids with a
low frequency. Suppose we draw the training samples with
replacement from the dataset, the probability of an id idfj

k in
the batch B is:

P(idfj
k ∈ B) = 1− (1− P(idfj

k ∈ x))b.

For frequent ids, and also dense weights whose frequency
rate is 1, we have (1 − P(idfj

k ∈ x))b ≈ 0; while for the
infrequent ids, when p ≪ 1

B , we can use binomial approxi-
mation and obtain:

P(idfj
k ∈ B) ≈

{
1 idfj

k is frequent
b · P(idfj

k ∈ x) idfj
k is infrequent

. (1)

Now, reconsider the linear scaling motivation for an id’s em-
bedding w. Denote the weight update as ∆w = wt − wt+1.
Consider the expected update in a large batch B′ =

⋃s
i=1 Bi

with b′ = |B′| = s · b, we have

E[∆w] = E[η′ · δ(idfj
k ∈ B′) · 1

b′

∑
x∈B′

∇L(w, x)]

= η′ · P(idfj
k ∈ B′) · E[∇L(w, x)].

With the assumption that E[∇L(wi, x)] ≈ E[∇L(w, x)], the
expected update in small batches Bi is:

E[∆w] = E[η ·
s∑

i=1

δ(idfj
k ∈ Bi) ·

1

b

∑
x∈Bi

∇L(wi, x)]

≈ η · s · P(idfj
k ∈ B) · E[∇L(w, x)].

For dense weight or embeddings of frequent id, the term
P(idfj

k ∈ B) equals 1, making no difference to the original
linear scaling rule. However, with an infrequent id, it shows
that the new scaling strategy should be using the same learn-
ing rate when scaling the batch size due to the following fact
for infrequent ids:

P(idfj
k ∈ B′) ≈ s · P(idfj

k ∈ B).

A similar discussion based on sqrt scaling motivation (see
Appendix) shows that under a very strong assumption can
we obtain the same conclusion. However, without the as-
sumption, we cannot even choose hyperparameters main-
taining the same covariance matrix after scaling the batch
size.

When using a relatively small batch size we find most ids
satisfied p < 1

B . Thus, we propose to use no scaling on the
whole embedding layers, which suits infrequent ids. In ad-
dition, a smaller learning rate for layers at the bottom leads
to a smooth learning process. Experiments show this scaling
rule leads to a better result.

After the discussion of learning rate scaling, now let’s turn
to the L2-regularization weight λ. In CTR prediction, an un-
suitable λ can easily lead to overfitting. For the scaling of
λ, we first consider the embedding vector w of idfj

k , the ex-
pected gradient of which in a batch is:

E[g] =
1

b
E[δ(idfj

k ∈ B)
∑
x∈B

∇L(w, x)]

= P(idfj
k ∈ B) · E[∇L(w, x)]. (2)

The term P(idfj
k ∈ B) still has no effect with dense weight

and embeddings of frequent ids as the probability equals to
1. However, for the infrequent ids, there is a scaling mul-
tiplier before the expectation of the gradient as some ids
may not appear in a certain batch. When using an adaptive
optimizer such as Adam, this scaling multiplier results in
a different behaviour, which is equivalent to adjusting the
L2-regularization weight λ as follows (see Appendix for the
proof):

λ

P(idfj
k ∈ B)

=
λ

b · P(idfj
k ∈ x)

.
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Figure 5: L2-norm distribution of different columns gra-
dients at 1000th step of DeepFM on Criteo dataset. Only
columns with existing ids in the batch are shown. The x-axis
is the L2 norm value and y-axis is the count of columns.

Thus, to maintain the same L2-regularization strength, we
scale up the λ by n. Combined with the learning rate scaling
rule, we have the following one.

Scaling Rule 3 (CowClip Scaling) When scaling batch
size from b to s · b, use sqrt scaling for the dense weights,
and do as follows for embeddings:

ηe → ηe, λ→ s · λ

However, we find directly applying the above rule leads
to overfitting due to s times less application of L2-
regularization when scaling up batch size by s times. If
no additional regularization technique is introduced, L2-
regularization should be strengthened further with a large
batch size. In the case of an SGD optimizer, we have (de-
tails in Appendix):

η′λ′ ≈ sηλ.

Hence, we need to further scale up the λ by s times when the
learning rate is unchanged. Although the behavior of adap-
tive optimizers such as Adam is different from SGD, we find
a larger λ prevents overfitting. Thus, we have the following
scaling rule which can scale up the batch size to 4K without
additional optimization strategy.

Scaling Rule 4 (n2–λ Scaling) When scaling batch size
from b to s · b, use sqrt scaling for the dense weights, and
do as follows for embeddings:

ηe → ηe, λe → s2 · λe

CowClip Algorithm
Although the Scaling Rule 4 helps us scale to 4 times the
original batch size, it fails on a larger batch size. The chal-
lenge in choosing the proper learning rate η and L2-weight
λ mentioned above impairs the performance for larger batch
sizes. To enable large batch training, the gradient norm clip-
ping (Zhang et al. 2020) can smooth the process of training
and alleviate the sensitiveness of hyperparameters. Given a
clip threshold clip t, gradient norm clipping does follows:

g → min{1, clip t

∥g∥
} · g

Gradient norm clipping smoothes the training process by re-
ducing the norm of a large gradient greater than a thresh-
old. However, it is hard to choose an appropriate thresh-
old for clipping the norm. Besides, as one column of the
embedding matrix represents the embedding vector for an
id, Figure 5 shows that the magnitude of gradients for dif-
ferent columns varies. We denote the column for an id as
w[idfj

k ]. Clipping on the whole embeddings whose gradient
norm is dominated by gradients of columns with large gra-
dients impairs the ones with normal but smaller gradients.
In addition, according to Equation (2), since we want to clip
on 1 · ∇L(w, x), the different frequencies of ids lead to the
scaler of P(idfj

k ∈ B) on the expected gradients.
To tackle the above problems, inspired by LAMB opti-

mizer (You et al. 2020), which normalizes the norm of gra-
dients of each kernel to be proportional to the norm of the
kernel weight, we relate the clip threshold with the norm of
id embedding vectors. The difference between our clipping
method and the gradient norm clipping is three-fold: First,
every id embedding vector has a unique clipping threshold
for more flexible clipping. Second, the clipping threshold is
multiplied by the occurrence number of the id to make sure
the bound is based on 1·∇L(w, x). Last but not the least, the
clipping threshold is calculated by the norm of the id vector
in consideration of different magnitudes:

clip(id
fj
k ) = cnt(idfj

k ) ·max{r · ∥we
t [id

fj
k ]∥ , ζ}

where cnt(idfj
k ) is the number of occurence of the id in a

batch.
As the weights grow larger in the training process, the

benefit of a threshold proportional to the norm of the weight
is that the clipping value adaptively grows with the network.
As some infrequent id embedding vectors become too small
due to the continual application of L2-regularization with
no id occurrence in steps, we restrict the clipping norm by a
lower-bound ζ to avoid a too strong clipping.

The network training with CowClip is summarized in the
Algorithm 1. In practice, tensor multiplication instead of for-
loop is adopted for less computational overhead. Since Cow-
Clip stabilizes the training process, it is possible to use the
CowClip scaling 3 rule to 128× batch size, leaving ηe un-
changed and linear scaling the λ. We give a proof sketch
on the convergence of CowClip method in Appendix. Our
large batch training framework contains the CowClip gradi-
ent clipping and scaling strategy.

Experiment
Experimental Setting
Datasets. We evaluate our algorithms on the following
public datasets which are widely adopted by the commu-
nity (Cheng et al. 2016; Li et al. 2019; Deng et al. 2021;
Wang et al. 2021; Miao et al. 2021). Criteo (Labs 2014)
is a real-world CTR prediction dataset. It collects 45M
records on ad display information, and the corresponding
user clicks feedback. There are 13 continuous fields and
26 categorical fields, which are all anonymized to protect
users’ privacy. Following (Guo et al. 2018; Zhang, Huang,
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1K 8K 128K
Prev. best CowClip Prev. best CowClip Prev. best Cowclip

Criteo 80.76 80.86 80.55 80.97 – 80.90
Criteo-seq 80.48 80.50 80.03 80.50 – 80.49

Avazu 78.84 78.83 76.69 79.06 – 78.80

Table 3: Performance comparison between Cowclip and previous scaling methods with different batch size.

1K (1024) 2K (2048) 4K (4096) 8K (8192)

AUC (%) LogLoss AUC (%) LogLoss AUC (%) LogLoss AUC (%) LogLoss

No Scaling 80.76 0.4438 80.66 0.4456 80.48 0.4518 80.31 0.4530
Sqrt Scaling 80.76 0.4438 80.71 0.4430 80.59 0.4450 80.28 0.4582
Sqrt Scaling∗ 80.76 0.4438 80.75 0.4444 80.69 0.4449 80.55 0.4547
LR Scaling 80.76 0.4438 80.77 0.4434 80.65 0.4434 80.46 0.4542
n2–λ Scaling (Ours) 80.76 0.4438 80.86 0.4432 80.90 0.4426 80.73 0.4441
CowClip (Ours) 80.86 0.4430 80.93 0.4427 80.97 0.4422 80.97 0.4425

Table 4: Performance of different scaling methods on Criteo dataset from 1K to 8K on DeepFM.

Algorithm 1: Adaptive Column-wise Clipping(CowClip)

Input: CowClip coefficient r and lower-bound ζ, number
of steps T , batch size b, learning rate for dense and em-
bedding η, ηe, optimizer Opt(·)

1: for t← 1 to T do
2: Draw b samples B from D
3: gt, g

e
t ← 1

b

∑
x∈B ∇L(x,wt, w

e
t )

4: wt+1 ← η · Opt(wt, gt) // Update dense weights
5: for each field and each column in the field do
6: ng ← ∥ge

t [id
fj
k ]∥

7: cnt← |{x ∈ B|idfj
k ∈ x}|

8: // Calculate the number of occurrence cnt
9: clip t← cnt ·max{r · ∥we

t [id
fj
k ]∥ , ζ}

10: // Clip norm threshold
11: gc ← min{1, clip t

ng
} · ge

t [id
fj
k ]

12: // Gradient clipping
13: we

t [id
fj
k ]← ηe · Opt(we

t [id
fj
k ], gc)

14: // Update the id embedding
15: end for
16: end for

and Zhang 2019), the data is split into training and test sets
by 90%:10%. Criteo-seq is a sequential learning setting of
Criteo dataset. The first six days’ data are used for train-
ing and the last day’s data for testing. This setting evalu-
ates the performance of the algorithm in a sequential learn-
ing setting. Avazu (Avazu 2015) is another ad click-through
dataset containing 32M training samples. It has 24 anony-
mous categorical fields. According to (Zhang, Huang, and
Zhang 2019), we split the dataset into training and test sets
by 80%:20%.

Implementation Details. We use two popular met-
rics (Mattson et al. 2020) in CTR prediction: AUC (Area
Under ROC) and Logloss (Logistic loss). Our implemen-

tation is based on Tensorflow (Abadi et al. 2015) and
DeepCTR (Shen 2017) framework. The experiments are
conducted on one Tesla V100 GPU. We use Adam (Kingma
and Ba 2015) optimizer and an L2-regularization on embed-
ding layers. The base learning rate and L2-regularization
weight on batch size 1024 are 10−4 and 10−5. Scaling
rules are performed based on the 1024 batch size. For Cow-
Clip, we use r = 1 and tune ζ ∈ {10−5, 10−4} due to
a different initialization weight norm. We also use learn-
ing rate warmup (Gotmare et al. 2019) and larger initializa-
tion weights. More discussion on hyperparameter choice and
techniques can be found in the Appendix. We run our exper-
iments with three random seeds, and the standard deviation
among all experiments for AUC is less than 0.012%.

Baselines. Four CTR prediction models are considered in
our experiments: Wide-and-Deep Network (W&D) (Cheng
et al. 2016), DeepFM (Guo et al. 2018), Deep-and-Cross
Network (DCN) (Wang et al. 2017), DCN v2 (Wang et al.
2021). The architectures of these networks are detailed in
Appendix). For the scaling strategy, No Scaling means we
use the same hyper-parameters as the ones in batch size
1K. Sqrt Scaling and LR Scaling are described in Sec-
tion 3. Sqrt Scaling∗ is a variant version of Sqrt Scaling
used in (Guo et al. 2018), which does not scale up the L2-
regularization. For batch size from 1K to 8K, we also do
a grid search on learning rate and the weight decay, but it
turns out no simple combination yields better results than
the above scaling methods. DLRM (Naumov et al. 2019)
uses model parallelism on the embedding table to acceler-
ate the training. XDL (Adnan et al. 2021) is a highly op-
timized implementation of the above model. FAE (Adnan
et al. 2021) takes the frequency of embeddings into consid-
eration as well and uses a hot-embedding aware data lay-
out in the memory. Hotline (Adnan 2021) better organizes
the frequent and infrequent embeddings in the GPU and
main memory. CowClip denotes training with the CowClip
method and the CowClip scaling rule 3.
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Baseline 1K 2K 4K 8K 16K 32K 64K 128K

DeepFM (Guo et al. 2018) AUC (%) 80.76 80.86 80.93 80.97 80.97 80.94 80.95 80.96 80.90
Logloss 0.4438 0.4430 0.4427 0.4422 0.4425 0.4424 0.4423 0.4429 0.4430

W&D (Cheng et al. 2016) AUC (%) 80.75 80.86 80.94 80.96 80.96 80.95 80.94 80.96 80.89
Logloss 0.4439 0.4430 0.4424 0.4422 0.4425 0.4422 0.4428 0.4429 0.4434

DCN (Wang et al. 2017) AUC (%) 80.76 80.86 80.93 80.96 80.97 80.98 80.95 80.99 80.91
Logloss 0.4438 0.4429 0.4424 0.4422 0.4428 0.4419 0.4426 0.4426 0.4428

Table 5: Performance of CowClip methods on Criteo dataset from 1K to 128K on four models.

Large Batch Training Results
First, as shown in Table 3, previous scaling strategy fails to
maintain the performance at batch size 8K, and fails to con-
verge at batch size 128K. In contrast, CowClip methods can
achieve a better accuracy at 8K batch size and almost no per-
formance loss at batch size 128K, which shows the CowClip
method successfully stablizes the training processes.

Then, we compare different scaling strategies on the
DeepFM model. The results on Criteo dataset are presented
in Table 4, and the results on Criteo-seq and Avazu are at-
tached in Appendix. As we can see, traditional scaling rules
fail to meet the AUC requirement with a large gap when the
batch size grows up to 4K. This is consistent with results
in (Guo et al. 2018), where results with 4K batch size are
worse than those with 1K. With n2–λ Scaling rule 4, it can
scale batch size to 4K but fails with 8K. When we success-
fully scale the batch size, there is a performance gain in the
AUC, which is also observed in (Zhu et al. 2021). For our
CowClip algorithm, it outperforms the original optimization
method by 0.1% AUC on the Criteo dataset at a small batch
size. When scaling to a large batch size in Table 5 and Ta-
ble 12, instead of AUC loss, our algorithm achieves a further
performance gain of about 0.1% in the Criteo. For Criteo-
seq and Avazu, CowClip can scale up to 128× and 64×
batch size without performance loss respectively. Equipped
with CowClip, it can scale all four models to a large batch
size with performance improvement, as shown in Table 5
and Table 12. This shows that CowClip is a model-agnostic
optmization technique.

Training with large batches can significantly reduce the
training time. As shown in Appendix, for both the Criteo
dataset and the Avazu dataset, the speedup achieved by scal-
ing up the batch size is almost linear when the batch size
is under 16K. We can still accomplish a sublinear speedup
when continuing to scale up the batch size and achieve a
76.8× speed up with 128K batch size on the Criteo dataset.
As a result, we can finish the training on Criteo dataset with
DeepFM model within 10 minutes. Our method takes the
advantage of large batch training, which can achieve a much
shorter training time within only one GPU resource and ob-
tain a higher AUC score.

Ablation Study
Next, we show the superiority of CowClip over other clip-
ping method designs with DeepFM on the Criteo dataset
at batch size 128K. Table 6 gives the ablation of different

b = 128K
AUC (%) LogLoss

Gradient Clipping (GC) 77.24 0.4953
Field-wise GC 80.62 0.4454
Column-wise GC 80.75 0.4432
Adaptive Field-wise GC 77.90 0.4824

Adaptive Column-wise GC 80.90 0.4430

Table 6: Ablation study of CowClip on Criteo with DeepFM.

gradient clipping designs. GC means the traditional gradi-
ent norm clipping and it fails with b=128K. For the em-
bedding table, we have two granularity: field and column
(e.g., ”Device” is a field, and ”Mobile”, ”Computer” are
columns). Field-wise GC and Column-wise GC show that
gradient clipping on fine-grained granularity yields better re-
sults. The next two lines add the adaptive design to the clip-
ping on the above two granularities, which adaptively decide
the clipping values for each column (line 8 in Alg. 1). The
reason that Field-wise adaptive GC fails to achieve a good
result is that magnitudes of column gradients are different
even in a field. Thus, Gradient clipping applied to a smaller
unit yields better performance. CowClip (Adaptive Column-
wise GC) outperforms all other methods in both settings.
Hyperparameters for these clipping variants and more ab-
lation studies into the effectiveness of each component of
CowClip can be found in the Appendix, which shows each
component contributes to the final results.

Conclusion

To accelerate the training of CTR prediction models on one
GPU, we have explored large batch training and found that
different frequencies hinder the scaling of learning rate and
L2-regularization weight when scaling the batch size. Since
previous scaling rules used in CV and NLP fail, we propose
a novel optimization strategy CowClip with a simple scaling
rule to stabilize the training process for large batch train-
ing in CTR prediction system. Experiments show that our
method successfully scales the batch size to the state-of-the-
art number and achieves significant training speedup. Our
CowClip algorithm is also applicable to other tasks with a
large embedding table such as NLP tasks.
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