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Abstract
With rapid development of various data acquisition technolo-
gies, more and more multimodal data come into being. It
is important to integrate different modalities which are with
high-dimensional features for boosting final multimodal data
classification task. However, existing multimodal classifica-
tion methods mainly focus on exploiting the complementary
information of different modalities, while ignoring the learn-
ing confidence during information fusion. In this paper, we
propose a trustworthy multimodal classification network vi-
a multi-level confidence learning, referred to as MLCLNet.
Considering that a large number of feature dimensions could
not contribute to final classification performance but disturb
the discriminability of different samples, we propose a feature
confidence learning mechanism to suppress some redundan-
t features, as well as enhancing the expression of discrimi-
native feature dimensions in each modality. In order to cap-
ture the inherent sample structure information implied in each
modality, we design a graph convolutional network branch
to learn the corresponding structure preserved feature rep-
resentation and generate modal-specific initial classification
labels. Since samples from different modalities should share
consistent labels, a cross-modal label fusion module is de-
ployed to capture the label correlations of different modali-
ties. In addition, motivated the ideally orthogonality of final
fused label matrix, we design a label confidence loss to super-
vise the network for learning more separable data represen-
tations. To the best of our knowledge, MLCLNet is the first
work which integrates both feature and label-level confidence
learning for multimodal classification. Extensive experiments
on four multimodal medical datasets are conducted to vali-
date superior performance of MLCLNet when compared to
other state-of-the-art methods.

Introduction
Multimodal data becomes more and more ubiquitous in past
decades due to rapid development of diverse data acquisi-
tion technologies (Lahat, Adali, and Jutten 2015; Tang et al.
2018; Muhammad et al. 2021; Duro-Castano et al. 2021;
Tang et al. 2022). With different modalities, a certain object
or scene can be described more comprehensively (e.g., depth
data obtained from depth video camera can capture com-
plementary information for traditional RGB camera when
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a scene is with poor light condition (Liu, Zhang, and Wu
2022)). By exploring complementary information of differ-
ent modalities, multimodal learning can often improve the
final performance of certain tasks, which has been widely
studied in various fields such as medical-diagnosis (Wang
et al. 2014; Siejka-Zielińska et al. 2021; Zhou et al. 2021),
classification (Gómez-Chova et al. 2015), video processing
(Zhang and Wu 2022; Zhu et al. 2022) and information re-
trieval (Wei et al. 2020; Jing et al. 2022). Despite signif-
icant progress, most of existing multimodal learning mod-
els heavily rely on fusion strategies, which results in chal-
lenges of deployment for safety-critical applications such
as computer-aided diagnosis. Therefore, trustworthy multi-
modal learning is important for practical applications.

As to multimodal learning, previous methods can be cat-
egorized into three classes: feature-level fusion, decision-
level fusion and multi-level fusion. The former tries to joint-
ly learn a unified representation from features of multiple
modalities by certain mutual losses, the latter fuses the deci-
sion obtained from each modality and the middle integrates
both modality-wise features and decisions. Either way, they
all aim to explore the correlated and complementary infor-
mation between different modalities for boosting final per-
formance. In past decades, a large number of multimodal
learning models have been put forward (McFee, Lanckri-
et, and Jebara 2011; Wang et al. 2012, 2015; Baltrušaitis,
Ahuja, and Morency 2018; Wang 2021; Huang et al. 2021).
Early proposed methods focus on aggregating the energy
or information of multimodal spaces to reach better perfor-
mance than a single modal (Wang et al. 2016). However, it
is a challenge to capture the nonlinear distribution and com-
plex structure of high-dimensional multimodal data. Due to
the powerful capability of adaptively feature learning, deep
neural network has also been widely used in the field of mul-
timodal learning for feature learning and fusion (Choi and
Lee 2019; Wu et al. 2020; Hong et al. 2020; Wang et al.
2021). By designing rational neural network architectures,
joint representations of multiple modalities can be learned
through appropriate objective functions that related to cer-
tain tasks.

Although great success have been obtained, stability and
explainablity are not well guaranteed in most of existing
multimodal learning methods since the informativeness of
feature, modality, and decision are not jointly perceived,
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Figure 1: Framework of our proposed multi-level confidence learning network for trustworthy multimodal classification (we
use 3 modal multi-omics data for example, and it is easy to extend the network to multiple modal case). The FCLM learns
more discriminative feature representations for each modality by filtering out some redundant feature dimensions. The CLFM
fuses initial predicted labels obtained from different modalities for capturing correlations in a cross-modal manner. Finally, the
LCLM constructs a label confidence loss to supervised the network for generating more confident decisions. During feature
representation learning, GCN is deployed for each modality to preserve the local geometrical structure of original data.

which results in unreliable results of the decision model-
s. In multimodal data, uninformative features and trustless
modalities often exist due to the unsatisfactory data collec-
tion process or instability of equipment (e.g., noisy RGB
video modality under bad light condition (Garcia, Morerio,
and Murino 2018; Lan et al. 2019), inherent noise of mul-
tiomics data (Yan et al. 2018; Argelaguet 2020) and sam-
ple missing phenomenon in certain modality/modalities (Ma
et al. 2021b; Abdelaziz, Wang, and Elazab 2021)). There-
fore, integrating the informativeness of each feature and
each modality of different samples into multimodal learning
is necessary and important for practical applications.

In this work, we propose a multi-level confidence learn-
ing network for trustworthy multimodal classification (ML-
CLNet), in which the informativeness of each feature in d-
ifferent modalities, modal certainty and label confidence are
combined to enhance the trustworthiness of final decision.
Specifically, we design a feature confidence learning mech-
anism to filter out the influence of some redundant features
that disturb the discriminability of different samples. In or-
der to fully exploit the inherent sample structure informa-
tion implied in each modality, a graph convolutional net-
work (GCN) branch is deployed for each modality to learn
the corresponding structure preserved feature representation
and generate modal-specific initial classification labels. Af-
terwards, a cross-modal label fusion module is developed
to capture the label correlations and consistency of differ-
ent modalities. In addition, considering the orthogonality of
final fused idea label matrix, we invent a label confidence
loss to supervise the network for learning more discrimina-
tive data representations. Figure 1 briefly shows the structure
of our proposed MLCLNet. In a nutshell, the contributions
of this work can be summarized as follows:
• To the best of our knowledge, we are the first to integrate

both feature and label-level confidence learning for trust-
worthy multimodal classification;

• Different from previous methods which fuse informa-
tion in low-level feature space, we design a label fusion
module to exploit higher-level correlations of different
modalities in the label space;
• With the fused label matrix, a label confidence loss is

designed to supervise the network for learning more dis-
criminative data representations to boost final classifica-
tion performance. Extensive experiments on four multi-
modal medical datasets are conducted to validate the ef-
ficacy of the proposed MLCLNet.

Related Work
Multimodal learning has been widely investigated in past
years and usually obtains remarkable performance improve-
ment when compared to single modal learning models
(Ramachandram and Taylor 2017; Baltrušaitis, Ahuja, and
Morency 2018). The critical issue of multimodal learning
is how to fuse complementary information from differen-
t modalities. Feature-level fusion methods directly integrate
original data from multiple modalities, such as data concate-
nation or summation (Dalla Mura et al. 2015). However, it
is hard to handle heterogeneous or non-consistent scale da-
ta using simple early fusion strategy. Decision-level fusion
methods first generate prediction labels from each modali-
ty and then fuse the multiple outputs to get final decision
(Wang et al. 2021). Multi-level fusion methods integrate
both features and decisions from different modalities and
therefore they can capture both low-level and high-level in-
formation (Poria, Cambria, and Gelbukh 2015; Hu and S-
ingh 2021; Lee and van der Schaar 2021).

By taking the uncertainty of data and modality into con-
sideration, trustworthy multimodal learning becomes a hot
and cutting-edge topic. In order to capture both feature and
modality informativeness, Han et al. (Han et al. 2022a) pro-
posed a dynamical fusion network for trustworthy multi-
modal classification, in which a sparse gating is introduced
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to capture the information variation of each within-modality
feature and the true class probability is employed to as-
sess the classification confidence of each modality. Wang
et al. presented a novel multi-omics integrative method
named MOGONET for biomedical classification (Wang
et al. 2021), which jointly explores omics-specific learn-
ing and cross-omics correlation learning via view correla-
tion discovery network (VCDN) (Wang et al. 2019) for ef-
fective multi-omics data classification. Since different type-
s of omics data can provide unique class-level distinctive-
ness, rather than fusing features from different modalities,
MOGONET uses VCDN to exploit the higher-level intra-
view and cross-view correlations in the label space and get
final trustworthy classification labels. In order to enhance
confidence of prediction for diverse situations, Ma et al.
(Ma et al. 2021a) introduced a novel Mixture of Normal-
Inverse Gamma distributions (MoNIG) algorithm, in which
the uncertainty of modalities can be efficiently estimated for
adaptively modality integration to produce a trustworthy re-
gression result. Based on Dempster-Shafer theory, Han et al.
(Han et al. 2021, 2022b) proposed the variational Dirichlet
for class probability distribution characterization, and differ-
ent modalities were integrated at evidence level to consoli-
date the learning framework with both reliability and robust-
ness against possible noise or corruption. In this paper, we
propose a trustworthy multimodal classification network via
both feature-level and label-level confidence learning.

Proposed MLCLNet
In this part, we give the detailed illustration of our proposed
MLCLNet. Supposing we haveN data samples described by
M modalities and xmn denotes the n-th sample of the m-th
modality, and yn denotes the class label of the n-th sample.
Multimodal classification aims to classify theN samples in-
to C different classes by using the data from M modalities.
Different from previous methods that fuse features or pre-
diction labels, we design to adaptively learn feature confi-
dence for filtering out some noisy/redundant feature dimen-
sions for each sample in each modality, then a graph convo-
lutional network is used to learn structure preserved feature
representation and generate modality-specific class labels.
Finally, a cross-modal label fusion module is deployed to
capture the correlations of different modalities in high-level
label space. In addition, the ideally orthogonality of final
label matrix motivates us to design a label confidence loss
for supervising the network to learn more discriminative da-
ta representations. Therefore, there are three main modules
in MLCLNet, i.e., feature confidence learning module (F-
CLM), cross-modal label fusion module (CLFM) and label
confidence learning module (LCLM), as shown by Figure 1.
Following we will give detailed introduction of each mod-
ule.

Feature Confidence Learning Module (FCLM)
It is well known that there is a large proportion of noisy/re-
dundant features in high-dimensional data, which could
not contribute to final learning performance but degener-
ate the discriminability of different samples. Therefore, how

to reduce the influence of noisy/redundant features should
be important for performance gain. In previous works, s-
parse regularization is a popular strategy for handling high-
dimensional data. However, the informativeness of one fea-
ture for different samples are regarded as the same in tra-
ditional models, which is in conflict with actual situation.
To this end, we design a FCLM for each modality to retain
important features as well as suppress redundant features,
which promotes the feature representation and trustworthi-
ness within each modality.

Specifically, given a certain sample in the m-th modality
xm ∈ Rdm where dm denotes the feature dimension of the
m-th modality, we train an encoder network to learn its cor-
responding feature informativeness vector, i.e., wm ∈ Rdm .
For simplicity, we use the sigmoid activation to scale the
learned feature informativeness values, which can be math-
ematically formulated as follows:

wm = σ(Φ(xm)), (1)

where Φ represents the operations of encoder network and
σ(·) refers to the sigmoid activation function. For high-
dimensional data, it is useful to impose sparsity on the fea-
tures to seek a small subset of relevant features. Therefore,
l0-norm regularization can be employed on wm. However, it
is hard to optimize l0-norm regularization in practice, we use
l1-norm instead for easier solution. With the learned feature
informativeness measure, the filtered features are obtained
by the element-wise production between original features
and wm for each sample in each modality as follows:

x̂m = xm � wm. (2)

Cross-modal Label Fusion Module (CLFM)
For feature representation learning, the implied geometric
structure of original data is a useful prior. With selected sub-
set of relevant features, we use GCN for each modality to
learn structure preserved compact feature representation.

For modality m, each sample is regarded as a node in the
sample similarity graph. GCN aims to learn node features
on the graph for classification tasks by aggregating both the
features of each node and its neighbours characterized by the
graph. For each GCN branch, there are two kinds of inputs,
i.e., original feature matrix Xm ∈ RN×dm and the corre-
sponding graph matrix Am ∈ RN×N . In this work, we build
each GCN by stacking a series of convolutional layers. In
detail, each layer can be defined as:

Hl+1
m = f(Hl

m,Am) = σ(AmHl
mWl

m), (3)

where Hl
m is the input of the l-th layer and Wl

m denotes
the weight matrix of the l-th layer which needs to be learned
during network training, and σ(·) also denotes the non-linear
activation function.

Similar to previous work, the adjacency matrix Am is al-
so constructed by calculating the cosine similarity between
pairs of nodes and we retain edges with cosine similarity
larger than a threshold τ . Specifically, the adjacency be-
tween node i and node j in the graph can be calculated as
follows:

Am(i, j) =
{
s(xi

m,xj
m), if i 6=j and s(xi

m,xj
m)≥τ

0, otherwise (4)
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where xim and xjm are the feature vectors of node i and node
j, respectively. s(xim, xjm) is the cosine similarity between
node i and j.

It should be noted that GCNs have been widely utilized
in unsupervised and semi-supervised learning but seldom
used for supervised classification tasks. In this work, based
on previous learned feature representation, we extend GCN-
s to supervised classification and generate initial class la-
bels for each modality. Given a set of training data Xtr
which consists of Ntr data samples, we train a GCN with
Xtr and the corresponding adjacency matrix Atr, and gen-
erate the classification prediction matrix Ytr ∈ RNtr×C in
which the i-th row represents the predicted label probabili-
ty of the i-th training sample belonging to each class. For a
new test sample xtr ∈ Rdm , the data matrix is extended as
Xtrte = [Xtr; Xte] ∈ R(Ntr+1)×dm and the corresponding
adjacency matrix is extended as Atrte ∈ R(Ntr+1)×(Ntr+1).
Therefore, we can get final extended prediction label prob-
ability matrix as Ytrte ∈ R(Ntr+1)×C in which the last row
denotes the predicted label probability of the testing sam-
ple belonging to each class. In this way, the features of the
test sample and the correlations between the test sample and
training samples are both utilized for label prediction of the
new test sample.

There are many previous multimodal learning models
which fuse features from different modalities to generate
a unified representation of original data. However, feature-
level fusion is challenging and has no reliable guarantee
when different modalities are heterogeneous. In addition, it
is not easy to align different modalities in low-level feature
space. In this work, instead of feature fusion, we try to ex-
ploit the high-level cross-modal correlations in the label s-
pace (Wang et al. 2021). For the m-th modality, the predict-
ed label probability vector of the i-th sample is denoted as
yim ∈ R1×C . We stack the predicted label probability vec-
tors from different modalities to form a cross-modal label
tensor as T i ∈ RC×C×···×C , and each entry of T i can be
calculated as:

T i(k1, k2, · · · kM ) = yi,1k1 y
i,2
k2
· · · yi,MkM , (5)

where yi,mkm denotes the mth entry of yikm . Then, T i is re-
shaped to a CM dimensional vector and input to a fully con-
nected layer with the output dimension of C. In this manner,
the latent cross-modal label correlations can be well revealed
to help improve the learning process and initial prediction-
s from different modalities are integrated to generate final
reliable decisions.

Label Confidence Learning Module (LCLM)
Although feature-level fusion and label-level fusion can ef-
fectively improve multimodal learning tasks, the final label
confidence is often ignored and not well exploited for net-
work supervision. In this work, we design a LCLM to mea-
sure the predicted label confidence and use it to supervise
the network training. First, we recall the predicted label ma-
trix Y ∈ RN×C (for simplicity, we ignore the superscripts
and subscripts to illustrate the concept), the p-th column of

Y is yp ∈ RN×1, which consists of the probability of all data
samples belonging to the p-th class.

Ideally, each sample should belong to only one class, i.e.
each yp is a one-hot vector (Huang, Gong, and Zhu 2020).
However, this ideal condition is hard to reach in practical.
In order to enable our proposed network towards this ide-
al case, we design a label confidence learning module by
introducing a label guided objective loss, which is motivat-
ed by the natural property of label matrix. It is well known
that we often constrain that the label matrix Y is orthogo-
nal for clustering/classification tasks, i.e., Y>Y = IC×C ,
which corresponds to the most confident prediction. There-
fore, the question is how to covert the orthogonality con-
straint to trainable loss function?

Based on simple linear algebra, if two vectors are orthog-
onal, their inner product should be 0, which can be mathe-
matically formulated as follows:

IP (yp, yq) = yp · yq = 0, [p, q = 1, 2, · · · , C]. (6)

Therefore, if IP (yp, yq) is with a large value, and the pre-
dicted p-th and q-th classes are not confident. For different
columns of Y, we can construct a label uncertainty matrix
U ∈ RC×C by using Eq. (6) on different set of all the clus-
ter pairs. To this end, LCLM aims to minimise the matrix
values (except the diagonal elements) of U, which enforce
the most confident classification results.

Note that Eq. (6) actually describes the correlation be-
tween two vectors buy using simple inner product operation,
which is consistent with the widely used attention mecha-
nism (Vaswani et al. 2017). Since U is a C × C matrix, we
need to transform it to a scalar measure for network training.
In traditional attention mechanism, attention is calculated on
sample pairs. Therefore, we treat each class in U as a sample
and reformulate original attention mechanism to suppress all
the inter-class attention. For simplicity, we apply a softmax
operation as self-attention to each class p and obtain a class
pair correlation measurement as follows:

u(p, p′)=
exp(U(p, p′))∑C
q=1 exp(U(p, q))

, p′ ∈ [1, · · · , C]. (7)

Given Eq. (7), minimizing the class pair correlation is sim-
plified into maximising {u(p, p)}Cp=1.

Loss Functions
Since there are three major modules in our MLCLNet, i.e.,
FCLM, CLFM and LCLM, the final loss function also con-
sists of three parts. Following we introduce the loss function
for each module.

Feature Confidence Learning Loss As defined by Eq.
(1), wm is used to measure the informativeness of each fea-
ture dimension of each sample. Ideally, l0-norm regulariza-
tion can be used to select a subset of discriminative features
but it is hard to solve. Therefore, we use l1-norm regulariza-
tion to wm for sparsity approximation and lead to the feature
confidence learning loss as follows:

LFCL =
∑M

m=1
||wm||1. (8)
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Datasets LGG ROSMAP

Method Fusion stage ACC F1 AUC ACC F1 AUC

KNN early 72.9±3.4 73.8±3.8 79.9±3.8 65.7±3.6 67.1±4.5 70.9±4.5

SVM early 75.4±4.6 75.7±4.6 75.4±4.6 77.0±2.4 77.8±2.6 77.0±2.6

LR early 76.1±1.8 76.7±2.7 82.3±2.7 69.4±3.7 73.0±3.5 77.0±3.5

RF early 74.8±1.2 74.2±1.0 82.3±1.0 72.6±2.9 73.4±1.9 81.1±1.9

NN early 73.7±2.3 74.8±3.7 81.0±3.7 75.5±2.1 76.4±2.5 82.7±2.5

GRridge intermediate 74.6±3.8 75.6±4.4 82.6±4.4 76.0±3.4 76.9±2.3 84.1±2.3

BPLSDA intermediate 75.9±2.5 73.8±2.3 82.5±2.3 74.2±2.4 75.5±2.5 83.0±2.5

BSPLSDA intermediate 68.5±2.7 66.2±2.6 73.0±2.6 75.3±3.3 76.4±2.1 83.8±2.1

CF intermediate 81.1±1.2 82.2±0.4 88.1±0.4 78.4±1.1 78.8±0.5 88.0±0.5

GMU intermediate 80.3±1.5 80.8±1.2 88.6±1.2 77.6±2.5 78.4±1.6 86.9±1.6

MOGONET decision 81.6±1.6 81.4±2.7 84.0±2.7 81.5±2.3 82.1±1.2 87.4±1.2

TMC decision 81.9±0.8 81.5±0.4 87.1±0.4 82.5±0.9 82.3±0.6 88.5±0.6

MLCLNet decision 83.5±1.4 84.0±1.3 88.6±1.2 84.4±1.5 85.2±1.5 89.3±1.1

Table 1: Classification results of different methods on the LGG and ROSMAP datasets (the best results are marked in bold
font).

Cross-modal Label Fusion Loss Different to previous
methods that fuse information of multiple modalities in the
feature level, we fuse the cross-modal complementary infor-
mation in the high-level label space. As shown in Eq. (5), a
CM dimensional label probability vector can be obtained by
reshaping T i for the i-th sample, then a fully connected lay-
er with the output dimension of C can be used to generate
final unified classification label ŷi. For this module, the com-
monly used cross-entropy loss function is used for training
supervision, which is formulated as follows:

LFCL = −
∑Ntr

i=1

∑C

c=1
ŷc
i logyic, (9)

where ŷc
i and yic are the c-th element of ŷi and yi, respec-

tively.

Label Confidence Learning Loss As shown in Eq. (7),
maximising {u(p, p)}Cp=1 could obtain the most confident
prediction. If we treat u(p, p) as the model prediction prob-
ability on the ground-truth class of a training sample, cross-
entropy loss can be also exploited for training supervision,
which can be formulated as:

LLCL = − 1

C

∑C

p=1
log u(p, p). (10)

Finally, the overall objective function of MLCLNet can
be obtained by combining above three terms as follows:

L = LFCL + λ1LCLF + λ2LLCL, (11)

where λ1 and λ2 are two weight parameters to balance dif-
ferent losses.

Experiments
In the section, we compare the proposed MLCLNet with
some other state-of-the-art classification methods on four
real-world multimodal datasets. Extensive experimental re-
sults validate the superiority of our propose network when
compared with other counterparts. In addition, ablation s-
tudies are also conducted to demonstrate the effectiveness
of different modules.

Experimental Settings
Datasets. Four benchmark multimodal medical datasets
are used in our experiments, and the details of each dataset
are as follows:
BRCA is used for breast invasive carcinoma PAM50 sub-
type classification, which contains 875 samples from 5 dif-
ferent classes.
LGG is used for grade classification in glioma, which con-
tains 510 samples from 2 classes.
ROSMAP is used for Alzheimer’s Disease diagnosis, which
contains 351 samples of 2 classes (A Bennett et al. 2012;
De Jager et al. 2018).
KIPAN is used for kidney cancer type classification, which
contains 658 samples from 3 classes.
There are three different modalities associated in above
datasets, i.e., mRNA expression, DNA methylation, and
miRNA expression. BCRA, LGG, and KIPAN can be ob-
tained from The Cancer Genome Atlas program (TCGA) 1.

Compared methods. In order to validate the superiority
of the proposed MLCLNet, 12 competitors including 5

1https://www.cancer.gov/about-
nci/organization/ccg/research/structuralgenomics/tcga
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Datasets BRCA KIPAN

Method Fusion stage ACC WeightedF1 MacroF1 ACC WeightedF1 MacroF1

KNN early 74.2±2.4 73.0±2.5 68.2±2.5 96.7±1.1 96.7±1.1 96.0±1.4

SVM early 72.9±1.8 70.2±1.7 64.0±1.7 99.5±0.3 99.5±0.3 99.4±0.4

LR early 73.2±1.2 69.8±2.6 64.2±2.6 97.4±0.2 97.4±0.2 97.2±0.4

RF early 75.4±0.9 73.3±1.3 64.9±1.3 98.1±0.6 98.1±0.6 97.5±1.1

NN early 75.4±2.8 74.0±4.7 66.8±4.7 99.1±0.5 99.1±0.5 99.1±0.5

GRridge intermediate 74.5±1.6 72.6±2.5 65.6±2.5 99.4±0.4 99.4±0.4 99.3±0.4

BPLSDA intermediate 64.2±0.9 53.4±1.7 36.9±1.7 93.3±1.3 93.3±1.3 91.9±2.1

BSPLSDA intermediate 63.9±0.8 52.2±2.2 35.1±2.2 91.9±1.2 91.8±1.3 89.5±1.4

CF intermediate 81.5±0.8 81.5±0.9 77.1±0.9 99.2±0.5 99.2±0.5 98.8±0.9

GMU intermediate 80.0±3.9 79.8±5.8 74.6±5.8 97.7±1.6 97.6±1.7 95.8±3.2

MOGONET decision 82.9±1.8 82.5±1.7 77.4±1.7 99.9±0.2 99.9±0.2 99.9±0.2
TMC decision 84.2±0.5 84.4±0.9 80.6±0.9 99.7±0.3 99.7±0.3 99.4±0.5

MLCLNet decision 86.4±1.6 87.8±1.7 82.6±1.8 99.9±0.7 99.9±0.2 99.9±0.2

Table 2: Classification results of different methods on the BRCA and KIPAN datasets (the best results are marked in bold font).

single-modal methods and 7 multimodal classification mod-
els are used for comparison. For single-modal classification
methods, data from different modalities are simply concate-
nated as input and these methods are: K-Nearest Neighbors
(KNN) (Fix and Hodges 1989), Support Vector Machine
(SVM) (Cortes and Vapnik 1995), l1-norm regularized
Linear Regression (LR), Random Forest (RF) (Ho 1995),
and fully connected neural networks (NN). In addition, 7
multimodal classification models are as follows:
GRidge: Group-regularized (logistic) ridge regression
(Van De Wiel et al. 2016), which makes structural use of
multimodal data through group-specific penalties.
BPLSDA: Block partial least squares discriminant analysis
(Singh et al. 2019), which explores multimodal data in
latent space through discriminant analysis.
BSPLSDA: Block sparse partial least squares discriminant
analysis (Singh et al. 2019), which is based on BPLSDA by
selecting the most relevant features with sparse constraints.
CF: Concatenation of final multimodal representations
(Hong et al. 2020), which integrates multiple modalities by
concatenating late stage multimodal representations.
GMU: Gated multimodal units for information fusion
(Ovalle et al. 2017), which generates an intermediate
cross-modal representation based on the combination of
data from different modalities.
TMC: Trusted multi-view classification (Han et al. 2021),
which conducts decision fusion based on the confidence of
different modalities.
MOGONET: Multiomics graph convolutional networks
(Wang et al. 2021), which constructs a GCN for each
modality for data structure preservation and captures
cross-modal correlation via correlation discovery model.

Evaluation metrics. Different metrics are used to evaluate
the performance of the compared methods. Since there are
both binary classes and multiple classes in the used dataset-
s, we use accuracy (ACC), F1 score (F1), and area under
the receiver operating characteristic curve (AUC) for bina-
ry classification tasks evaluation, and we use accuracy (AC-
C), average F1 score weighted by support (F1 weighted),
and macro-averaged F1 score (F1 macro) for multiple class-
es classification tasks.

Since each dataset needs to be partitioned into training
part and testing part, similar to previous work (Wang et al.
2021; Han et al. 2022a), we run experiments 20 times and re-
port the average results and standard deviation for avoiding
bias of data partition. The Adam optimizer with learning rate
decay is used for network training. For each time of exper-
iment on each dataset, we stop the training process at 1200
epochs and output the testing results.

Experimental Results
Firstly, we compare the proposed MLCLNet with other
methods on binary classification tasks. The detailed classi-
fication results of different methods on LGG and ROSMAP
datasets are reported in Table 1. As can be seen from the re-
sults, the proposed MLCLNet achieves the best performance
when compared with the other methods in terms of differen-
t metrics. Specifically, MLCLNet achieves 1.6% and 1.8%
improvements over the second best results in terms of AC-
C and F1 on LGG dataset, and achieves 1.9%, and 2.9%
improvements over the second best results in terms of AC-
C and F1 on ROSMAP dataset. When compared to single-
modal classification methods, our proposed method obtains
significantly improvements in terms of all metrics on differ-
ent datasets.
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Secondly, we further compare the proposed MLCLNet
with other methods on multi-classification tasks and present
the classification results of different methods on BRCA and
KIPAN datasets in Table 2. From the experimental result-
s, we can get the following observations: 1) The proposed
MLCLNet can get the unique best results in terms of all met-
rics on BRCA dataset; 2) The proposed method consistently
obtains better results than single-modal classification meth-
ods on the two datasets; 3) When compared to MOGONET
which also fuses modal-wise predictions, MLCLNet still has
prominent advantage.

In order to give an intuitive presentation of performance
varying with the training process, we plot the values of train-
ing loss and different metrics of MLCLNet on BRCA dataset
with varying training iteration epochs in Figure 2. As can
be seen, our proposed MLCLNet can converges well within
1000 iteration epochs and get stable classification results.
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Figure 2: The training loss and the variation of different per-
formance evaluation metrics on BRCA dataset.

Ablation Study
As elaborated in previous sections, there are three main
modules in our proposed MLCLNet. In order to validate
the efficacy of each module, we perform ablation study ex-
periments with different settings of the network structure.
Firstly, we remove the feature confidence learning module
and keep other parts of MLCLNet, we call this variant ML-
CLNet noFCL. Secondly, rather than constructing the cross-
modal label correlation discovery tensor, we concatenate
the label vector obtained from each modality and input to
the fully connected layer for generating final C-dimensional
prediction, and this version is called MLCLNet noCLF. Fi-
nally, we remove the label confidence loss and regard the
network as MLCLNet noLCL. In Table 3, we show the final
classification results of our proposed MLCLNet under dif-
ferent settings. The following observations can be obtained
from the ablation experimental results: 1) All of the different
modules contribute to the final performance gain; 2) The per-
formance of MLCLNet degrades the most when the cross-
modal label fusion module is removed, which verifies the

importance of modality information fusion; 3) With the la-
bel confidence learning module, MLCLNet can also obtain
significant performance improvement.

Dataset Networks ACC F1

LGG

MLCLNet noFCL 82.7±1.2 83.5±1.2

MLCLNet noCLF 80.3±1.3 81.2±1.3

MLCLNet noLCL 81.4±1.2 82.4±1.1

MLCLNet 83.5±1.4 84.0±1.3

ROSMAP

MLCLNet noFCL 83.7±1.4 84.3±1.3

MLCLNet noCLF 81.5±1.3 82.1±1.2

MLCLNet noLCL 82.0±1.2 83.6±1.4

MLCLNet 84.4±1.5 85.2±1.5

BRCA

MLCLNet noFCL 85.3±1.4 87.1±1.6

MLCLNet noCLF 82.7±1.5 83.4±1.6

MLCLNet noLCL 83.8±1.3 84.9±1.5

MLCLNet 86.4±1.6 87.8±1.7

KIPAN

MLCLNet noFCL 99.3±0.9 99.4±0.3

MLCLNet noCLF 98.3±0.8 98.9±0.2

MLCLNet noLCL 98.9±0.6 98.7±0.3

MLCLNet 99.8±0.7 99.9±0.2

Table 3: Ablation study of the proposed MLCLNet on dif-
ferent datasets.

Conclusions
In this paper, we present a trustworthy multimodal classifi-
cation network via multi-level confidence learning, named
MLCLNet. Three main modules including feature confi-
dence learning, cross-modal label fusion and label confi-
dence learning are designed and integrated into MLCLNet
for trustworthy feature representation learning and classifi-
cation label prediction. Four practical medical multi-omics
datasets are used to validate the efficacy of the proposed net-
work and experimental results also demonstrate the superi-
ority of MLCLNet when compared with other competitors.
In addition, ablation studies are also conducted to verify the
usefulness of different modules.
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